Somewhat almost sg-continuous functions and

Somewhat almost sg-open functions

S. Balasubramanian¹ and C. Sandhya² ¹Department of Mathematics, Govt. Arts College(A), Karur – 639 005, Tamilnadu ²Department of Mathematics, C.S.R. Sarma College, Ongole–523001, Andhrapradesh E.mail:mani55682@rediffmail.com¹, sandhya_karayadi@yahoo.co.uk²

Abstract: In this paper we tried to introduce a new variety of continuous and open functions called Somewhat almost sg-continuous functions and Somewhat almost sg-open functions. Its basic properties are discussed.

AMS subject classification Number: 54C10, 534C08, 54C05.

Keywords: Somewhat sg-continuous functions and Somewhat sgopen functions, Somewhat almost sg-continuous functions and Somewhat almost sg-open functions

1. Introduction:

b-open[1] sets are introduced by Andrijevic in 1996. K.R.Gentry[8] introduced somewhat continuous functions in the year 1971. V.K.Sharma and the present authors of this paper defined and studied basic properties of *v*-open sets and *v*-continuous functions in the year 2006 and 2010 respectively. T.Noiri and N.Rajesh[10] introduced somewhat b-continuous functions in the year 2011. Inspired with these developments we introduce in

Corresponding Author: S.Balasubramanian

this paper somewhat almost *sg*-continuous functions, somewhat almost *sg*-open functions and study its basic properties and interrelation with other type of such functions available in the literature. Throughout the paper (X, τ) and (Y, σ) (or simply X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For A \subset (X; τ), *cl*(A) and A^o denote the closure of A and the interior of A in X, respectively.

2. Preliminaries:

Definition 2.1: A subset *A* of X is said to be

(i) b-open[1] if $A \subset (cl\{A\})^{\circ} \cap cl\{A^{\circ}\}$.

(ii) sg-dense in X if there is no proper sg-closed set C in X such that $M \subset C \subset X$.

Definition 2.2: A function *f* is said to be

(i) somewhat continuous[8][resp: somewhat b-continuous[10]; somewhat sg-continuous[6]] if for $U \in \sigma$ and $f^{-1}(U) \neq \phi$, there exists an open[resp: b-open; sg-open] set V in X such that $V \neq \phi$ and $V \subset f^{-1}(U)$.

(ii) somewhat open[10][resp: somewhat b-open[8]; somewhat sg-open] provided that if $U \in \tau$ and $U \neq \phi$, then there exists an open[resp: b-open; sg-open] set V in Y such that $V \neq \phi$ and $V \subset f(U)$.

Definition 2.3: (X, τ) is said to be resolvable[7][b-resolvable[10]] if there exists a set A in (X, τ) such that both A and X - A are dense[b-dense] in (X, τ) . Otherwise, (X, τ) is called irresolvable.

Definition 2.4: If X is a set and τ and σ are topologies on X, then τ is said to be equivalent[resp: sg- equivalent] to σ provided if $U \in \tau$ and $U \neq \phi$, then there is an open[resp:sg-open] set V in X such that $V \neq \phi$ and $V \subset U$ and if $U \in \sigma$ and $U \neq \phi$, then there is an open[resp:sg-open] set V in (X, τ) such that $V \neq \phi$ and $U \supset V$.

International Journal of Mathematical Engineering and Science	
ISSN : 2277-6982	Volume 1 Issue 8 (August 2012)
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/

3. Somewhat almost sg-continuous function:

Definition 3.1: A function *f* is said to be somewhat almost sg-continuous if for $U \in RO(\sigma)$ and $f^{-1}(U) \neq \varphi$, there exists a $V \neq \varphi \in SGO(X)$ such that $V \subset f^{-1}(U)$.

Example 1: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, X\}$. The function $f:(X, \tau) \rightarrow (X, \sigma)$ defined by f(a) = c, f(b) = a and f(c) = b is somewhat almost sg-continuous but not somewhat continuous.

Example 2: Let X = {a, b, c}, $\tau = {\varphi, {b, c}, X}$, $\sigma = {\varphi, {b}, {a, c}, X}$ and $\eta = {\varphi, {a}, X}$. X}. Then the identity functions $f:(X, \tau) \rightarrow (X, \sigma)$ and $g:(X, \sigma) \rightarrow (X; \eta)$ and $g \cdot f$ are somewhat almost sg-continuous.

