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1. Introduction:

In 1963 M. K. Singhal and A. R. Singhal introduced Almost continuous mappings. In
1980, Joseph and Kwack introduced the notion of (6, s)-continuous functions. In 1982,
Jankovic introduced the notion of almost weakly continuous functions. Dontchev, Ganster
and Reilly introduced a new class of functions called regular set-connected functions in
1999. Jafari introduced the notion of (p, s)-continuous functions in 1999. T. Noiri and V.
Popa studied some properties of almost-precontinuity in 2005 and unified theory of almost-
continuity in 2008. E. Ekici introduced almost-precontinuous functions in 2004 and
recently have been investigated further by Noiri and Popa. Ekici E., introduced almost-
precontinuous functions in 2006. Ahmad Al-Omari and Mohd. Salmi Md. Noorani studied
Some Properties of almost-b-Continuous Functions in 2009. Recently S. Balasubramanian,
C. Sandhya and P.A.S.Vyjayanthi introduced v-continuous functions in 2010. Inspired with
these developments, we introduce almost-v-continuous functions, obtain basic properties,

preservation Theorems.
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2. Preliminaries:

Definition 2.1: Ac X is said to be

(1) regular open[pre-open; semi-open; a-open; B-open] if A = int(c/(A))[Ac int(c/(A); Ac
cl(int(A)); Ac int(cl(int(A))); Ac cl(int(cl(A))].

(ii) v-open[ra-open] if 3 a regular open set O such that Oc Ac ¢l (O)[Oc Ac acl(O)]

(iii) 6-closed[B-semi-closed] if A = Clg(A) = {xeX:cl(V)NA # ¢; for every Vet}[A =
sCly(A) = {xeX:cl(V)NA # ¢; for every Ve SO(X, x)}]. The complement of a 6-closed[6-
semi-closed] set is said to be 0-open[0-semi-open]. Clg(A)[sCly(A)] is O-closure [0-semi-
closure] of A.

(iv) v-dense in X if vcl(A) = X.

(v) The v-frontier of Ac X; is defined by v Fr(A) = vcl(A)-vel(X-A) = vel(A)-vint(A).

It is shown that Clg(V) = c/(V) for every Vet and Cly(S) is closed in X for every Sc X.

Definition 2.2: A cover X = {U,: a € I} of subsets of X is called a v-cover if U, is v-open

for each ae 1.

Definition 2.3: A filter base A is said to be v-convergent (resp. rc-convergent) to a point x

in X if for any UevO(X, x)(resp. UeRC(X, x)), there exists a Be A such that Bc U.

Definition 2.4: A function /> X — Y is called

(i) almost-[resp: almost-semi-; almost-pre-;almost-ra-; almost-o-; almost-B-; almost-c-;
almost-pre-semi-; almost-A-]continuuos if / '(V) is open[resp: semi-open; pre-open; ro-
open; a-open; B-open; m-open; pre-semi-open; A-open] in X for every Ve RO(Y).

(i1) regular set-connected if inverse image of every regular open set V in Y is clopen in X.
(iii) perfectly continuous inverse image of every open set V in Y is clopen in X.

(iv)almost s-continuous if for each xe X and each Ve SO(Y) with f(x) € V, there exists an

open set U in X containing x such that f{U) c scl(V).
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(v) (p, s)-continuous(resp. (0, s)-continuous) if for each xe X and each Ve SO(Y, f(x)),
there exists Ue PO(X, x) (resp. Uet containing x) such that AU) < CI(V).

(vi) weakly continuous if for each xe X and each open set Veo(Y), f(x)), there exists an
open set U of X containing x such that {U) < cl/(V).

(vii) (8, s)-continuous iff for each O-semi-open set V of Y, £~ '(V) is open in X.

3. Almost v-Continuous Functions:
Definition 3.1: A function f> X— Y is said to be Almost v-continuous if the inverse image

of every regular open set is v-open.

Note 1: Here onwards we call almost v-continuous as al.v.c., briefly.

Theorem 3.1: (i) fis al.v.c. iff fis al.v.c. at each xe X.

(i1) Iffis v.c., then f'is al.v.c. Converse is true if X is discrete space.

