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Abstract

In this paper, in hollow cylinders it is to be noticed that all possible prob-
lems on boundary conditions can be solved by particularizing the method
described here. A new finite integral transformation an extension of those
given by Sneddon [11] whose kernel is given by cylindrical functions, is used
to solve the problem of finding the temperature at any point of a hollow cylin-
der of any height, with boundary conditions of radiation type on the outside
and inside surfaces with independent radiation constants.
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1 Introduction

The main objective of is to solve the problem of finding the temperature at any

point of hollow cylinder of any height, when there is heat radiation on its outside and

inside surfaces.

In all aforementioned investigation, an axisymmetrically heated plate has been con-

sidered. Nasser [2,3] proposed the concept of heat sources in generalized thermoelastic and

applied to a thick plate problem. They have not however considered any thermoelastic

problem with boundary conditions of radiation type, in which sources are generated ac-

cording to the linear function of the temperature, which satisfies the time-dependent heat

conduction equation.

Nowacki [10] has determined steady-state thermal stresses in a thick circular plate

subjected to an axisymmetric temperature distribution on the upper face with zero tem-

perature on the lower face and circular edge.

Kulkarni et al. [1] also studied on quasi-static transient thermal stresses in a thick

annular disc. Wankhede et al. [4] studied on modified Marchi-Zgrabrich transformation.

Marchi et al. [5] and Watson [6] discussed on heat conduction problem in hollow

cylinders with radiation and defined a theory of Bessel function. Recently, Gaikwad et

al.[7] and Ghane et al. [9] also proposed the thermoelastic problem of a thick annular disc

due to radiation and transient thermoelastic problem of a semi infinite cylinder with heat

sources.

Hiranwar et al. [8] also proposed the thermoelastic problem of thin annular disc due

to radiation.
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we assume that all functions involved satisfy Dirichlet’s conditions in the intervals

considered.

2 Statement of the problem

Consider the hollow cylinder whose axis is coincident with the Z-axis, defined by 0 ≤ z ≤ h

and a ≤ r ≤ b, where a and b are the external and internal radii, respectively and

(r, φ, z) are cylindrical coordinates. Let us consider the heat conduction problem with

the symmetry with the time, will be the solution of the conduction equations,

The thermoelastic displacement function as [Nowacki] is governed by the Poisson’s

equation:

∇2φ =
(1 + ν)

(1− ν)
at T (2.1)

with U = 0 at r = a and r = b.

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

ν and at are the Poisson’s ratio and the linear coefficient of thermal expansion of the

material of the plate and T is the temperature of the plate satisfying the differential

equation which is given below

∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2
=

1

~
∂T

∂t
(2.2)

where ~ = κ
ρ C

, ~ being the thermal conductivity of the material, ρ is the density and C

is the calorific capacity, assumed to be constant. with boundary and initial conditions,

T (a, z, t) + k1
∂T (a, z, t)

∂r
= fa(z, t) for all 0 < z < h and t > 0 (2.3)

T (b, z, t) + k2
∂T (b, z, t)

∂r
= gb(z, t) for all 0 < z < h and t > 0 (2.4)

where k1 and k2 are the radiation constants on the two cylindrical surfaces,

T (r, h, t) = 0 for all 0 < z < h and t > 0 (2.5)

T (r, 0, t) = 0 for all 0 < z < h and t > 0 (2.6)

T (r, z, 0) = T0(r, z) for all 0 < z < h and a ≤ r ≤ b (2.7)

where fa(z, t) and gb(z, t) and T0(r, z) are known. The radial and axial displacement U

and W satisfying the uncoupled thermoealstic equations are

∇2U − U

r2
+ (1− 2ν−1)

∂e

∂r
= 2

(1 + ν)

(1− ν)
at

∂T

∂r
(2.8)

∇2W + (1 + 2ν−1)
∂e

∂z
= 2

(1 + ν)

(1− ν)
at

∂T

∂z
(2.9)

where

e =
∂U

∂r
+
U

r
+
∂W

∂z
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is the volume dilation and

U =
∂φ

∂r
(2.10)