In general composition of two somewhat almost sg-continuous functions is not somewhat almost sg-continuous. However, we have the following

Theorem 3.1: If f is somewhat almost sg-continuous and g is continuous[r-continuous], then $g \cdot f$ is somewhat almost sg-continuous.

Corollary 3.1: If f is somewhat almost sg-continuous and g is r-irresolute[r-continuous], then $g \cdot f$ is somewhat almost sg-continuous.

Theorem 3.2: For a surjective function *f*, the following statements are equivalent:

(i) *f* is somewhat almost sg-continuous.

(ii) If C is regular closed in Y such that $f^{-1}(C) \neq X$, then there is a $D \neq \varphi \in SGC(X)$ such that $f^{-1}(C) \subset D$.

(iii) If M is a sg-dense subset of X, then f(M) is a dense subset of Y.

Proof: (i) \Rightarrow (ii): Let $C \in RC(Y)$ such that $f^{-1}(C) \neq X$. Then $Y - C \in RO(Y)$ such that $f^{-1}(Y - C) = X - f^{-1}(C) \neq \phi$ By (i), there exists $V \neq \phi \in SGO(X)$ and $V \subset f^{-1}(Y - C) = X - f^{-1}(C)$. Thus $X - V \supset f^{-1}(C)$ and X - V = D is a proper sg-closed set in X.

(ii) \Rightarrow (i): Let $U \in RO(\sigma)$ and $f^{-1}(U) \neq \phi$ Then $Y \cdot U \in RC(\sigma)$ and $f^{-1}(Y \cdot U) = X \cdot f^{-1}(U) \neq X$. By (ii), there exists a proper $D \in SGC(X)$ such that $D \supset f^{-1}(Y \cdot U)$. This implies that $X \cdot D \subset f^{-1}(U)$ and $X \cdot D$ is sg-open and $X \cdot D \neq \phi$.

(ii) \Rightarrow (iii): Let M be a sg-dense set in X. If f(M) is not dense in Y. Then there exists a proper C \in RC(Y) such that $f(M) \subset C \subset Y$. Clearly $f^{-1}(C) \neq X$. By (ii), there exists a proper D \in SGC(X) such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is sg-dense in X.

(iii) \Rightarrow (ii): If (ii) is not true, there exists $C \in RC(Y)$ such that $f^{-1}(C) \neq X$ but there is no proper $D \in SGC(X)$ such that $f^{-1}(C) \subset D$. Thus $f^{-1}(C)$ is sg-dense in X. But by (iii), $f(f^{-1}(C)) = C$ is dense in Y, which contradicts the choice of C.

Theorem 3.3: Let *f* be a function and $X = A \cup B$, where $A,B \in RO(X)$. If f_{A} and f_{B} are somewhat almost sg-continuous, then *f* is somewhat almost sg-continuous.

Proof: Let $U \in RO(\sigma)$ such that $f^{-1}(U) \neq \phi$. Then $(f_{/A})^{-1}(U) \neq \phi$ or $(f_{/B})^{-1}(U) \neq \phi$ or both $(f_{/A})^{-1}(U) \neq \phi$ and $(f_{/B})^{-1}(U) \neq \phi$. Suppose $(f_{/A})^{-1}(U) \neq \phi$, Since $f_{/A}$ is somewhat almost sg-continuous, there exists $V \neq \phi \in SGO(A)$ and $V \subset (f_{/A})^{-1}(U) \subset f^{-1}(U)$. Since $V \in SGO(A)$ and $A \in RO(X)$, $V \in SGO(X)$. Thus f is somewhat almost sg-continuous. The proof of other cases are similar.

Theorem 3.4: Let $f:(X, \tau) \to (Y, \sigma)$ be a somewhat almost sg-continuous surjection and τ^* be a topology for X, which is sg-equivalent to τ . Then $f:(X, \tau^*) \to (Y, \sigma)$ is somewhat almost sg-continuous.

