ON THE DUAL SPACELIKE – SPACELIKE INVOLUTE – EVOLUTE CURVE COUPLE ON DUAL LORENTZIAN SPACE ID_1^3 ID_1^3

Sümeyye GÜR¹ & Süleyman ŞENYURT²

¹Ege University, Faculty.of Sciences, Department of Mathematics, Izmir/Turkey,

²Ordu University, Faculty of Arts and Sciences, Department of Mathematics, Ordu/Turkey.

(² Corresponding author, e-mails: senyurtsuleyman@hotmail.com; ssenyurt@odu.edu.tr)

Abstract. In this paper, firstly we have defined the involute curves of the dual spacelike curve M_1 with a dual timelike binormal in dual Lorentzian space ID_1^3 $ID₁³$ We

have seen that the dual involute curve M_2 must be a dual spacelike curve with a dual spacelike or timelike binormal vector. Secondly,the relationship between the Frenet frames of couple the spacelike – spacelike involute – evolute dual curve has been found and finally some new characterizations related to the couple of the dual curve has been given.

Keywords: Dual Lorentzian space, dual involute – evolute curve couple, dual Frenet frames

Mathematics Subject Classification(2000): 53A04, 53B30

1 Introduction

The consept of the involute of a given curve is a well-known in 3-dimensional Euclidean space IR^3 in [7,8,12,13]. Some basic notions of Lorentzian space are given [3,10,14]. M_1 is a timelike curve then the involute curve M_2 is a spacelike curve with a spacelike or timelike binormal. On the other hand, it has been investigated the involute and evolute curves of the spacelike curve M_1 with a spacelike binormal in Minkowski 3-space and it has been seen that the involute curve M_2 is timelike. The involute curves of the spacelike curve M_1 with a timelike binormal is defined in Minkowski 3-space IR_1^3 IR_1^3 , [2,4,5]. Lorentzian angle defined in [11]. W.K. Clifford, introduced dual numbers as the set
 $ID = \left\{ \hat{\lambda} = \lambda + \varepsilon \lambda^* \middle| \lambda, \lambda^* \in IR, \varepsilon^2 = 0 \text{ for } \varepsilon \neq 0 \right\},[6].$

$$
ID = \left\{ \hat{\lambda} = \lambda + \varepsilon \lambda^* \middle| \lambda, \lambda^* \in IR, \varepsilon^2 = 0 \text{ for } \varepsilon \neq 0 \right\}, [6].
$$

Addition, product, division and absolute value operations are defined on *ID* like below, respectively:

$$
(\lambda + \varepsilon \lambda^*) + (\beta + \varepsilon \beta^*) = (\lambda + \beta) + \varepsilon (\lambda^* + \beta^*)
$$

\n
$$
(\lambda + \varepsilon \lambda^*) (\beta + \varepsilon \beta^*) = \lambda \beta + \varepsilon (\lambda \beta^* + \lambda^* \beta),
$$

\n
$$
\frac{\lambda + \varepsilon \lambda^*}{\beta + \varepsilon \beta^*} = \frac{\lambda}{\beta} + \varepsilon \left(\frac{\lambda^* \beta - \lambda \beta^*}{\beta^2} \right),
$$

\n
$$
|\lambda + \varepsilon \lambda^*| = |\lambda|.
$$

 $\left\{A=a+\varepsilon a \middle| a,a \in \mathbb{R}^{\infty} \right\}$. $ID^3 = \{ \vec{A} = \vec{a} + \vec{e}\vec{a} \mid \vec{a}, \vec{a} \in IR^3 \}$. The elements of ID^3 are called dual vectors. On this set addition and scalar product operations are respectively

$$
\vec{A}\oplus\vec{B}=\vec{a}+\vec{b}+\varepsilon(\vec{a}+\vec{b}),\lambda\Box
$$

The set (D^3, \oplus) is a module over the ring $(D, +, \cdot)$. $(ID - Modul)$. The Lorentzian inner product of dual vectors \vec{A} , $\vec{B} \in ID^3$ is defined by
 $\langle \vec{A}, \vec{B} \rangle = \langle \vec{a}, \vec{b} \rangle + \varepsilon \left[\langle \vec{a}, \vec{b} \rangle + \langle \vec{a}, \vec{b} \rangle \right]$

$$
\langle \vec{A}, \vec{B} \rangle = \langle \vec{a}, \vec{b} \rangle + \varepsilon \left(\langle \vec{a}, \vec{b} \rangle + \langle \vec{a}, \vec{b} \rangle \right)
$$

with the Lorentzian inner product $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3) \in \mathbb{R}^3$

$$
\langle \vec{a}, \vec{b} \rangle = -a_1b_1 + a_2b_2 + a_3b_3.
$$

Therefore, ID^3 with the Lorentzian inner product $\langle \vec{A}, \vec{B} \rangle$ is called 3-dimensional dual Lorentzian space and denoted by of $ID_1^3 = \{A = a + \varepsilon a \mid a, a \in IR_1^3\}$. $ID_1^3 = \left\{ \vec{A} = \vec{a} + \varepsilon \vec{a} \mid \vec{a}, \vec{a} \in IR_1^3 \right\}.$

A dual vector $\vec{A} = \vec{a} + \vec{sa} \in ID_1^3$ $ID₁³$ is called

A dual space-like vector if a is spacelike vector,

A dual time-like vector if a is timelike vector,

A dual null(light-like) vector if a is lightlike vector.