W =
∂φ

∂z
(2.11)

The stress functions are given by,

σrr = (λ+ 2G)
∂U

∂r
+ λ

(
U

r
+
∂W

∂z

)
(2.12)

σzz = (λ+ 2G)
∂W

∂z
+ λ

(
∂U

∂r
+
U

r

)
(2.13)

σθθ = (λ+ 2G)
U

r
+ λ

(
∂U

∂r
+
∂W

∂z

)
(2.14)

τθθ = G

(
∂W

∂r
+
∂U

∂z

)
(2.15)

where λ = 2Gν
1−2ν

, is the Lame’s constant, G is the shear modulus and U and W are

the displacement components. The equation (2.1) to (2.15) constitute the mathematical

formulation of the problem under consideration.

3 Useful results

Let us define the finite integral transform

f(n) =

∫ b

a

xf(x)Sp(k1, k2, µnx)dx. (3.1)

the inversion theorem is given by

f(x) =
∑
n

anSp(k1, k2, µnx)dx. (3.2)

where the sum must be taken over the positive roots of equation,

Jp(k1, µa)Gp(k2, µb)− Jp(k2, µb)Gp(k1, µa) = 0 (3.3)

From the orthogonality of the functions defined by equation,

Sp(k1, k2, µnx) =Jp(µnx)[Gp(k1, µa) +Gp(k2, µb)]

−Gp(µnx)[Jp(k1, µa) + Jp(k2, µb)] (3.4)

The an are given by,

an = fp(n)/Cn (3.5)

where

Cn =

∫ b

a

x[Sp(k1, k2, µnx)]2dx

By using the relation∫ z

z`u(kz)`u(kz)dz =
1

4
z2
{

2`u(kz)`(kz)`u−1(kz)− `u+1(kz)

−`u+1(kz)`u−1(kz)
}
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where `u(kz) and `u(kz) are cylindrical functions of order p, then results;

Cn =
1

2
b2
{
S̃2
p(k1, k2, µnb)− S̃p−1(k1, k2, µnb)S̃p+1(k1, k2, µnb)

}
−1

2
a2
{
S̃2
p(k1, k2, µna)− S̃p−1(k1, k2, µna)S̃p+1(k1, k2, µna)

}
(3.6)

4 Solution of the problem

From equation (10.2.2) of the transformation defined in (3.1), we get,

T (n, z, t) =

∫ b

a

rT (r, z, t)S0(k1, k2, µnr)dr

where µn are positive roots of equation (3.3) with p = 0, and taking into account (2.3),

we obtain

~∂
2T (n, z, t)

∂z2
− ∂T (n, z, t)

∂t
− µ2

n~T (n, z, t) = ~χ(z, t) (4.1)

where

χ(z, t) =
a

k1
S0(k1, k2, µna)fa(z, t)− b

k2
S0(k1, k2, µnb)gb(z, t) (4.2)

is obviously a known function: To solve differential equation (4.1), let us introduce the

Fourier transform, in the variable z.

T (n,m, t) =

∫ h

0

T (n, z, t) sin(mπz/h)dz

From this and the property:∫ h

0

∂2

∂z2
T (n, z, t) sin

(mπz
h

)
dz =

mπ

h
[(−1)m+1T (n, h, t) + T (n, 0, t)]

− m2π2

h2
T (n,m, t)

and remembering (2.4), (4.1) is transformed into,

dT (n,m, t)

dt
+ ~(µ2

n +m2π2/h2)T (n,m, t) = −~χs(m, t) (4.3)

where

χs(m, t) =

∫ h

0

χ(z, t) sin(mπz/h)dz

By introducing the Laplace transform L[ψ(t)] =
∫∞
0
e−ptψ(t)dt and taking into arround

the initial condition Eq.(2.5), Eq.(4.3) is transformed into

L[T 0(n,m, t)] = T (n,m)/p+ ~(µ2
n +m2π2/h2)

− ~L[χs(m, t)]/p+ χ(µ2
n +m2π2/h2) (4.4)

Now, if we apply operator L−1 to Eq. (4.4) and remember the convolution theorem for

Laplace transforms, we obtain.