Proof: Let $V \in RO(\sigma)$ such that $f^{-1}(V) \neq \phi$. Since *f* is somewhat almost sg-continuous, there exists $U \neq \phi \in SGO(X, \tau)$ such that $U \subset f^{-1}(V)$. But by hypothesis τ^* is sg-equivalent to τ . Therefore, there exists $U^* \neq \phi \in SGO(X; \tau^*)$ such that $U^* \subset U$. But $U \subset f^{-1}(V)$. Then $U^* \subset f^{-1}(V)$; hence $f(X, \tau^*) \rightarrow (Y, \sigma)$ is somewhat almost sg-continuous.

Theorem 3.5: Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a somewhat almost sg-continuous surjection and σ^* be a topology for Y, which is equivalent to σ . Then $f:(X, \tau) \rightarrow (Y, \sigma^*)$ is somewhat almost sg-continuous.

Proof: Let $V^* \in RO(\sigma^*)$ such that $f^{-1}(V^*) \neq \phi$. Since σ^* is equivalent to σ , there exists $V \neq \phi \in RO(Y, \sigma)$ such that $V \subset V^*$. Now $\phi \neq f^{-1}(V) \subset f^{-1}(V^*)$. Since f is somewhat almost sg-continuous, there exists $U \neq \phi \in SGO(X, \tau)$ such that $U \subset f^{-1}(V)$. Then $U \subset f^{-1}(V^*)$; hence $f:(X, \tau) \to (Y, \sigma^*)$ is somewhat almost sg-continuous.

4. Somewhat sg-irresolute function:

Definition 4.1: A function *f* is said to be somewhat sg-irresolute if for $U \in SGO(\sigma)$ and $f^{-1}(U) \neq \varphi$, there exists a non-empty sg-open set V in X such that $V \subset f^{-1}(U)$.

Example3: Let X = {a, b, c}, $\tau = \{\varphi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\varphi, \{a\}, \{a, b\}, X\}$. The function $f:(X, \tau) \rightarrow (X, \sigma)$ defined by f(a) = c, f(b) = a and f(c) = b is somewhat sg-irresolute but not somewhat-irresolute.

Example 4: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. The function *f* defined by f(a) = c, f(b) = a and f(c) = b is not somewhat sg-irresolute.

Note 1: Every somewhat sg-irresolute function is slightly sg-irresolute.

Example 5: Let $X = \{a, b, c\}, \tau = \{\phi, \{b, c\}, X\}, \sigma = \{\phi, \{b\}, \{a, c\}, X\}$ and $\eta = \{\phi, \{a\}, X\}$. X}. Then the identity functions $f(X, \tau) \rightarrow (X, \sigma)$ and $g(X, \sigma) \rightarrow (X; \eta)$ and $g \circ f$ are somewhat sg-irresolute.

In general composition of two somewhat sg-irresolute functions is not somewhat sgirresolute. However, we have the following

Theorem 4.1: If f is somewhat sg-irresolute and g is irresolute, then $g \cdot f$ is somewhat sg-irresolute.

Theorem 4.2: For a surjective function *f*, the following statements are equivalent:

(i) *f* is somewhat sg-irresolute.

(ii) If $C \in SGC(Y)$ such that $f^{-1}(C) \neq X$, then there is a $D \neq \phi \in SGC(X)$ such that $f^{-1}(C) \subset D$. (iii) If M is a sg-dense subset of X, then f(M) is a sg-dense subset of Y.

Proof: (i) \Rightarrow (ii): Let $C \in SGC(Y)$ such that $f^{-1}(C) \neq X$. Then $Y - C \in SGO(Y)$ such that $f^{-1}(Y - C) = X - f^{-1}(C) \neq \varphi$ By (i), there exists $V \neq \varphi \in SGO(X)$ and $V \subset f^{-1}(Y - C) = X - f^{-1}(C)$. This means $X - V \supset f^{-1}(C)$ and X - V = D is proper sg-closed in X.

(ii) \Rightarrow (i): Let $U \in SGO(\sigma)$ and $f^{-1}(U) \neq \phi$ Then $Y \cdot U \neq \phi \in SGC(Y)$ and $f^{-1}(Y \cdot U) = X \cdot f^{-1}(U)$ $\neq X$. By (ii), there exists $D \neq \phi \in SGC(X)$ such that $D \supset f^{-1}(Y \cdot U)$. This implies that $X \cdot D \subset f^{-1}(U)$ and X-D is sg-open and X-D $\neq \phi$.

