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Abstract. In this paper, The author studies the existence of bounded non-

oscillatory solutions of a class of forced higher order nonlinear neutral dynamic 

equations on a time scale T . By using fixed point theorem and some new 

techniques, the author obtains sufficient conditions for the existence of non-

oscillatory solutions for general ( )ip t , ( )if x  and ( )q t  which means 

that they are allowed oscillate. The results not only generalize and improve the 

known results stated for differential and difference equations, but also improve 

some of the results for dynamic equations on time scales. An example is 

included to illustrate the results.  
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1   Introduction 

The theory of time scales, which has recently received a lot of attention, was 

introduced by Stefan Hilger in his Ph. D. thesis in 1988 in order to unify continuous 

and discrete analysis (see Hilger [1]). Several authors have expounded on various 

aspects of this new theory; see the survey paper by Agarwal et al. [2] and references 

cited therein. A book on the subject of time scales, by Bohner and Peterson [3], 
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summarizes and organizes much of the time scale calculus; we refer also to the last 

book by Bohner and Peterson [4] for advances in dynamic equations on time scales. 

In recent years, there has been much research activity concerning the oscillation 

and non-oscillation of solutions of various equations on time scales(see[5-15,25-30]). 

However, there are relatively few papers to discuss the existence of non-oscillatory 

solutions for higher order nonlinear dynamic equations with forced terms on time 

scales. Motivated by these works, in this paper, we investigate the existence of non-

oscillatory solutions of the following forced higher order neutral dynamic equation 

  i 0

1

( ) ( ) ( ( )) ( ) ( ( ( ))) ( ) [ , )
m k

i i

i

x t p t x t p t f x t q t t t 




     T (1.1)  

where 0([ , ) , )i rdp C t R  T , 0([ , ) , )p C t R  T , 0, ([ , ) , )i C t R    T  

with lim ( ) lim ( )t t it t      and ( , )if C R R , 1,2, ,i k  . 

We obtain some sufficient conditions for the existence of a non-oscillatory solution 

of (1.1) without using nondecreasing conditions on the function ( )if x  with 

( ) 0ixf x   for 0x   and any sign conditions on the functions ( )ip t , ( )q t  via 

Kranoselskii's fixed point theorem and some new techniques. In particular, our results 

generalize and improve essentially the known results by removing the restrictive 

conditions on the functions ( )p t  and ( )if x  ( 1,2, ,i k  ) (see[9,11,16-25]). 

2   Preliminaries 

We state the following conditions, which are needed in the sequel: 

1( )H  there exists a constant 
1

( ,1)
2

p  such that | ( ) | 1p t p   for all 0t t ; 

2( )H  there exists a constant (0,1)p  such that 0 ( )p t p   for all 0t t ; 

3( )H  there exists a constant ( 1,0]p   such that ( ) 0p p t   for all 0t t . 

Let k  be a nonnegative integer and ,s tT , we define two sequences of 

functions ( , )kh t s  and ( , )kg t s  as follows: 
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By Theorems 1.112, Theorems 1.60 of [3] and Lemma 2.2 of [11], then 
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where ( , )t

kh t s


 and ( , )t

kg t s


 denote for each fixed s  the derivative of 

( , )kh t s  and ( , )kg t s  with respect to t . 

Lemma 1 ([12]). Assume that ,s tT  and ( , )rdg C R T T , then 

( )

( , ) ( , ) .
t t t

s s s
g g

 


              

           

Lemma 2 ([12]). Let n  be a nonnegative integer, ( ,[0, ))rdh C T  and sT . 

Then ( ( ), ) ( )n
s

g s h   


    implies that each of the following is true: 

(i) ( ( ), ) ( )j
t

g t h   


  is decreasing for all tT and all 0 j n  . 

(ii) ( ( ), ) ( )j
t

g t h   


    for all tT  and all 0 1j n   . 

Let 
0([ , ) , )rdBC t R T

 be the Banach space of all bounded rd-continuous functions 

on 0[ , )t  T  with sup norm 
0

|| || sup | ( ) |t tx x t . 

Lemma 3 (Arzelá-Ascoli theorem [9]). Suppose that 
0([ , ) , )rdBC t R  T

 is 

bounded, uniformly Cauchy and equi-continuous, then   is relatively compact. 

Lemma 4 (Krasnoselskii's fixed point theorem [9]).  Suppose that X  is a Banach 

space and   is a bounded, convex and closed subset of X . Suppose further that 

there exist two operators 1T  and 2T : X  such that 
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(i) 1 2T x T y   for all ,x y ; (ii) 1T  is a contraction mapping; (iii) 2T  is 

completely continuous. Then 1 2T T  has a fixed point in  . 