For $\vec{A} \neq 0$, the norm $\|\vec{A}\|$ of $\vec{A} = \vec{a} + \vec{e} \vec{a} \in ID_1^3$ $a + \varepsilon a \in ID_1^3$ is defined by

$$
\|\vec{A}\| = \sqrt{\langle \vec{A}, \vec{A} \rangle} = \|\vec{a}\| + \varepsilon \frac{\partial}{\partial \vec{a}}\|_{\vec{a}} \qquad \text{and} \qquad 0.
$$

The dual Lorentzian cross-product of \overrightarrow{A} , $\overrightarrow{B} \in ID_1^3$ is defined as

$$
\vec{A} \wedge \vec{B} = \vec{a} \wedge \vec{b} + \varepsilon \left(\vec{a} \wedge \vec{b} + \vec{a} \wedge \vec{b} \right)
$$

with the Lorentzian cross-product \vec{a} , $\vec{b} \in IR_1^3$

Lorentzian cross-product
$$
\vec{a}
$$
, $\vec{b} \in IR_1^3$
\n $\vec{a} \wedge \vec{b} = (a_3b_2 - a_2b_3, a_1b_3 - a_3b_1, a_1b_2 - a_2b_1)$, [17].

Dual Frenet trihedron of the differentiable curve M in dual space ID_1^3 $ID₁³$ and instantaneous dual rotation vector have given in [1,16]. The dual angle between

$$
\vec{A} \text{ and } \vec{B} \text{ is } \Phi = \varphi + \varepsilon \varphi^* \text{, such that}
$$
\n
$$
\begin{cases}\n\sinh \Phi = \sinh \left(\varphi + \varepsilon \varphi^* \right) = \sinh \varphi + \varepsilon \varphi^* \cosh \varphi \\
\cosh \Phi = \cosh \left(\varphi + \varepsilon \varphi^* \right) = \cosh \varphi + \varepsilon \varphi^* \sinh \varphi.\n\end{cases}
$$

The dual Lorentzian sphere and the dual hyperbolic sphere of 1 radius in IR_1^3 Lorentzian sphere and the dual hyperbolic sphere of 1 radius in IR_1^3 are
 *S*₁² = { $A = a + \varepsilon a_0 \mid ||A|| = (1,0); a, a_0 \in IR_1^3$, and *a* is spacelike} defined by $\mathcal{L}^2 = \{A = a + \varepsilon a_0 \mid ||A|| = (1,0); a, a_0 \in IR\}$

$$
S_1^2 = \{ A = a + \varepsilon a_0 \mid \|A\| = (1,0); a, a_0 \in IR_1^3, \text{ and } a \text{ is spacelike} \}
$$

$$
H_0^2 = \{ A = a + \varepsilon a_0 \mid \|A\| = (1,0); a, a_0 \in IR_1^3, \text{ and } a \text{ is timelike} \}
$$

respectively [15].

2 Preliminaries

Lemma 1 1: Let X and Y be nonzero Lorentz orthogonal vektors in ID_1^3 ID_1^3 . If X is timelike, then Y is spacelike, [11].

Lemma 2.2: Let X, Y be positive (negative) timelike vectors in ID_1^3 ID_1^3 .Then $X, Y \leq ||X|| ||Y||$ with equality if and only if X and Y are linearly dependent, [11]. **Lemma 2.3**

i) Let *X* and *Y* be pozitive (negative) timelike vectors in ID_1^3 ID_1^3 . Then we ha $X, Y \leq ||X|| ||Y||$, there is a unique non negative dual number $\Phi(X, Y)$ such that $X, Y = ||X|| ||Y|| \cosh \Phi(X, Y)$ where $\Phi(X, Y)$ is the Lorentzian timelike dual angle between X and Y .

ii) Let *X* and *Y* be spacelike vectors in ID_1^3 $ID₁³$ that span a spacelike vector subspace. Then we have $|(X,Y)| \leq ||X|| ||Y||$. Hence, there is a unique dual number $\Phi(X,Y)$ between 0 and π such that $\langle X, Y \rangle = ||X|| ||Y|| \cos \Phi(X, Y)$ where $\Phi(X, Y)$ is the Lorentzian spacelike dual angle between X and Y .

iii) Let *X* and *Y* be spacelike vectors in ID_1^3 $ID₁³$ that span a timelike vector subspace. Then wehave $|(X,Y)| \ge ||X|| ||Y||$. Hence, there is a unique positive dual number $\Phi(X,Y)$ such that $\langle X,Y\rangle = ||X|| ||Y|| \cosh \Phi(X,Y)$ where $\Phi(X,Y)$ is the Lorentzian timelike dual angle between *X* and *Y* .

 iv) Let *X* be a spacelike vector and *Y* a positive timelike vector in $ID₁³$ $ID₁³$. Then there is a unique nonnegative dual number $\Phi(X, Y)$ is the Lorentzian timelike dual angle between *X* and *Y*, such that $\langle X, Y \rangle = ||X|| ||Y|| \sinh \Phi(X, Y)$,[11].

Let $\{T, N, B\}$ be the dual Frenet trihedron of the differentiable curve M in the dual space ID_1^3 *N*, *B*[}] be the dual Frenet trihedron of the differentiable curve *M* in the dual ID_1^3 and $T = t + \varepsilon t^*$, $N = n + \varepsilon n^*$ and $B = b + \varepsilon b^*$ be the tangent, the principal normal and the binormal vector of *M* , respectively. Depending on the causal character of the curve M , we have an instantaneous dual rotation vector:

1) Let *M* be a unit speed timelike dual space curve with dual curvature $\kappa = k_1 + \varepsilon k_1^*$ and dual torsion $\tau = k_2 + \varepsilon k_2^*$. The Frenet vectors T, N and B of *M* are timelike vector, spacelike vectors, spacelike vector, respectively, such that $T \wedge N = -B$, $N \wedge B = T$, $B \wedge T = -N$. (2.1)

From here ,

$$
\begin{bmatrix} T' \\ N' \\ B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}, [18]. \tag{2.2}
$$