(ii) \Rightarrow (iii): Let M be a sg-dense set in X. If f(M) is not sg-dense in Y. Then there exists a proper C \in SGC(Y) such that $f(M) \subset C \subset Y$. Clearly $f^{-1}(C) \neq X$. By (ii), there exists a proper D \in SGC(X) such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is sg-dense in X.

(iii) \Rightarrow (ii): Suppose (ii) is not true. there exists $C \in SGC(Y)$ such that $f^{-1}(C) \neq X$ but there is no proper $D \neq \phi \in SGC(X)$ such that $f^{-1}(C) \subset D$. This means $f^{-1}(C)$ is sg-dense in X. But by (iii), $f(f^{-1}(C)) = C$ must be sg-dense in Y, which is a contradiction to the choice of C.

Theorem 4.3: Let *f* be a function and $X = A \cup B$, where $A,B \in RO(X)$. If f_{A} and f_{B} are somewhat sg-irresolute, then *f* is somewhat sg-irresolute.

Proof: Let $U \in SGO(\sigma)$ such that $f^{-1}(U) \neq \phi$. Then $(f_{/A})^{-1}(U) \neq \phi$ or $(f_{/B})^{-1}(U) \neq \phi$ or both $(f_{/A})^{-1}(U) \neq \phi$ and $(f_{/B})^{-1}(U) \neq \phi$. If $(f_{/A})^{-1}(U) \neq \phi$, Since $f_{/A}$ is somewhat sg-irresolute, there exists $V \neq \phi \in SGO(A)$ and $V \subset (f_{/A})^{-1}(U) \subset f^{-1}(U)$. Since V is sg-open in A and A is r-open in X, V is sg-open in X. Thus f is somewhat sg-irresolute.

The proof of other cases are similar.

If *f* is the identity function and τ and σ are sg-equivalent. Then *f* and *f*⁻¹ are somewhat sgirresolute. Conversely, if the identity function *f* is somewhat sg-irresolute in both directions, then τ and σ are sg-equivalent.

Theorem 4.4: Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a somewhat sg-irresolute surjection and τ^* be a topology for X, which is sg-equivalent to τ . Then $f:(X, \tau^*) \rightarrow (Y, \sigma)$ is somewhat sg-irresolute.

Proof: Let $V \in SGO(\sigma)$ such that $f^{-1}(V) \neq \phi$. Since f is somewhat sg-irresolute, there exists $U \neq \phi \in SGO(X, \tau)$ with $U \subset f^{-1}(V)$. But for τ^* is sg-equivalent to τ . Therefore, there exists $U^* \neq \phi \in SGO(X; \tau^*)$ such that $U^* \subset U$. But $U \subset f^{-1}(V)$. Then $U^* \subset f^{-1}(V)$; hence $f:(X, \tau^*) \rightarrow (Y, \sigma)$ is somewhat sg-irresolute.

Theorem 4.5: Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a somewhat sg-irresolute surjection and σ^* be a topology for Y, which is equivalent to σ . Then $f:(X, \tau) \rightarrow (Y, \sigma^*)$ is somewhat sg-irresolute.

Proof: Let $V^* \in \sigma^*$ such that $f^{-1}(V^*) \neq \phi$. Since σ^* is equivalent to σ , there exists $V \neq \phi \in (Y, \sigma)$ such that $V \subset V^*$. Now $\phi \neq f^{-1}(V) \subset f^{-1}(V^*)$. Since *f* is somewhat sg-irresolute, there exists $U \neq \phi \in SGO(X, \tau)$ such that $U \subset f^{-1}(V)$. Then $U \subset f^{-1}(V^*)$; hence $f:(X, \tau) \rightarrow (Y, \sigma^*)$ is somewhat sg-irresolute.

5. Somewhat almost sg-open function:

Definition 5.1: A function *f* is said to be somewhat almost sg-open provided that if $U \in RO(\tau)$ and $U \neq \varphi$, then there exists a $V \neq \varphi \in SGO(Y)$ such that $V \subset f(U)$.