T 0(n,m, t) = T (n,m) exp[−~(µ2
n +m2π2/h2)t]

− ~
∫ t

0

χs(m,u) exp[−~(µ2
n +m2π2/h2)(t− u)]du (4.5)
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Using now, the inversion theorem for our Fourier transform, there results

T (n, z, t) =
2

h

∞∑
m=1

T 0(n,m, t) sin(
mπz

h
) (4.6)

Finally, by the inversion theorem (10.3.2), and by substitution of (4.5) in (4.6) we have,

T (r, z, t) =
2

h

∑
n

∑
m

1

Cn

{
T 0(n,m) exp[−~(µ2

n +m2π2/h2)t]

−~
∫ t

0

χs(m,u) exp[~(µ2
n +m2π2/h2)(t− u)]

}
× sin(

mπz

h
)S0(k1, k2, µnr) (4.7)

where Cn are given by Eq.(3.6) with p = 0

Determination of thermoelastic displacement

Substituting the values of T (r, z, t) from Eq.(4.7) in Eq. (2.1), one obtains the thermoe-

lastic displacement function φ(r, z, t) as,

φ(r, z, t) =

(
1 + ν

1− ν

)
at
2h

∞∑
n=1

∞∑
m=1

1

Cn

{
T 0(n,m) exp[−~(µ2

n +
m2π2

h2
)t]

−~
∫ t

0

χs(m,u) exp[−~(µ2
n +

m2π2

h2
)(t− u)]du

}
× sin(

mπz

h
)r2S0(k1, k2, µnr) (4.8)

Determination of displacement functions

using Eq. (4.8) in Eq.(2.10) and Eq.(2.11), one obtains the radial and axial displace-

ment U and W as

U(r, z, t) =

(
1 + ν

1− ν

)
at
2h

∞∑
n=1

1

Cn

{
∞∑
m=1

T 0(n,m) exp[−~(µ2
n +

m2π2

h2
)t]

−~
∫ t

0

χs(m,u) exp[−~(µ2
n +

m2π2

h2
)(t− u)]du

}
sin(

mπz

h
)

× [r(2S0(k1, k2, µnr)) + µnrS
′
0(k1, k2, µnr))] (4.9)

W (r, z, t) =

(
1 + ν

1− ν

)
πat
2h

∞∑
n=1

1

Cn

{
∞∑
m=1

m

[
T 0(n,m) exp[−~(µ2

n +
m2π2

h2
)t]

]
−~
∫ t

0

χs(m,u) exp[−~(µ2
n +

m2π2

h2
)(t− u)]du

}
× cos(

mπz

h
)[r2S0(k1, k2, µnr))] (4.10)

Determination of stress function
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σrr =

(
1 + ν

1− ν

)
at
2h

∞∑
n=1

1

Cn

{∑
m=1

∞[T 0(n,m)− ~
∫ t

0

χs(m,u)du

}
sin(

mπz

h
)

×
{

(λ+ 2G)
[
2S0(k1, k2, µnr) + (1 + 2r)µnS

′
0(k1, k2, µnr)

+µ2
nr

2S
′′
0 (k1, k2, µnr)

]
+ λ

[
2S0(k1, k2, µnr) + µnrS

′
0(k1, k2, µnr)

−m
2π2r2

h2
S0(k1, k2, µnr)

]}
(4.11)

σzz =

(
1 + ν

1− ν

)
at
2h

∞∑
n=1

1

Cn

{
∞∑
m=

[T 0(n,m)− ~
∫ t

0

χs(m,u)du

}
sin(

mπz

h
)

×
{
λ
[
4S0(k1, k2, µnr) + (1 + 3r)µnS

′
0(k1, k2, µnr)

−(λ+ 2G)
m2π2r2

h2
S0(k1, k2, µnr)

]}
(4.12)

σθθ =

(
1 + ν

1− ν

)
at
2h

∞∑
n=

1

Cn

{
∞∑
m=1

[T 0(n,m)− ~
∫ t

0

χs(m,u)du

}
sin(

mπz

h
)