(2.2) leaves the real and dual components
\n
$$
\begin{bmatrix} t' \\ n' \\ b' \end{bmatrix} = \begin{bmatrix} 0 & k_1 & 0 \\ k_1 & 0 & -k_2 \\ 0 & k_2 & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b \end{bmatrix}
$$
\n
$$
\begin{bmatrix} t'' \\ n'' \\ n'' \\ b'' \end{bmatrix} = \begin{bmatrix} 0 & k_1^* & 0 \\ k_1^* & 0 & -k_2^* \\ 0 & k_2^* & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b \end{bmatrix} + \begin{bmatrix} 0 & k_1 & 0 \\ k_1 & 0 & -k_2 \\ 0 & k_2 & 0 \end{bmatrix} \begin{bmatrix} t \\ n^* \\ b^* \end{bmatrix}
$$

http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

The Frenet instantaneous rotation vector W of the timelike curve is given by

 $W = \tau T - \kappa B$,[14]. (2.3) (2.3) leaves the real and dual components $2^t - k_1$ $k^* - k^* t + k^* t^* - k^* b - k^* b^*$ s the real and dividend
 $w = k_2 t - k_1 b$, $w^* = k_2^* t + k_2 t^* - k_1^* b - k_1 b$ $\begin{cases} w = k_2 t - k_1 b \end{cases}$ $\begin{cases} w^* = k_2^* t + k_2 t^* - k_1^* b - k_1 b \end{cases}$

 $2 t + k_2 t - k_1 b - k_1$

Let $\Phi = \varphi + \varepsilon \varphi^*$ be a Lorentzian timelike dual angle between the spacelike binormal unit vector *B* and the Frenet instantaneous dual rotation vector *W*. The $C = c + \varepsilon c^*$ is a unit dual vector in direction of W:

a) If
$$
|\kappa| > |\tau|
$$
, W is a spacelike vector. In this station, we can write
\n
$$
\begin{cases}\n\kappa = \|W\| \cosh \Phi \\
\tau = \|W\| \sinh \Phi\n\end{cases}, \quad \|W\|^2 = \langle W, W \rangle = \kappa^2 - \tau^2
$$
\n(2.4)

and

$$
C = \sinh \Phi T - \cosh \Phi B. \tag{2.5}
$$

b) If
$$
|\kappa| < |\tau|
$$
, W is a timelike vector. In this station, we can write
\n
$$
\begin{cases}\n\kappa = \|W\| \sinh \Phi \\
\tau = \|W\| \cosh \Phi\n\end{cases}, \quad \|W\|^2 = -\langle W, W \rangle = -(\kappa^2 - \tau^2) \quad (2.6)
$$

and

$$
C = \cosh \Phi T - \sinh \Phi B \tag{2.7}
$$

2) Let *M* be a unit speed dual spacelike space curve with spacelike binormal. The Frenet vectors T , N , B of M are spacelike vector, timelike vector, spacelike vector, respectively, such that

 $T \wedge N = -B$, $N \wedge B = -T$, $B \wedge T = N$. (2.8) From here,

$$
\begin{bmatrix} T' \\ N' \\ B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ \kappa & 0 & \tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}, [18]. \tag{2.9}
$$

(2.9) leaves the real and dual components
 $\begin{bmatrix} t' \end{bmatrix} \begin{bmatrix} 0 & k_1 & 0 \end{bmatrix} \begin{bmatrix} t \end{bmatrix}$

and the Frenet instantaneous rotation vector for the spacelike curve is given by

$$
W = -\tau T + \kappa B, [14]. \tag{2.10}
$$

(2.10) leaves the real and dual components
\n
$$
\begin{cases}\n\overline{w} = -k_2 t + k_1 b, \\
\overline{w^*} = -k_2 t - k_2 t^* + k_1^* b + k_1 b^*\n\end{cases}
$$

Let $\Phi = \varphi + \varepsilon \varphi^*$ be a dual angle between the B and the W . If B and W spacelike vectors that span a spacelike vector subspace, we can write
 $\int K = ||W|| \cos \Phi$

$$
\begin{cases}\n\kappa = \|W\|\cos\Phi \\
\tau = \|W\|\sin\Phi\n\end{cases},\ \|W\|^2 = \langle W, W \rangle = \kappa^2 + \tau^2
$$
\n(2.11)

and

$$
C = -\sin\Phi T + \cos\Phi B \tag{2.12}
$$

3) Let M be a unit speed dual spacelike space curve. The Frenet vectors T, N and B of M are spacelike vector, timelike vector and spacelike vector, respectively, such that

$$
T \wedge N = B \, , \, N \wedge B = -T \, , \, B \wedge T = -N. \tag{2.13}
$$

From here

$$
\begin{bmatrix} T' \\ N' \\ B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}, [18]. \tag{2.14}
$$

(2.14) leaves the real and dual components

$$
\begin{bmatrix} t' \\ n' \\ b' \end{bmatrix} = \begin{bmatrix} 0 & k_1 & 0 \\ -k_1 & 0 & k_2 \\ 0 & k_2 & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b \end{bmatrix}
$$

$$
\begin{bmatrix} t^{*t} \\ n^{*t} \\ b^{*t} \end{bmatrix} = \begin{bmatrix} 0 & k_1^{*} & 0 \\ -k_1^{*} & 0 & k_2^{*} \\ 0 & k_2^{*} & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b \end{bmatrix} + \begin{bmatrix} 0 & k_1 & 0 \\ -k_1 & 0 & k_2 \\ 0 & k_2 & 0 \end{bmatrix} \begin{bmatrix} t^{*} \\ n^{*} \\ b^{*} \end{bmatrix}
$$

and the Frenet instantaneous dual rotation vector W of the spacelike curve is given by

$$
W = \tau T - \kappa B, [14]. \tag{2.15}
$$

(2.15) leaves the real and dual components
\n
$$
\begin{cases}\nw = k_2 t - k_1 b, \\
w^* = k_2^* t + k_2 t^* - k_1^* b - k_1 b^*.\n\end{cases}
$$