Example 6: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. The function *f*: defined by f(a) = a, f(b) = c and f(c) = b is somewhat almost sg-open, somewhat sg-open and somewhat open.

Example 7: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, X\}$. The function *f*: defined by f(a) = a, f(b) = c and f(c) = b is not somewhat almost sg-open.

Theorem 5.1: Let f be an r-open function and g somewhat almost sg-open. Then $g \cdot f$ is somewhat almost sg-open.

Theorem 5.2: For a bijective function *f*, the following are equivalent:

(i) *f* is somewhat almost sg-open.

(ii) If C is regular closed in X, such that $f(C) \neq Y$, then there is a $D \neq \varphi \in SGC(Y)$ and $D \supset f(C)$.

Proof: (i) \Rightarrow (ii): Let $C \in RC(X)$ such that $f(C) \neq Y$. Then $X - C \neq \phi \in RO(X)$. Since f is somewhat almost sg-open, there exists $V \neq \phi \in SGO(Y)$ such that $V \subset f(X-C)$. Put D = Y-V. Clearly $D \neq \phi \in SGC(Y)$. If D = Y, then $V = \phi$, which is a contradiction. Since $V \subset f(X-C)$, $D = Y-V \supset (Y - f(X-C)) = f(C)$.

(ii) \Rightarrow (i): Let $U \neq \phi \in RO(X)$. Then $C = X \cdot U \in RC(X)$ and $f(X \cdot U) = f(C) = Y \cdot f(U)$ implies $f(C) \neq Y$. Then by (ii), there is $D \neq \phi \in SGC(Y)$ and $f(C) \subset D$. Clearly $V = Y \cdot D \neq \phi \in SGO(Y)$. Also, $V = Y \cdot D \subset Y \cdot f(C) = Y \cdot f(X \cdot U) = f(U)$.

Theorem 5.3: The following statements are equivalent:

(i) *f* is somewhat almost sg-open.

(ii)If A is a sg-dense subset of Y, then $f^{-1}(A)$ is a dense subset of X.

Proof: (i) \Rightarrow (ii): Let A be a sg-dense set in Y. If $f^{-1}(A)$ is not dense in X, then there exists $B \in RC(X)$ such that $f^{-1}(A) \subset B \subset X$. Since f is somewhat almost sg-open and X-B $\in RO(X)$, there exists $C \neq \phi \in SGO(Y)$ such that $C \subset f(X-B)$. Therefore, $C \subset f(X-B) \subset f(f^{-1}(Y-A)) \subset Y$ -A. That is, $A \subset Y-C \subset Y$. Now, Y-C is a sg-closed set and $A \subset Y-C \subset Y$. This implies that A is not a sg-dense set in Y, which is a contradiction. Therefore, $f^{-1}(A)$ is a dense set in X.

(ii) \Rightarrow (i): If $A \neq \phi \in RO(X)$. We want to show that $sg(f(A))^{\circ} \neq \phi$. Suppose $sg(f(A))^{\circ} = \phi$. Then, $sgcl\{(f(A))\} = Y$. Then by (ii), $f^{-1}(Y - f(A))$ is dense in X. But $f^{-1}(Y - f(A)) \subset X$ -A. Now, $X - A \in RC(X)$. Therefore, $f^{-1}(Y - f(A)) \subset X$ -A gives $X = cl\{(f^{-1}(Y - f(A)))\} \subset X$ -A. Thus $A = \phi$, which contradicts $A \neq \phi$. Therefore, $sg(f(A))^{\circ} \neq \phi$. Hence *f* is somewhat almost sg-open.

Theorem 5.4: Let *f* be somewhat almost sg-open and A be any r-open subset of X. Then f_{A} is somewhat almost sg-open.

Proof: Let $U \neq \varphi \in RO(\tau_{A})$. Since $U \in RO(A)$ and $A \in RO(X)$, $U \in RO(X)$ and since f is somewhat almost sg-open function, there exists $V \in SGO(Y)$, such that $V \subset f(U)$. Thus f_{A} is a somewhat almost sg-open function.

Theorem 5.5: Let *f* be a function and $X = A \cup B$, where $A,B \in RO(X)$. If f_{A} and f_{B} are somewhat almost sg-open, then *f* is somewhat almost sg-open.