(iii) If fis v-open and al.v.c. mapping, then f '(A)evO(X) for each AevO(Y)
(iv) If fis al.v.c. and Ae RO(X), then f4 is al.v.c.

Theorem 3.2: f is al.v.c. iff for every xeX and UyevO(Y, fix)) [UeRO(Y fx))], 3
AevO(X, x) such that fA) c U [fA) < Uy].
Proof: Let UyeRO(Y) and let xef~ '(Uy). Then f{x)eUy and thus there exists A,evO(X,

x) and flA,) < Uy. Then xe A, f~'(Uy) and /" '(Uy) = U A,. Hence /' (Uy) evO(X).

Theorem 3.3: Let fi: X; > Y; be al.v.c. fori=1, 2. Let - X;x X, = Y;x Y, be defined as
follows: f(x1, X2) = (f1(X1), f2(X2)). Then f: X;x X; — Y;x Y, is al.v.c.

Theorem 3.4: Let h:X—>XxX, be al.v.c., where h(x) =(h;(x), hy(x)). Then h;X—>X; is

alv.c. fori=1, 2.

In general we have the following extension of theorems 3.3 and 3.4:

40



International Journal of Mathematical Engineering and Science
ISSN : 2277-6982 Volume 1 Issue 8 (August 2012)
http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

Theorem 3.5: (i) £ 11X, — IT1Y; is al.v.c, iff f;: X;,— Y, is al.v.c for each A€ A.
()If f:X—ITY;, is al.v.c, then P; of> X—Y; is al.v.c for every LeA; P,:ITY; onto Y;.

Note 2: With respect to usual topology on R, open sets and regular open sets are one and

the same. So converse of theorem 3.5 is not true in general, as shown by.

Example 1: Let X = X; =X, =[0, 1]. Let f/;:X— Xj and f;:X— X, are defined as follows:
fix)=1if0<x<12and fi(x)=0if 1/2<x< 1. H(x)=11if 0 <x < 1/2 and fp(x) =0 if 1/2
<x < 1. Then f: X—>X; is clearly al.v.c. for i = 1, 2., but A(x) = (fi(X1), /(X2)): X—>XxX, is
not al.v.c., for S;x(1, 0)eRO(X;xX>), but £7(S15(1, 0)) = {1/2} vO(X).

Remark 1: In general, (i) The algebraic sum; product and composition of two al.v.c.
functions is not al.v.c. However the scalar multiple of al.v.c. function is al.v.c.
(i) The pointwise limit of a sequence of al.v.c. functions is not al.v.c.

(iii) al.v.c. function of al.v.c. function is not al.v.c. as shown by the following examples.

Example 2: Let X =X, =X, = [0, 1]. Let f;:X—X and f,:X—X, are defined as follows:
fix)=xif0<x<12and fi(x)=0if 112 <x<1; (x)=0if 0 <x<1/2 and fr(x) = 1 if 1/2

<x < 1. Then their product is not al.v.c.

Example 3: Let X =Y = [0, 1]. Let f; defined on X as follows: f,(x) = x, forn > 1 then f is
the limit of the sequence where f(x) = 0if 0 < x <1 and f(x) = 1 if x = 1. Therefore f'is not
al.v.c. For (1/2, 1]is v-open in Y, £ '((1/2, 1]) = (1) is not v-open in X.

However we can prove the following theorem.

Theorem 3.6: Uniform Limit of a sequence of al.v.c. functions is al.v.c.

Problem: (i) Are sup{f, g} and inf{f, g} are al.v.c if f, g are al.v.c
(i1) Is Cy1,.o(X, R), the set of all al.v.c functions,
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(1) a Group. (2) aRing. (3) a Vector space. (4) a Lattice.

Solution: No.

Example 4: Let X =Y = [0, 1]. Let /- X— Y be defined as follows: f{x) =1 if 0 <x < 1/2

and f(x) = 0 if 1/2 <x < 1. Then obviously f'is al.v.c. but not r-continuous.

Example 5: Let X =Y = {a, b, c}; 1= {¢, {a}, {b}, {a, b}, X} and o = {¢, {a}, {b}, {a, b},

{a, ¢}, X}. Then the identity map />X—Y is al.s.c., and al.v.c. but not al.c., and r-irresolute.