Let $\Phi = \varphi + \varepsilon \varphi^*$ be a Lorentzian timelike dual angle between the B and W:

a) If
$$
|\kappa| < |\tau|
$$
, W is a spacelike vector. In this case, we can write
\n
$$
\begin{cases}\n\kappa = \|W\| \sinh \Phi \\
\tau = \|W\| \cosh \Phi\n\end{cases}, \|W\|^2 = \langle W, W \rangle = \tau^2 - \kappa^2
$$
\n(2.16)

and

$$
C = \cosh \Phi T - \sinh \Phi B. \tag{2.17}
$$

b) If
$$
|\kappa| > |\tau|
$$
, W is a timelike vector. In this case, we can write
\n
$$
\begin{cases}\n\kappa = \|W\| \cosh \Phi \\
\tau = \|W\| \sinh \Phi\n\end{cases}, \quad \|W\|^2 = -\langle W, W \rangle = -(\tau^2 - \kappa^2)
$$
\n(2.18)

and

$$
C = \sinh \Phi T - \cosh \Phi B \tag{2.19}
$$

3 The Dual Involutes of The Spacelike Curve with Timelike Binormal in \textit{ID}^{3}_{1} ID_1^3

Defination 3.1: Let $M_1: I \to ID_1^3$ $M_1 = M_1(s)$ $M_1: I \to ID_1^3$ $M_1 = M_1(s)$ be the unit speed dual spacelike curve with timelike binormal and $M_2: I \to ID_1^3$ $M_2 = M_2(s)$ be the unit speed dual curve. If tangent vector of curve M_1 is ortogonal to tangent vector of M_2 , M_1 is called evolute of curve M_2 and M_2 is called involute of M_1 . Thus the dual involute – evolute curve couple is denoted by (M_2, M_1) . So the tangent vector of $M₂$ is a spacelike curve with spacelike or timelike binormal. In this station (M_2, M_1) is called "the spacelike – spacelike involut – evolut dual curve couple".

Theorem 3.1: Let (M_2, M_1) be the spacelike – spacelike involute – evolute dual curve couple. Let $\{T, N, B\}$ and $\{V_1, V_2, V_3\}$ be the dual Frenet frames of M_1 and M_2 , respectively. The dual distance between M_1 and M_2 at the corresponding points is
 $d(M_1(s), M_2(s)) = |c_1 - s| + \varepsilon c_2$, c_1, c_2 = constant. points is

$$
d(M_1(s),M_2(s))=|c_1-s|+\varepsilon c_2, \quad c_1,c_2=\text{constant}.
$$

Proof: If
$$
M_2
$$
 is the dual involute of M_1 , we can write
\n
$$
M_2(s) = M_1(s) + \lambda T(s), \quad \lambda = \lambda_1 + \varepsilon \lambda_1^* \in ID
$$
\nDifferentiating (3.1) with respect to *S* we have

Differentiating (3.1) with respect to *S* we have

$$
V_1 \frac{ds^*}{ds} = (1 + \lambda')T + \lambda \kappa N
$$

where *s* and s^* are arc parameter of M_1 and M_2 , respectively. Since the direction of T is orthogonal to the direction of V_1 , we obtain

 $\lambda' = -1$. From here, it can be easily seen

$$
\lambda = (c_1 - s) + \varepsilon c_2 \tag{3.2}
$$

Furthermore, the dual distance between the points $M_1(s)$ and $M_2(s)$

where
$$
M_1(s)
$$
, $M_2(s) = \sqrt{\langle \lambda T(s), \lambda T(s) \rangle}$

\n
$$
= |\lambda_1| + \varepsilon \lambda_1^* \quad .
$$

Since $\lambda_1 = (c_1 - s)$, $\lambda_1^* = c_2$, we have

$$
d(M_1(s), M_2(s)) = |c_1 - s| + \varepsilon c_2.
$$
\n(3.3)

Theorem 3.2: Let (M_2, M_1) be the spacelike – spacelike involut – evolut dual curve couple. Let $\{T, N, B\}$ and $\{V_1, V_2, V_3\}$ be the dual Frenet frames of M_1 and

*M*₂, respectively, Since the dual curvature of *M*₂ is $P = p + \varepsilon p^*$, we have
 $(k^2 - k^2)$ $\left[2k_2(k_1^*k_2 - k_1k_2^*)$ $2c_2(k_1^2 - k_2^2)\right]$

lectively, Since the dual curvature of
$$
M_2
$$
 is $P = p + \varepsilon p^*$, we have
\n
$$
P^2 = \pm \frac{(k_1^2 - k_2^2)}{(c_1 - s)^2 k_1^2} \pm \frac{[2k_2 (k_1^2 + k_1 k_2^2) - 2c_2 (k_1^2 - k_2^2)]}{(c_1 - s)^2 k_1^3}.
$$

where the dual curvature of M_1 is $\kappa = k_1 + \varepsilon k_1^*$. **Proof:** Differentiating (3.1), with respect to *s* , we get

International Journal of Mathematical Engineering and Science
ISSN: 2277-6982
Volume 1 Issue 5 (May 20

Volume 1 Issue 5 (May 2012) http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

$$
\frac{dM_2}{ds^*} \frac{ds^*}{ds} = \frac{dM_1}{ds} + \frac{d\lambda}{ds}T + \lambda \frac{dT}{ds},
$$