Proof: Let $U \neq \phi \in RO(X)$. Since $X = A \cup B$, either $A \cap U \neq \phi$ or $B \cap U \neq \phi$ or both $A \cap U \neq \phi$ and $B \cap U \neq \phi$. Since $U \in RO(X)$, $U \in RO(A)$ and $U \in RO(B)$.

Case (i): If $A \cap U \neq \varphi \in RO(A)$. Since f_{A} is somewhat almost sg-open, there exists $V \in SGO(Y)$ such that $V \subset f(U \cap A) \subset f(U)$, which implies f is somewhat almost sg-open.

Case (ii): If $B \cap U \neq \phi \in RO(B)$. Since $f_{/B}$ is somewhat almost sg-open, there exists $V \in SGO(Y)$ such that $V \subset f(U \cap B) \subset f(U)$, which implies f is somewhat almost sg-open.

Case (iii): If both $A \cap U \neq \varphi$ and $B \cap U \neq \varphi$. Then by case (i) and (ii) *f* is somewhat almost sg-open.

Remark 1: Two topologies τ and σ for X are said to be sg-equivalent if and only if the identity function *f*: (X, τ) \rightarrow (Y, σ) is somewhat almost sg-open in both directions.

Theorem 5.6: If $f:(X, \tau) \rightarrow (Y, \sigma)$ is somewhat almost open. Let τ^* and σ^* be topologies for X and Y, respectively such that τ^* is equivalent to τ and σ^* is sg-equivalent to σ . Then f: (X; τ^*) \rightarrow (Y; σ^*) is somewhat almost sg-open.

6. Somewhat M-sg-open function:

Definition 6.1: A function *f* is said to be somewhat M-sg-open provided that if $U \in SGO(\tau)$ and $U \neq \varphi$, then there exists a $V \neq \varphi \in SGO(Y)$ such that $V \subset f(U)$.

Example 8: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. The function *f* defined by f(a) = a, f(b) = c and f(c) = b is somewhat M-sg-open, somewhat sg-open and somewhat open.

Example 9: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, X\}$. The function *f* defined by f(a) = b, f(b) = c and f(c) = a is not somewhat M-sg-open.

Theorem 6.1: Let f be an r-open function and g somewhat M-sg-open. Then $g \cdot f$ is somewhat M-sg-open.

Theorem 6.2: For a bijective function *f*, the following are equivalent:

(i) *f* is somewhat M-sg-open.

(ii) If $C \in SGC(X)$, such that $f(C) \neq Y$, then there is a $D \in SGC(Y)$ such that $D \neq Y$ and $D \supset f(C)$.

Proof: (i) \Rightarrow (ii): Let $C \in SGC(X)$ such that $f(C) \neq Y$. Then $X - C \neq \phi \in SGO(X)$. Since f is somewhat M-sg-open, there exists $V \neq \phi \in SGO(Y)$ such that $V \subset f(X-C)$. Put D = Y-V. Clearly $D \neq \phi \in SGC(Y)$. If D = Y, then $V = \phi$, which is a contradiction. Since $V \subset f(X-C)$, $D = Y-V \supset (Y - f(X-C)) = f(C)$.

(ii) \Rightarrow (i): Let $U \neq \phi \in RO(X)$. Then $C = X - U \in SGC(X)$ and f(X - U) = f(C) = Y - f(U) implies $f(C) \neq Y$. Then by (ii), there is $D \in SGC(Y)$ such that $D \neq Y$ and $f(C) \subset D$. Clearly $V = Y - D \neq \phi \in SGO(Y)$. Also, $V = Y - D \subset Y - f(C) = Y - f(X - U) = f(U)$.

Theorem 6.3: The following statements are equivalent:

(i) f is somewhat M-sg-open.

(ii)If A is a sg-dense subset of Y, then $f^{-1}(A)$ is a sg-dense subset of X.