3   Main results and Examples 

We start this section with the following results, which investigate sufficient 

conditions for the existence of bounded non-oscillatory solutions of (1.1) with ( )p t  

in one of the ranges 
1 3( ) ( )H H . 

Theorem 1 Assume that 1( )H  holds, and that 

0
1 0( ( ), ) | ( ) | , 1,2, ,m i

t
g s t p s s i k



                          (3.1) 

and 

0
1 0( ( ), ) | ( ) |m

t
g s t q s s



   .                                   (3.2) 

Then (1.1) has a bounded nonoscillatory solution ( )x t  with 

liminf | ( ) | 0t x t  . 

Proof. For some 0d  , we choose 1 1,d c  such that 10 (2 1) | |d p d    and 

1 1(1 ) | | | |d p d c p d    .  Let 1 1 1min{ (1 ) | |, | | }c c d p d p d c     . 

By (3.1) and (3.2), there exists 1 0t t  sufficiently large, such that 

1
1 1 1

1

( ( ), )( | ( ) | | ( ) |)
k

m i
t

i

g s t M p s q s s c






    

and 0( ), ( )it t t    for 1t t , where 
1

1
| |

max {| ( ) |:1 }i
d x d

M f x i k
 

   . Let 

0 1 0{ ([ , ) , ) : ( ) | |, }rdx BC t R d x t d t t      T . It is easy to verify that 

  is a bounded, convex and closed subset of 0([ , ) , )rdBC t R T . 
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We define two operators 1T  and 2T : 0([ , ) , )rdBC t R  T  as follows: 

1

1

1 1 0 1

( ) ( ( )), ,
( )( )

( )( ), ,

p t x t t t
T x t

T x t t t t
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( 1) ( ( ), )[ ( ) ( ( ( ))) ( )] , ,
( )( )

( )( ), .

k
m

m i i i
t

i

c g s t p s f x s q s s t t
T x t

T x t t t t

 









    

 
  



Now we show that 1T  and 2T  satisfy the conditions in Lemma 4. 

(1) We will show that 1 2T x T y   for any ,x y . In fact, we have 

1 2 1 1 1 1( )( ) ( )( ) (1 ) | | [ (1 ) | |]T x t T y t c p d c d p d d         , 

1 2 1 1( )( ) ( )( ) (1 ) | | | | | |,T x t T y t c p d p d c d        

which implies that 1 2T x T y   for any ,x y . 

(2) We will show that 1T  is a contraction mapping. Indeed, we have 

1 2| ( )( ) ( )( ) | | ( ) || ( ( )) ( ( )) | (1 )T x t T y t p t x t y t p x y       , 

which implies that 1T  is a contraction mapping. 

(3) We will show that 2T  is a completely continuous mapping. 

(i) By the proof of (1), we see that 2T    . 

(ii) We consider the continuity of 2T . Let nx   and || || 0nx x   as 

n , then x  and | ( ) ( ) | 0nx t x t   for any 0[ , )t t  T . we have 

1
2 2 1 1

1

( )( ) ( )( ) ( ( ), )[ | ( ) || ( ( ( ))) ( ( ( ))) |]
k

n m i i n i i i
t

i

T x t T x t g s t p s f x s f x s s  






   
Since

1 1 1 1 1

1 1

( ( ), )[ | ( ) || ( ( ( ))) ( ( ( ))) |] 2 ( ( ), ) | ( ) |
k k

m i i n i i i m i

i i

g s t p s f x s f x s M g s t p s    

 

  

and | ( ( ( ))) ( ( ( ))) | 0i n i i if x s f x s    as n  for 1,2, ,i k  . In view 
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of (3.1) and applying the Lebesgue dominated convergence theorem, we conclude that 

2 2lim || || 0n nT x T x   , which implies that 2T  is continuous on  . 

(iii) We show that 2T   is uniformly Cauchy. For any 0  , 2 1t t  such that 

2
1 2 1

1

( ( ), )( | ( ) | | ( ) |)
k

m i
t

i

g s t M p s q s s 






   . 

Then for any x  and 2, [ , )t r t  T , we have 

2 2 1

1

( )( ) ( )( ) ( ( ), )[ | ( ) || ( ( ( ))) | | ( ) |]
k

n m i i i
t

i

T x t T x r g s t p s f x s q s s 






     

2
1 2 1

1

2 ( ( ), )[ | ( ) | | ( ) |] 2 .
k

m i
t

i

g s t M p s q s s 






     

This means that 2T   is uniformly Cauchy. 

(iv) We show that 2T   is equicontinuous on 0 2[ , ]t t T  for any 2 0[ , )t t  T . 