\n
$$
V_1 \frac{ds^*}{ds} = \lambda \kappa N.
$$

\nre, we can write

From here , we can write

$$
V_1 = N \tag{3.4}
$$

and * *ds ds* $= \lambda \kappa$. By differentiating the last equation and using (2.14), we obtain

$$
\frac{dV_1}{ds^*} \frac{ds^*}{ds} = \frac{dN}{ds} = -\kappa T + \tau B,
$$

$$
PV_2 = \frac{1}{\lambda \kappa} (-\kappa T + \tau B)
$$

From here,we have

$$
P^2 = \mp \frac{\left(\kappa^2 - \tau^2\right)}{\lambda^2 \kappa^2} \tag{3.5}
$$

From the fact that $P = p + \varepsilon p^*$, $\lambda = \lambda_1 + \varepsilon \lambda_1^*$, $\kappa = k_1 + \varepsilon k_1^*$ and $\tau = k_2 + \varepsilon k_2^*$
we get
 $P^2 = \pm \left(k_1^2 - k_2^2\right) + \frac{\left[2k_2\left(k_1^*k_2 - k_1k_2^*\right)\right]}{\pm 2k_1\left(k_1^*k_2 - k_1k_2^*\right)} - \frac{2\lambda_1^*\left(k_1^2 - k_2^2\right)}{\pm 2k$ we get

$$
P^{2} = \mp \frac{(k_{1}^{2} - k_{2}^{2})}{\lambda_{1}^{2}k_{1}^{2}} \mp \left[\frac{2k_{2}(k_{1}^{*}k_{2} - k_{1}k_{2}^{*})}{\lambda_{1}^{2}k_{1}^{3}} - \frac{2\lambda_{1}^{*}(k_{1}^{2} - k_{2}^{2})}{\lambda_{1}^{3}k_{1}^{2}} \right].
$$

From here, by using
$$
\lambda_1 = (c_1 - s)
$$
, $\lambda_2 = c_2$, we obtain
\n
$$
P^2 = \mp \frac{(k_1^2 - k_2^2)}{(c_1 - s)^2 k_1^2} \mp \frac{[2k_1(k_1^*k_2 - k_1k_2^*)}{(c_1 - s)^2 k_1^3} - \frac{2c_2(k_1^2 - k_2^2)}{(c_1 - s)^3 k_1^2}
$$
\n(3.6)

Theorem 3.3: Let (M_2, M_1) be the spacelike – spacelike involute – evolute dual curve couple. Let $\{T, N, B\}$ and $\{V_1, V_2, V_3\}$ be the dual Frenet frames of M_1 and M_2 , respectively. The dual torsion $\tau = k_2 + \varepsilon k_2^*$ of M_1 and the dual torsion $Q = q + \varepsilon q^*$ of M_2 is the following equation

$$
Q = \frac{k_1 k_2' - k_1' k_2}{|k_1^2 - k_2^2|k_1|c_1 - s|} + \varepsilon \left[\frac{k_1 (k_1 k_2'' - k_1' k_2'') + k_2 (k_1^* k_1' - k_1^{*'} k_1')}{|k_1^2 - k_2^2||c_1 - s|k_1^2} \right].
$$

Proof: By differentiating (3.1) three time with respect to *s*, we get
\n
$$
M_2' = \lambda \kappa N,
$$
\n
$$
M_2'' = -\lambda \kappa^2 T + (\lambda \kappa' - \kappa) N + \lambda \kappa \tau B,
$$
\n
$$
M_2''' = (2\kappa^2 - 3\lambda \kappa \kappa') T + (\lambda \kappa \tau^2 - \lambda \kappa^3 - 2\kappa' + \lambda \kappa'') N
$$
\n
$$
+ (-2\kappa \tau + 2\lambda \kappa' \tau + \lambda \kappa \tau') B.
$$

The vectorel product of
$$
M_2'
$$
 and M_2'' is
\n
$$
M_2' \wedge M_2'' = -\lambda^2 \kappa^2 \tau T + \lambda^2 \kappa^3 B = \lambda^2 \kappa^2 (-\tau T + \kappa B)
$$
\n(3.7)

From here, we obtain

$$
\left| M_2' \wedge M_2'' \right\|^2 = \left| \lambda \right|^4 \left| \kappa \right|^4 \left| \tau^2 - \kappa^2 \right| \tag{3.8}
$$

and

$$
\det\left(M_2', M_2'', M_2'''\right) = \lambda^3 \kappa^3 \left(\kappa \tau' - \kappa' \tau\right).
$$
\n(3.9)

Substituting by (3.8) and (3.9) values into $\left(M_{2}$, M_{2} , M_{2} $\right)$ 2 $_2 \wedge M_2$ $\det (M_2^{'}, M_2^{''}, M_3^{''})$ *Q* $M_2^{\prime} \wedge M$ $\left(M, \mathscr{M}, \mathscr{M}, \mathscr{M} \right)$ $=\frac{1}{\left\|M_{2}^{'} \wedge M_{2}^{''}\right\|^{2}}$, we get

$$
Q = \frac{(\kappa \tau' - \kappa' \tau)}{|\lambda| \kappa |\tau^2 - \kappa^2|} \tag{3.10}
$$

and substituting by values $Q = q + \varepsilon q^*$, $\lambda = \lambda_1 + \varepsilon \lambda_1^*$, $\kappa = k_1 + \varepsilon k_1^*$ and

$$
\tau = k_2 + \varepsilon k_2^*
$$
 into the last equation, we have
\n
$$
Q = \frac{k_1 k_2' - k_1' k_2}{|\lambda_1| k_1 |k_2^2 - k_1^2|} + \varepsilon \left[\frac{k_1 (k_1 k_2'' - k_1' k_2^*) + k_2 (k_1^* k_1' - k_1^{*'} k_1)}{|\lambda_1| k_1^2 |k_2^2 - k_1^2|} \right]
$$