×
{

(λ+ 2G)
[
2S0(k1, k2, µnr) + µnrS

′′
0 (k1, k2, µnr)

]
+λ

[(
2− m2π2r2

h2

)
S0(k1, k2, µnr) + (1 + 2r)µnS

′
0(k1, k2, µnr)

+µ2
nr

2S
′′
0 (k1, k2, µnr)

]}
(4.13)

τrz = G

(
1 + ν

1− ν

)
πat
2h2

∞∑
n=1

1

Cn

{
∞∑
m=1

m[T 0(n,m)e−~ − ~
∫ t

0

χs(m,u)e−~du

}

×
{[

2 cos(
mπz

h
)− mπr

h
sin(

mπz

h
)
]
rS0(k1, k2, µnr)

+µn cos(
mπz

h
)r2S

′
0(k1, k2, µnr)

}
(4.14)

5 Special Case

Set,

χs(m,u) = T0δ(r − a)δ(r − b)et (5.1)

After substituting the values of χs(m,u) in Eq.(4.7), we obtain the results,

T (r, z, t) =
2

h

∞∑
n=1

∞∑
m=1

1

Cn

{
T 0(n,m) exp[−~(µ2

n +m2π2/h2)t]

−~T0tδ(r − a)δ(r − b)
(
µ2
n +

m2π2

h2

)
e
−t2

(
µ2
n+

m2π2

h2

)

×

[
1− e

−t2
(
µ2
n+

m2π2

h2

)]}
sin
(mπz

h

)
S0(k1, k2, µnr) (5.2)

Similarly, Substituting the value of equation (5.1) into equation (4.8) to (4.14), one obtains

the expressions for the temperature and stresses respectively. This is the required results

of the given problem.
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6 Numerical results, discussion and remarks

To interpret the numerical computations, we consider material properties of Aluminum

metal, which can be commonly used in both, wrought and cast forms. The low density of

aluminum results in its extensive use in an aerospace industry and in other transportation

fields. Its resistance to corrosion leads to use in food and chemical handling (cookware,

pressure vessels, etc.) and to architectural uses tends to expand more than the inner

surface leading inner part being under tensile stress. The foregoing analysis are performed

by setting the radiation coefficients constants, ki = 0.86(i = 1, 3) and ki = 1(i = 2, 4)

so as to obtain considerable mathematical simplicities. The derived numerical results for

temperature distribution and stress function has been illustrated graphically with available

additional sectional heat on its flat surface z = 1.

Table 1- Material properties and parameters used in this study.

Property values are nominal.

Modulus of Elasticity,E(dynes/cm2) 6.9×1011

Shear modulus, G(dynes/cm2) 2.7× 1011

Poisson ratio, υ 0.281

Thermal expansion coefficient,αt(cm/cm-0c) 25.5×10-6

Thermal diffusivity,κ(cm2/sec) 0.86

Thermal conductivity, λ (cal-cm/0c/sec/cm2) 0.48

Inner radius, a(cm) 1

outer radius, b(cm) 4

Thickness,h(cm) 2

7 Conclusion

In this study, we treated the two-dimensional thermoelastic problem of a finite length

hollow cylinder in which sources are generated according to the linear function of the

temperature. We successfully established and obtained the temperature distribution, dis-

placements and stress functions with additional sectional heat of the cylinder. Then, in

order to examine the validity of two-dimensional thermoelastic boundary value problem,

we analyze, as a particular case with mathematical and numerical calculations were carried

out. Moreover, assigning suitable values to the parameters and functions in the equations

of temperature, displacements and stresses respectively, expressions of special interest can

be derived for any particular case. We may conclude that the system of equations proposed

in this study can be adapted to design of useful structures or machines in engineering ap-

plications in the determination of thermoelastic behavior with radiation. The expression

(5.2) is represented graphically in the radial and axial direction. Any particular case of
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Figure 1: The temperature distribution T (r, z, t) in radial direction

special interest can be derived by assigning suitable values to the parameter and functions

int the expression (4.7)
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Figure 2: The temperature distribution T (r, z, t) in axial direction
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