Example 6: Let X =Y = {a, b, c}; 1= {9, {b}, {a, b}, {b, c}, X} and o = {9, {a}, {b}, {a,
b}, {a, c}, X} .Let f- X—>Y be defined as fla) = b; f{b) = a; fic) = c is not al.s.c., al.c.,

al.v.c., and r-irresolute.

under usual topology on R both continuous and nearly-continuous are same as well both

al.s.c. and al.v.c. are same. In general, al.c and al.v.c. maps are independent to each other.

Theorem 3.7: (i) If RaO(X) = vO(X) then f'is al.ra.c. iff fis al.v.c.
(i1) If vO(X) = RO(X) then f'is al.v.c. iff fis r-irresolute.

(1)If vO(X) = aO(X) then fis al. a..c. iff fis al.v.c.

(Av)If vO(X) = SO(X) then f'is al.s.c. iff fis al.v.c.

(v) If vO(X) = BO(X) then fis al. B.c. iff fis al.v.c.

Theorem 3.8: (i) Iffis al.v.c. and g is r-irresolute then gef'is al.v.c.

(i1) If f'and g are r-irresolute then gefis al.v.c.

(i)If fis v.c.[al.v.c.]; g is al.g.c.[al.rg.c.] and Y is T;[rT;.], then gef'is al.v.c.

(iv) If fis al.v.c.;[resp: v.c.;] g is g.c.[rg.c.] and every g-open set[rg-open] in Y is r-open,

then gef'is al.v.c.
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Theorem 3.9: If f is v-irresolute, v-open and vO(X) = 1 and g be a function, then gef is

al.v.ciff gis al.v.c.

Definition 3.2: f'is said to be M-v-open if {V) is v-open in Y whenever V is v-open in X.

Example 7: Let X =Y = R with usual topology and f be defined by f(x) =1 for all xe X
then X is v-open in X but f{X) is not v-open in Y.

Theorem 3.10: Let X, Y, Z be spaces and every v-open set is r-open in Y, then the

composition of two al.v.c.[resp:v-continuous] maps is al.v.c.

Corollary 3.1: (i)If fbe r-open, al.v.c. and g be al.v.c., then gef'is al.v.c.

(i) If f'is v-irresolute, M-v-open and bijective, g is a function. Then g is al.v.c. iff gef'is
al.v.c.

(iii) If fis al.v.c. and g is r-irresolute then gef'is al.s.c. and al.f3.c.

(iv) If fis v.c,,[r.c.,];g is al.g.c.,[al.rg.c.,] and Y is Ty,[1T;5], then gefis al.s.c. and al.p.c.

Note 3: Pasting Lemma is not true with respect to al.v.c. functions. However we have the

following weaker versions.

Theorem 3.11: Pasting Lemma: Let X; Y be such that X = AUB. Let f/, and gp are
al.v.c.[resp: r-irresolute] such that f{x) = g(x) for every xe AnB. If A, BeRO(X) and

vO(X)[resp: RO(X)] is closed under finite unions, then the combination a:X—Y is al.v.c.

4. Further Results on almost-v-continuous functions:

Theorem 4.1: The following statements are equivalent for a function f-

(1) fisalv.c.;

(2) /"~ (F) evC(X) for every Fe RC(Y);

(3) for each xeX and each Fe RC(Y f(x)), there exists Ue v C(X,x) such that fU) c F;
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(4) for each xeX and each FeRO(Y) non-containing f{x), there exists KevO(X) non-
containing x such that £~ '(V) c K;

(5) £~ (int(cl(G))= vO(X) for every r-open subset G of Y

(6) £~ (cl(int(F)))= vC(X) for every r-closed subset F of Y.

Example 8: Let X = {a, b, c}, 1=0 = {¢, {b}, {c}, {b, c}, X}. Then the identity function f

on X is al.v.c. But it is not regular set-connected.

Example 9: Let X = {a, b, ¢}, = {0, X} and 6 = {¢, {a}, X}. The identity function f'on X
and f'defined as f(a) = b; f(b) = ¢, f(c) = a are al.v.c. function which is not c.v.c., and v.c.