By the fact that $\lambda_1 = (c_1 - s)$, we get

$$
Q = \frac{k_1 k_2' - k_1' k_2}{|c_1 - s|k_1| k_2^2 - k_1^2|} + \varepsilon \left[\frac{k_1 \left(k_1 k_2'' - k_1' k_2'' \right) + k_2 \left(k_1^* k_1' - k_1^* k_1 \right)}{|c_1 - s| k_1^2 |k_2^2 - k_1^2|} \right].
$$
 (3.11)

Theorem 3.4: Let (M_2, M_1) be the spacelike – spacelike involute – evolute dual curve couple. Let $\{T, N, B\}$ and $\{V_1, V_2, V_3\}$ be the dual Frenet frames of M_1 and M_2 , respectively and $\Phi = \varphi + \varepsilon \varphi^*$ be the Lorentzian dual spacelike angle between binormal vector B and W For (M_2, M_1) dual curve couple, the the following equations is obtained:

3

1) If W spacelike,
\n
$$
\begin{bmatrix}\nV_1 \\
V_2 \\
V_3\n\end{bmatrix} = \begin{bmatrix}\n0 & 1 & 0 \\
\sinh \Phi & 0 & -\cosh \Phi \\
-\cosh \Phi & 0 & \sinh \Phi\n\end{bmatrix} \begin{bmatrix}\nT \\
N \\
N \\
B\n\end{bmatrix}
$$
\nleaves the real and dual components
\n
$$
\begin{bmatrix}\nv_1 \\
v_2 \\
v_3\n\end{bmatrix} = \begin{bmatrix}\n0 & 1 & 0 \\
\sinh \phi & 0 & -\cosh \phi \\
-\cosh \phi & 0 & \sinh \phi\n\end{bmatrix} \begin{bmatrix}\nt \\
h \\
h\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nv^* \\
v^* \\
v^* \\
v^* \\
v^* \end{bmatrix} = \phi^* \begin{bmatrix}\n0 & 1 & 0 \\
\cosh \phi & 0 & -\sinh \phi \\
-\sinh \phi & 0 & \cosh \phi\n\end{bmatrix} \begin{bmatrix}\nt \\
n \\
h\n\end{bmatrix} + \begin{bmatrix}\n0 & 1 & 0 \\
\sinh \phi & 0 & -\cosh \phi \\
-\cosh \phi & 0 & \sinh \phi\n\end{bmatrix} \begin{bmatrix}\nt^* \\
h^* \\
h^* \\
h^* \end{bmatrix}
$$
\n2) If W timelike
\n
$$
\begin{bmatrix}\nV_1 \\
V_2 \\
V_3\n\end{bmatrix} = \begin{bmatrix}\n0 & 0 & 0 \\
-\cosh \Phi & 0 & \sinh \Phi \\
-\sinh \Phi & 0 & \cosh \Phi\n\end{bmatrix} \begin{bmatrix}\nT \\
N \\
N \\
N\n\end{bmatrix}
$$
\nleaves the real and dual components
\n
$$
\begin{bmatrix}\nv_1 \\
v_2 \\
v_3\n\end{bmatrix} = \begin{bmatrix}\n0 & 0 & 0 \\
-\cosh \phi & 0 & \sinh \phi \\
-\sinh \phi & 0 & \cosh \phi\n\end{bmatrix} \begin{bmatrix}\nt \\
n \\
h \\
h\n\end{bmatrix}
$$

$$
\begin{bmatrix} v^*_{1} \\ v^*_{2} \\ v^*_{3} \end{bmatrix} = \varphi^* \begin{bmatrix} 0 & 1 & 0 \\ -\sinh \varphi & 0 & \cosh \varphi \\ -\cosh \varphi & 0 & \sinh \varphi \end{bmatrix} \begin{bmatrix} t \\ n \\ b \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ -\cosh \varphi & 0 & \sinh \varphi \\ -\sinh \varphi & 0 & \cosh \varphi \end{bmatrix} \begin{bmatrix} t^* \\ n^* \\ b^* \end{bmatrix}
$$

Proof: 1) From the equation (3.4) and (3.8),we have,

$$
\|M_2' \wedge M_2''\| = \lambda^2 \kappa^2 \|W\|.
$$
\n(3.12)

By using (3.7) and (3.12) and from the fact that $V_3 = \frac{M_2^2 + M_2^2}{\sigma^2}$ 2 \wedge $\frac{1}{2}$ $V_3 = \frac{M_2' \wedge M}{\mu}$ $M_2^{\prime} \wedge M$ $=\frac{M_2^{'}}{n_1} \wedge M_2^{''}$ $\mathbb{Z}\wedge M_{2}^{\prime\prime}$ we obtain

$$
V_3 = -\frac{\tau}{\|W\|}T + \frac{\kappa}{\|W\|}B,
$$

substituning (2.16) into the last equation, we obtain
\n
$$
V_3 = -\cosh \Phi T + \sinh \Phi B.
$$
\n(3.13)

Since $V_2 = V_3 \wedge V_1$, it can beeasily seen that

$$
V_2 = \sinh \Phi T - \cosh \Phi B. \tag{3.14}
$$

Considering (3.4), (3.13) and (3.14) according to dual components, the following equations are obtained: onsidering
quations are
 $V_1 = n + \varepsilon n$ $\sqrt{ }$

equations are obtained:
\n
$$
\begin{cases}\nV_1 = n + \varepsilon n^* \\
V_2 = (\sinh\varphi t - \cosh\varphi b) + \varepsilon [(\sinh\varphi t^* - \cosh\varphi b^*) + \varphi^* (\cosh\varphi t - \sinh\varphi b)] \\
V_3 = (-\cosh\varphi t + \sinh\varphi b) + \varepsilon [(-\cosh\varphi t^* + \sinh\varphi b^*) + \varphi^* (-\sinh\varphi t + \cosh\varphi b)]\n\end{cases}
$$
\n(3.15)

written (3.15) in matrix form, the prof is completed.