Proof: (i) \Rightarrow (ii): Let A be a sg-dense set in Y. If $f^{-1}(A)$ is not sg-dense in X, then there exists $B \in SGC(X)$ in X such that $f^{-1}(A) \subset B \subset X$. Since f is somewhat M-sg-open and X-B is sg-open, there exists a $C \neq \phi \in SGO(Y)$ such that $C \subset f(X-B)$. Therefore, $C \subset f(X-B) \subset f(f^{-1}(Y-A)) \subset Y-A$. That is, $A \subset Y-C \subset Y$. Now, Y-C is a sg-closed set and $A \subset Y-C \subset Y$. This implies that A is not a sg-dense set in Y, which is a contradiction. Therefore, $f^{-1}(A)$ is a sg-dense set in X.

(ii) \Rightarrow (i): Let $A \neq \phi \in SGO(X)$. We want to show that $sg(f(A))^{\circ} \neq \phi$. Suppose $sg(f(A))^{\circ} = \phi$. Then, $sgcl\{(f(A))\} = Y$. Then by (ii), $f^{-1}(Y - f(A))$ is sg-dense in X. But $f^{-1}(Y - f(A)) \subset X$ -A. Now, X-A \in SGC(X). Therefore, $f^{-1}(Y - f(A)) \subset X$ -A gives $X = cl\{(f^{-1}(Y - f(A)))\} \subset X$ -A. Thus $A = \phi$, which contradicts $A \neq \phi$. Therefore, $sg(f(A))^{\circ} \neq \phi$. Hence *f* is somewhat Msg-open.

Theorem 6.4: If *f* is somewhat M-sg-open and $A \in RO(X)$. Then f_{A} is somewhat M-sg-open.

Proof: Let $U \neq \varphi \in SGO(\tau_A)$ and $A \in RO(X)$. Since *f* is somewhat M-sg-open, there exists $V \in SGO(Y)$, such that $V \subset f(U)$. Thus f_A is a somewhat M-sg-open.

Theorem 6.5: Let *f* be a function and $X = A \cup B$, where $A,B \in SGO(X)$. If f_{A} and f_{B} are somewhat M-sg-open, then *f* is somewhat M-sg-open. **Proof:** Same as Theorem 5.5.

Remark 2: Two topologies τ and σ for X are said to be sg-equivalent if and only if the identity function *f*: (X, τ) \rightarrow (Y, σ) is somewhat M-sg-open in both directions.

Theorem 6.6: If $f:(X, \tau) \rightarrow (Y, \sigma)$ is somewhat M-open. Let τ^* and σ^* be topologies for X and Y, respectively such that τ^* is equivalent to τ and σ^* is sg-equivalent to σ . Then $f: (X; \tau^*) \rightarrow (Y; \sigma^*)$ is somewhat M-sg-open.

CONCLUSION: In this paper we defined Somewhat-sg-continuous functions, studied its properties and their interrelations with other types of Somewhat-continuous functions.

Acknowledgments: The authors would like to thank the referees for their critical comments and suggestions for the development of this paper.

References:

1. D. Andrijevic. On b-open sets. Math. Vesnik, 1996, 48: 59 - 64.

2. A.A. El-Atik. A study of some types of mappings on topological spaces. M. Sc. Thesis, Tanta University, Egypt, 1997.

3. S. Balasubramanian, C. Sandhya, P.A.S.Vyjayanthi, on sg-closed sets, Inter. J. Math. Archive, Vol.3,No.6(2012)2187-2193.

4. S. Balasubramanian, C. Sandhya, P.A.S.Vyjayanthi, Slightly sg-continuous functions, Somewhat sg-continuous functions, Inter. J. Math. Archive, Vol.2,No.6 (2012)2194-2203.

5. S. Balasubramanian, C. Sandhya, P.A.S.Vyjayanthi, sg-separation axioms (communicated)

6. S. Balasubramanian, C. Sandhya, P.A.S.Vyjayanthi, on sg-separation axioms (communicated)

7. M. Ganster. Preopen sets and resolvable spaces. Kyungpook Math. J., 1987, 27(2):135-143.

8. K.R. Gentry, H.B. Hoyle. Somewhat continuous functions. Czechslovak Math. J., 1971, 21(96):5-12.

9. Y.Gnanambal., On generalized pre regular closed sets in topological spaces, I.J.P.A.M.,28(3)(1997), 351-360.

 T.Noiri, N.Rajesh. Somewhat b-continuous functions. J. Adv. Res. in Pure Math., 2011,3(3):1-7.doi: 10.5373/jarpm.515.072810