Remark 2: Every restriction of an al.v.c. function is not necessarily al.v.c.

Theorem 4.2: Let f'be a function and £ = {U,: o € 1} be a v-cover of X. If for each ae I,
fue 1s al.v.c., then f'is an al.v.c.

Proof: Let FeRO(Y). fu, is al.v.c. for each ael, fuq 1(F)evO‘UO(. Since U, evO(X), flua
'(F) evO(X) for each o 1. Then /™ '(F) = UaelUa '(F)evO(X). Thus fis al.v.c.

Theorem 4.3: Let f'be a function and xeX. If 3 UeRO(X, x) and fy is al.v.c. at X, then f'is

al.v.c. atx.
Proof: Let FERO(Y f(x)). Since fjy is al.v.c. at x, there exists VevO(U, x) such that V) =
(fu)(V) < F. Since Ue RO(X, x), it follows that VevO(X, x). Therefore fis al.v.c. at x.

Theorem 4.4: Let /' be a function and let g:X— XxY be the graph function of £, defined by
g(x) = (x, f(x)) for every xe X. If g is al.v.c., then fis al.v.c.
Proof: Let VeRC(Y), then XxV = Xxcl(int(V)) = cl(int(X))xcl(int(V)) = cl(int(XxV))e

RC(XxY). Since g is al.v.c., then f~'(V) = g *'(Xx V)evC(X). Thus, fis al.v.c.

Theorem 4.5: For fand g. The following properties hold:
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(1) If fis al.v.c.[ c.v.c.] and g is regular set-connected, then ge fis al.v.c.

(2) If fis al.v.c. and g is perfectly continuous, then ge fis v.c. and c.v.c.

Theorem 4.6: If f'is a surjective M-v-open[resp:M-v-closed] and g is a function such that

ge fis al.v.c., then g is al.v.c.

Theorem 4.7: If f is al.v.c., then for each point xe X and each filter base A in X v-

converging to X, the filter base f{A) is rc-convergent to f{x).

Definition 4.2: A function f is called (v, s)-continuous if for each xe X and each Ve

SO(Y, f(x)), there exists Ue v O(X, x) such that AU) c c/{V}.

Theorem 4.8: For f, the following properties are equivalent:
(1) fis (v, s)-continuous;

(2)fisalv.c,;

(3) f (V) is v-open in X for each 0-semi-open set V of Y;
(4) £~ '(F) is v-closed in X for each 0-semi-closed set F of Y.

Theorem 4.9: For f, the following properties are equivalent:
(1) fis al.v.c.;

(2) fiv(cl A)) < sCly(f(A)) for every subset A of X

(3) vel{(f '(B))} = 1 '(sClg(B)) for every subset B of Y.

5. The preservation theorems:
Theorem 5.1: If f is al.v.c.[r-irresolute] surjection and X is v-compact, then Y is

compact[resp: nearly compact].

Theorem 5.2: If fis al.v.c.[r-irresolute], surjection. Then the following statements hold:

(1) If X is v-compact[v-lindeloff; s-closed] then Y is mildly compact[mildly lindeloff].
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(i1) If X is locally v-compact, then Y is locally compact[locally nearly compact; locally
mildly compact.]

(ii)If X is v-Lindeloff[locally v-lindeloff], then Y is Lindeloff[resp: locally Lindeloff;
nearly Lindeloff; locally nearly Lindeloff; locally mildly lindeloff].

(v) If X is v-compact[resp: countably v-compact], then Y is S-closed[resp: countably S-
closed].

(vi) If X is v-Lindelof, then Y is S-Lindelof[resp: nearly Lindeloff].

Theorem 5.3: If f is an r-irresolute and al.c. surjection and X is mildly compact (resp.
mildly countably compact, mildly Lindelof), then Y is nearly compact (resp. nearly

countably compact, nearly Lindelof) and S-closed (resp. countably S-closed, S-Lindelof).

Theorem 5.4: (i) If fis al.v.c.[contra v-irreolute] surjection and X is v-connected, then Y is
connected[v-connected]

(i1) If X is v-ultra-connected and f'is al.v.c. and surjective, then Y is hyperconnected.