2) From the equation (3.4) and (3.10), we have,

$$
V_3 = -\frac{\tau}{\|W\|} T + \frac{\kappa}{\|W\|} B.
$$

Substituning (2.18) into the last equation, we obtain
\n
$$
V_3 = -\sinh \Phi T + \cosh \Phi B,
$$
\n(3.16)

$$
V_2 = -\cosh \Phi T + \sinh \Phi B. \tag{3.17}
$$

Considering (3.4), (3.16) and (3.17) according to dual components, the following equations are obtained:

$$
\begin{cases}\nV_1 = n + \varepsilon n^* \\
V_2 = (-\cosh\varphi t + \sinh\varphi b) + \varepsilon \Big[(-\cosh\varphi t^* + \sinh\varphi b^*) + \varphi^* (-\sinh\varphi t + \cosh\varphi b) \Big] \\
V_3 = (-\sinh\varphi t + \cosh\varphi b) + \varepsilon \Big[(-\sinh\varphi t^* + \cosh\varphi b^*) + \varphi^* (-\cosh\varphi t + \sinh\varphi b) \Big] \n\end{cases}
$$
\n(3.18)

Theorem 3.5: Let (M_2, M_1) be the spacelike – spacelike involute – evolute dual curve couple. $W = w + \varepsilon w^*$ and $\overline{W} = w + \varepsilon w^*$ be the dual Frenet instantaneous rotation vectors of M_1 and M_2 respectively. Thus,

1)If *W* spacelike,

$$
\overline{W} = \frac{1}{|\lambda| \kappa} (\Phi' N - W).
$$

2)If *W* timelike,

$$
\overline{W} = \frac{1}{|\lambda| \kappa} (\Phi' N + W).
$$

Proof: 1) From (2.10), we can write $\overline{W} = -QV_1 + PV_3$. Using the (3.4), (3.5),

(3.10) and (3.13) the equations, we have
\n
$$
\overline{W} = -\frac{\kappa \tau' - \kappa' \tau}{|\lambda| \kappa |\kappa^2 - \tau^2|} N + \frac{\sqrt{|\tau^2 - \kappa^2|}}{|\lambda| \kappa} (-\cosh \Phi T + \sinh \Phi B)
$$

Substituning (2.16) into the last equation, we obtain

$$
\overline{W} = \frac{1}{|\lambda| \kappa} \left(-\frac{\kappa \tau' - \kappa' \tau}{\left| \kappa^2 - \tau^2 \right|} N - W \right)
$$

and then, we get

$$
\overline{W} = \frac{1}{|\lambda| \kappa} (\Phi' N - W). \tag{3.19}
$$

Considering (3.19) according to dual components and substituting $\lambda_1 = (c_1 - s)$ into (3.19), we leaves the real and dual components

$$
\begin{cases}\n\overline{w} = \frac{\varphi' n - w}{|c_1 - s| k_1}, \\
\overline{w^*} = \frac{\varphi' n^* + \varphi'' n - w^*}{|c_1 - s| k_1} - \frac{k_1^* (\varphi' n - w)}{|c_1 - s| k_1^2}.\n\end{cases}
$$
\n(3.20)

2) From (2.15), we can write $W = QV_1 - PV_3$. Using the (3.4), (3.5), (3.10) and

(3.16) the equations, we have
 $\overline{W} = \frac{1}{|\lambda|K} \left(\frac{\kappa \tau' - \kappa' \tau}{|\kappa^2 - \tau^2|} N - \sqrt{\tau^2 - \kappa^2} \right) (-\sinh \Phi T + \cosh \Phi B)$. (3.16) the equations, we have

e equations, we have
\n
$$
\overline{W} = \frac{1}{|\lambda| \kappa} \left(\frac{\kappa \tau' - \kappa' \tau}{|\kappa^2 - \tau^2|} N - \sqrt{|\tau^2 - \kappa^2|} (-\sinh \Phi T + \cosh \Phi B) \right).
$$
\nSince (2.18) into the last equation, we obtain

Substituning (2.18) into the last equation, we obtain

$$
\overline{W} = \frac{1}{|\lambda| \kappa} \left(\frac{\kappa \tau' - \kappa' \tau}{|\kappa^2 - \tau^2|} N + W \right)
$$

and then, we get

$$
\overline{W} = \frac{1}{|\lambda| \kappa} (\Phi' N + W). \tag{3.21}
$$

Considering (3.21) according to dual components and substituting $\lambda_1 = (c_1 - s)$ into (3.21), we leaves the real and dual components
 $\int \frac{1}{w} = \frac{\phi' n + w}{\phi' n}$

$$
\begin{cases}\n\overline{w} = \frac{\varphi' n + w}{|c_1 - s| k_1}, \\
\overline{w^*} = \frac{\varphi' n^* + \varphi'' n + w^*}{|c_1 - s| k_1} + \frac{k_1^* (\varphi' n + w)}{|c_1 - s| k_1^2}\n\end{cases}
$$
\n(3.22)

Theorem 3.6: Let (M_2, M_1) be the spacelike – spacelike involute – evolute dual curve couple. $C = c + \varepsilon c^*$ and $\overline{C} = \overline{c} + \varepsilon \overline{c}^*$ be unit dual vector of W and \overline{W} , respectively. Thus,

1) If *W* spacelike,
$$
\overline{C} = \frac{\Phi'}{\sqrt{|\tau^2 - \kappa^2 + \Phi'^2|}} N - \frac{\sqrt{|\tau^2 - \kappa^2|}}{\sqrt{|\tau^2 - \kappa^2 + \Phi'^2|}} C
$$
,

2) If *W* timelike,
$$
\overline{C} = \frac{-\Phi'}{\sqrt{|\tau^2 - \kappa^2 + {\Phi'}^2|}} N + \frac{\sqrt{|\tau^2 - \kappa^2|}}{\sqrt{|\tau^2 - \kappa^2 + {\Phi'}^2|}} C
$$
.