Without loss of generality, we assume that 2 1t t . For any 0  , choose 

0
2 0 1

1

( ( ), )[ | ( ) | | ( ) |]
k

m i
t

i

g s t M p s q s s  






 = / . Then for any x , 

when 0 2, [ , ]t r t t T  with | |t r   , by Lemma 1 and Lemma 2, we have 

2 2 1

1
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0
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This means that 2T   is equicontinuous on 0 2[ , ]t t T  for any 2 0[ , )t t  T . Hence, 

by Lemma 3, 2T   is a completely continuous mapping. It follows from Lemma 4 

that there exists x  such that 1 2( )T T x x  , which is the desired bounded 

solution of (1.1) with liminf | ( ) | 0t x t  . The proof is completed. 

Theorem 2 Assume that 2( )H , (3.1) and (3.2) hold, then (1.1) has a bounded 

nonoscillatory solution ( )x t  with liminf | ( ) | 0t x t  . 

 Proof. By (3.1) and (3.2), we choose a 1 0t t  sufficiently large such that 

1
1 1 2

1

( ( ), )( | ( ) | | ( ) |) 1
k

m i
t

i

g s t M p s q s s p






     

and 0( ), ( )it t t    for 1t t , where 2
1 3
max {| ( ) |:1 }i

p x
M f x i k

  
   . Now 

we define a bounded, convex and closed subset   of 0([ , ) , )rdBC t R T : 

0 0{ ([ , ) , ) : 1 ( ) 3, }rdx BC t p x t t t       T
. 

Define two operators 1T  and 2T : 0([ , ) , )rdBC t R  T  as follows: 

1

1

1 1 0 1

( ) ( ( )), ,
( )( )

( )( ), ,

p t x t t t
T x t

T x t t t t

 
 

 

1

1 1

12

2 1 0 1

2 ( 1) ( ( ), )[ ( ) ( ( ( ))) ( )] , ,
( )( )

( )( ), .

k
m

m i i i
t

i

p g s t p s f x s q s s t t
T x t

T x t t t t

 









     

 
  

  

The rest of the proof is similar to that of Theorem 1 and hence omitted. The proof is 

completed. 

 Theorem 3 Assume that 3( )H , (3.1) and (3.2) hold, then (1.1) has a bounded 

nonoscillatory solution ( )x t  with liminf | ( ) | 0t x t  . 
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Proof. By (3.1) and (3.2), there exists 1 0t t  sufficiently large such that 

1
1 1 3

1

1
( ( ), )( | ( ) | | ( ) |)

3

k

m i
t

i

p
g s t M p s q s s








    

and 0( ), ( )it t t    for 1t t , where 3 1 4

3 3

max {| ( ) |:1 }ip
x

M f x i k


 

   . Let 

0 0

1 4
{ ([ , ) , ) : ( ) , }

3 3
rd

p
x BC t R x t t t


      T

. It is easy to verify that 

  is a bounded, convex and closed subset  of 0([ , ) , )rdBC t R T . 

Define two operators 1T  and 2T : 0([ , ) , )rdBC t R  T  as follows: 

1

1

1 1 0 1

( ) ( ( )), ,
( )( )

( )( ), ,

p t x t t t
T x t

T x t t t t

 
 

 

1

1 1

12

2 1 0 1

1 ( 1) ( ( ), )[ ( ) ( ( ( ))) ( )] , ,
( )( )

( )( ), .

k
m

m i i i
t

i

p g s t p s f x s q s s t t
T x t

T x t t t t

 









     

 
  

  

The rest of the proof is similar to that of Theorem 1 and hence omitted. 

Remark 1 Theorem 1-Theorem 3 not only unify the known results for differential and 

difference equations corresponding to (1.1), but also extend and improve essentially 

the existing results of [9,11,16-25] because we do not assume that if  is Lipschitzian 

nor nondecreasing with ( ) 0ixf x  , and allow oscillatory ( )p t  and ( )ip t . 

Example Let 0{ : , 1}nq n N q  T= , consider the dynamic equation 

4
2 2 2

2 3

10 3 2 3

(1 )( 1) ( 1)( 1)1
( ( ) ( ( ))) ( ( ))

( )

q q q q q
x t x t x t

q t t qq
      

 


2 2 2

10 5

2(1 )( 1) ( 1)( 1)q q q q q

q t

    
                              (3.3) 

By the definition of ( , )kg t s , we have 
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0 0

2 2 2

4 1 0 1 10 3

( 1)( 1) ( 1)( 1) 1
( ( ), ) | ( ) |

t t

q q q q q
g s t p s s s

q s


 



    
     , 

0 0

2 2 2

4 1 0 10 2

2( 1)( 1) ( 1)( 1) 1
( ( ), ) | ( ) | .

t t

q q q q q
g s t q s s s

q s


 



    
      

All the conditions of Theorem 3 hold, therefore, (3.3) admits a bounded non-

oscillatory solution ( )x t  with liminf | ( ) | 0t x t  . In fact, 
1

( ) 1x t
t

   is a 

solution of (3.3). 
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