(iii) The inverse image of a disconnected|[v-disconnected] space under al.v.c.,[contra v-

irreolute] surjection is v-disconnected.

Theorem 5.6: If fis al.v.c., injection and

(1) Y is UTj[resp: UC;; UD;], then X is v Tj[resp:v C;; vD;] and hence semi T;[resp: semi C;;
semi D;] and BT;[resp: BC;; BD;]1=0,1,2.

(i1) Y is UR;, then X is v-Rj[hence semi-R; and BR;]i=0, 1.

(iii)If fis closed, Y is UT;, then X is v-T;[hence semi-T; and BT;] i =3, 4.

Theorem 5.7: (i) If f'is al.v.c.[resp: al.r.c] and Y is UT,, then the graph G(f) of fis v-
closed[resp:semi-closed; B-closed and semi-6-closed] in Xx Y.

(i1) If fis al.v.c.[al.r.c] and Y is UT,, then A = {(x;, Xp)| fix;) =f(X,)} is v-closed[and hence
semi-closed and 3-closed] in Xx X.

(iii) If f'is r-irresolute{al.c.}; g is c.v.c; and Y is UT,, then E = {xe X : fix) = g(x)} is v-

closed[and hence semi-closed and -closed] in X.
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(iii) If f'is al.v.c. injection and Y is 1T, then X is v-T;; 1 =0,1,2.

6. Relations to weak forms of continuity:
Definition 6.1: A function f'is said to be faintly v-continuous if for each xe X and each 0-

open set V of Y containing f{x), there exists Ue v O(X, x)such that f{U) c V.

Example 10: Let X = {a, b, c}, 1= {¢, {a, b}, X} and & = {¢, {a}, {b, c}, X}. Then, the

identity function fis not al.v.c and is not weakly continuous.

Example 11: Let X = {a, b, ¢}, 1= {0, {a}, {a, b}, {a, ¢}, X} and & = {9, {a}, {a, b}, X}.

Then, the identity function f'is (0, s)-continuous and al.v.c.

Example 12: Let R be the reals with the usual topology and f- R — R the identity

function. Then fis continuous; weakly continuous; al.p.c., and al.v.c.

Example 13: Let X = {a, b, ¢}, = {0, {a}, {b}, {a, b}, {a, ¢}, X} and o = {¢, {b}, {c},

{b, ¢}, X}. Then the identity function fon X is c.c., c.s.c., but it is not al.v.c.

Corollary 6.1: If fis M-v-open and c.v.c., then fis al.v.c.

Lemma 6.1: For £, the following properties are equivalent:
(1) fis faintly-v-continuous;

() £ (V)evO(X) for every 0-open set V of Y;

(3) £ (K)evC(X) for every O-closed set K of Y.

Theorem 6.1: If for each x; # x,€ X there exists a function f of X into a Urysohn space Y
such that f(x;) # f(x,) and fis al.v.c., at X, and x,, then X is v-T,.

Proof: Let x; # x,. By hypothesis, 3 V,e(o,f(x;)) s.t., Nncl(V;) = ¢ for i = 1,2. For fis
al.v.c., at x;, 3 U;evO(X, x7) s.t., fAlU)ccl(V;) fori=1, 2., and "U; = ¢. Hence X is vT5.
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Corollary 6.2: If f'is al.v.c. injection and Y is Urysohn, then X is v T.

Theorem 6.2: {xe X: fis not al.v.c.} is identical with the union of the v-frontier of the
inverse images of regular closed sets of Y containing f{x).

Proof: If f'is not al.v.c. at xeX. By Theorem 4.1,, 3 FeRC(Y, fix)) s.t., AUN(Y -F) = ¢
for every UevO(X, x). Then xe vel(f (Y -F)) = vel(X - £~ '(F)). On the other hand, we get
xe f~'(F) c vel(f~'(F)) and hence xe v Fr(f™ '(F)).

Conversely, If fis al.v.c. at x and Fe RO(Y, f(x)). By Thm. 4.1, 3 UevO(X, x) s.t xeUcf"
'(F). Hence xevint(f~ '(F)), which contradicts xevFr(f” '(F)). Thus fis not al.v.c.