Proof: 1) From the fact that the unit dual vector of \overline{W} is $\overline{C} = \frac{W}{W}$ *W* $=\frac{W}{\|w\|}$ we obtain

$$
\overline{C} = \frac{\Phi'}{\sqrt{|\tau^2 - \kappa^2 + \Phi'^2|}} N - \frac{\sqrt{|\tau^2 - \kappa^2|}}{\sqrt{|\tau^2 - \kappa^2 + \Phi'^2|}} C.
$$
 (3.23)

.

(3.23) leaves the real and dual components

2 2 2 1 2 2 2 2 2 2 2 1 2 1 2 2 * * * 2 1 2 2 2 2 2 2 2 1 2 1 , *k k c n c k k k k k k c n n c k k k k* (3.24)

2) Substituning (3.21) into the equation (3.23) we obtain
\n
$$
\overline{C} = \frac{-\Phi'}{\sqrt{|\tau^2 - \kappa^2 + \Phi'^2|}} N + \frac{\sqrt{|\tau^2 - \kappa^2|}}{\sqrt{|\tau^2 - \kappa^2 + \Phi'^2|}} C
$$
\n(3.25)

(3.25) leaves the real and dual components

aves the real and dual components
\n
$$
\begin{aligned}\n&\left[c = \frac{\varphi'}{\sqrt{\left| k_2^2 - k_1^2 + (\varphi')^2 \right|}} n + \frac{\sqrt{\left| k_2^2 - k_1^2 \right|}}{\sqrt{\left| k_2^2 - k_1^2 + (\varphi')^2 \right|}} c, \\
&\frac{\varphi' n^* + (\varphi^*)' n}{\sqrt{\left| k_2^2 - k_1^2 + (\varphi')^2 \right|}} + \frac{\sqrt{\left| k_2^2 - k_1^2 \right|} c^*}{\sqrt{\left| k_2^2 - k_1^2 + (\varphi')^2 \right|}}.\n\end{aligned}\n\tag{3.27}
$$

International Journal of Mathematical Engineering and Science

ISSN : 2277-6982 Volume 1 Issue 5 (May 2012) http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

REFERENCES

- [1] Ayyıldız, N., Çöken, A., C.: On The Dual Darboux Rotation Axis of The Spacelike Dual Space Curve, Demonstr. Math., 37(1), 197-202 (2004)
- [2] Bilici, M. and Çalışkan, M.: On the Involutes of the Spacelike Curve with a Timelike Binormal in Minkowski 3-Space, Int. Math. Forum, 4(31), 1497-1509 (2009)
- [3] Birman, G.S., Nomizu, K.: Trigonometry in Lorentzian Geometry, Amer. Math. Monthly, 91(9), 543-549 (1984)
- [4] Bükcü, B., Karacan, M.K.: On The Involute and Evolute Curves of The Spacelike Curve with a Spacelike Binormal in Minkowski 3-Space, Int. J. Contemp. Math. Sciences, 2(5), 221-232 (2007)
- [5] Bükcü, B. and Karacan, M.K.: On The Involute and Evolute Curves of The Timelike Curve in Minkowski 3-Space, Demonstr. Math., 40(3), 721-732 **(**2007)
- [6] Clifford, W. K.: Preliminary Sketch of Biquatenions, London Math. Soc., 4(1), 381-395 (1871)
- [7] Fenchel, W.: On The Differential Geometry of Closed Space Curves, Bull. Amer. Math. Soc., 57(1**),** 44-54 (1951)
- [8] Hacısalihoglu, H.H.: Differential Geometry, Hacısalihoglu Published, Turkey, (2000)
- [9] Çalışkan M. Bilici M.: Some Characterizations for The Pair of Involute-Evolute Curves in Euclidean Space E3, Bulletin Pure Appl. Sci., 21E(2), 289-294 **(**2002)
- [10] O'neill, B.: Semi Riemann Geometry, Academic Press, New York, London, (1983)
- [11] Ratcliffe, J. G.: Foundations of Hyperbolic Manifolds, Springer-Verlag New York, Inc., New York, (1994)
- [12] Millman R.S. Parker G.D.: Elements of Differential Geometry, Prentice-Hall Inc.,Englewood Cliffs, New Jersey, (1977)
- [13] Struik J. Dirk.: Lectures on Classical Differential Geometry, Second Edition Addision Wesley, Dover, (1988)
- [14] Uğurlu, H.H.: On The Geometry of Timelike Surfaces, Commun. Fac. Sci. Ank. Series, A1(46), 211-223 (1997)
- [15] Yaylı, Y.,Çalışkan A., Uğurlu, H.H.: The E. Study mapping of circles on dual hyperbolic an Lorentzian unit speheres H_0^2 and S_1^2 , Math. Proc. R. Ir. Acad., 102A(1), 37-47 **(**2002)
- [16] Yücesan, A., Çöken. A. C., Ayyıldız N.: On the dual Darboux Rotation Axis of the Timelike Dual Space Curve, Balkan J. Geom. Appl., 7(2), 137-142 (**2002)**
- [17] Akutagawa K., Nishikawa S.: The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Math. J., 42, 67-82 (1990)
- [18] WoestijneV.D.I.: Minimal surface of the 3-dimensional Minkowski space, World Scientific Pub., Singapore (1990)
- 19] Hacisalihoglu H. H., Acceleration Axes in Spatial Kinamatics I., Commun.S´erie A: Math´ematiques, Physique et Astronomie, A(20), 1-15 (1971)