Definition 6.2: A function f'is said to have a strongly contra-v-closed graph if for each (x,

y)e(XxY) - g(f) there exists UevO(X, x) and VeRC(Y,y) such that (UxV){g()} = ¢.

Lemma 6.2: f has a strongly contra-v-closed graph iff for each (x, y) € (Xx Y) - g(f) 3
UevO(X, x) and Ve RC(Y,y) such that AU)NV = ¢.

Theorem 6.3: If fis al.v.c. and Y is Hausdorff, then g(f) is strongly contra-v-closed.
Proof: If (x, y) € (XxY)-g(f), then y # f{(x). Since Y is T, 3 Ve (o, y) and We (o, fx)),
s.t., VAW = ¢; hence cl(V)nint(c/(W)) = ¢. Since f'is al.v.c., by Lemma 6.3 3 UevO(X, x)
s.t., AU)cint(c/(W)). Thus fU)Ncl(V) = ¢ and hence g(f) is strongly contrav-closed.

Theorem 6.4: If fis injective al.v.c. with strongly contra-v-closed graph, then X is vT,.
Proof: Let x # ye X. Since f'is injective, we have f{x) # f(y) and (x, fy)) € (Xx Y) - g(f).
Since g(f) is strongly contra-v-closed, by Lemma 6.2 there exists UevO(X, x) and
VeRC(Y, f{y)) such that AU)NV = ¢. Since f is al.v.c., by Theorem 4.1, there exists
GevO(X, y) such that {G)cV. Therefore AU)NAG) = ¢; hence UNG = ¢. Thus X is v T».
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Corollary 6.3: If f'is al.v.c. and Y is Urysohn, then g(f) is strongly contra-v-closed and

contra-v-closed.

CONCLUSION: In this paper we defined almost v-continuous functions, studied its

properties and their interrelations with other types of almost-continuous functions.

Acknowledgment: The authors would like to thank the referees for their suggestion and

critical comments for the development of the paper.

References:

1. Ahmad Al-Omari and Mohd.Salmi Md.Noorani, Some Properties of Contra-b-
Continuous and Almost Contra-b-Continuous Functions, E.J.P.A.M., 2(2)(2009)213-230.

2. D.Andrijevic, semipre-open sets, Mat. Vesnick 38(1986), 24-32.

3. C.W.Baker, Subcontra-continuous functions, I.J.M.M.S.,21(1)(1998)19-24.

4. C.W.Baker, On contra almost -continuous functions in Topological Spaces, Kochi. J.
M.,1 (2006)1-8.

5. S.Balasubramanian, C.Sandhya and P.A.S.Vyjayanthi, v-open sets and v-mappings,
LJ.M.S.E.A,4(2)(June, 2010)395-405.

6. S.Balasubramanian, C.Sandhya and P.A.S.Vyjayanthi, note on v-continuity, Bull.
Kerala Math. Association, 6(2)(Dec 2010)21-28.

7. S.Balasubramanian and P.A.S.Vyjayanthi, v-open mappings, Scientia Magna, 6(4)
(2010)118-124.

8. S.Balasubramanian and P.A.S.Vyjayanthi, v-closed mappings, J.Adv.Res.Pure Math.,
3(1)(2011)135-143.

9] J. Dontchev, M. Ganster and I. Reilly, More on almost s-continuity, /ndian J. Math.,41
(1999), 139-146.

10. E. Ekici. Generalization of perfectly continuous, regular set-connected and clopen
functions. Acta Math. Hungar 107 (3) (2005), 193-206.

11. J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer.Math. Soc., 80 (1980),
341-348.

49



International Journal of Mathematical Engineering and Science
ISSN : 2277-6982 Volume 1 Issue 8 (August 2012)
http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

12. T. Noiri, S. Jafari, Properties of (6, s)-continuous functions, Topology and its

Applications, 123(2002), 167 — 179.
13. M.K.Singhal, A.R.Singhal. Almost continuous mappings. Yokohama. J. Math., 16

(1968)63-73.

50



