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Abstract.  Special curves and their characterizations are one of the 

main area of mathematicians and physicians. 

In the present paper we define Mannheim curves for 4-dimensional Galilean 

space and investigate some characterization of it. 
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1   Introduction 

In classical differential geometry, there are many works related with Bertrand and 

Mannheim curves [1-5].  We can see in most studies, properties of Bertrand and 

Mannheim  curves which asserts the existence of a linear relation between curvatures. 

In recent years, mathematicians have begun to investigate curves and surfaces in 

Galilean space [6-10]. 

A space curve in Euclidean 3-space is called  ‘mannheim curve’ if and only if for 

some   constants, it satisfies the following relation  

)( 2

2

2

11 kkk    

where  1k   and  2k   are curvature and torsion, respectively. 

Our work is organized as follows: In section 2, some basic properties of Galilean 

space are given which will be used in the later sections. In section 3, we give some 

properties of Mannheim curves in 4D Galilean space. 
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2   Preliminaries  

The Galilean space is a 3D complex projective space  3P   in which the absolute 

figure  },,,{ 21 IIfw   consists of a real plane  w   (the absolute plane), a real line  

wf    (the absolute line) and two complex conjugate points  fII 21,   (the 

absolute points). 

The study of mechanics of plane-parallel motions reduces to the study of a geometry 

of 3D space with coordinates  },,{ tyx   are given by the motion formula [11]. This 

geometry is called 3D Galilean geometry. Differential geometry of the Galilean space 

G 3  has been largely developed in [7]. In [11], is explained that 4D Galilean 

geometry, which studies all properties invariant under motions of objects in space, is 

even more complex. 

In addition it is stated that this geometry can be described more precisely as the study 

of those properties of 4D space with coordinates which are invariant under the general 

Galilean transformations as follows: 
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with  .1coscoscos 3

2

2
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1

2     

Some fundamental properties of curves in 4D Galilean space, is given for the purpose 

of the requirements in the next section 

A curve in  4G    )( 4GI  R   is given as follows 

 

)),(),(),(),(()( twtztytxt   

where  
4)(),(),(),( Ctwtztytx    (smooth functions) and  It  . Let     be a 

curve in  ,4G   which is parameterized by arclength  ,st    and given in the 

following coordinate form 

 

)).(),(),(,()( swszsyss   
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In affine coordinates the Galilean scalar product between two points  

),,,,( 4321 iiiii xxxxP     2,1i   is defined by 
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For the vectors  ),,,,,( 4321 aaaaa     ),,,,( 4321 bbbbb   and  

),,,,,( 4321 ccccc    Galilean cross product in  G4   is defined as follows: 
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where  ie   are the standard basis vectors. 

In this paper, we denote the inner product of two vectors  ba,   in the sense of 

Galilean by the notation  ., Gba    

Let  ))(),(),(,()( swszsyss    be a curve parameterized by arclength  s   in  

.4G   For a     Frenet curve, the Frenet formulas can be given as following form 

 

.

000

00

000

00






































































e

b

n

t

e

b

n

t







o

 

We can know that  ebnt ,,,   are mutually orthogonal vector fields satisfying 

equations 
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3   Mannheim Curves in Galilean Space G4 

In [5], Mannheim curves for Euclidean 4-space are generalized. In this 

paper, we have investigated generalization of the curves in 4D Galilean 

space  4G  . 

Definition 3.1. A special curve     in  4G   is called a generalized 

Mannheim curve if there exists a special Frenet curve     in  4G   such 

that the first normal line at each point of     is included in the plane 

generated by the second and the third normal line of     at the 

corresponding point under  .   Here we denote by     a bijection 

from     to  .   Then the curve     is called the generalized 

Mannheim mate curve of  .   

A generalized Mannheim mate curve     is given by the map  

4: GI    which satisfies the following equation  

.),()()()( Ittttt 
n     (3.1) 

Here we denote a smooth function on  I   by  ).(t   The parameter 

should not be an arclength of    . The arclength of     defined by 

 

dt
dt
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Where  t   is the arclength of  .   For a smooth function   IIf :   

is given by  ,)(  ttf   we have 

 

1
)(
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

dt

td
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dt
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
 

for  It  . The representation of curve     with arclength parameter  
t   is 

 

).(,: 4

  ttGI   

For the bijection   :   defined by  )),(())(( tft     the 

reparameterization of     is given by the following equation 
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Itttttf  ),()()())(( n  

where  )(t   is a smooth function on  .I   Then we obtain 

 

.)),((|
)())((

)(
Ittft

dt

td

dt

tfd
tft

 








 

 

Theorem 3.1. If a special Frenet curve     in  4G   is a generalized 

Mannheim curve, the first curvature function     and second curvature 

function     satisfies the following equation 

Ittt  )()( 2       (3.2) 

here we denote a constant number with  .   

Proof. In the following scheme we show     as a generalized 

Mannheim curve and     as a generalized Mannheim mate curve of  

.   

.
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We define a smooth function  f   by  


tdttf
dt

td )(
)(


  is the 

arclength parameter of  .   In addition     is a bijection that is 

defined by  ))(())(( tft    . Then the curve     is 

reparameterized as following form 

Itttttf  ),()()())(( n      (3.3) 

where  RI: R   is a smooth function and  },,,{ ebnt   and  

},,,{ 
ebnt   are orthogonal vector fields in  4G   along     and  ,   

respectively. 

Differentiating both sides of equation (3.3) with respect to  ,t   we get 

).()()()()()())(( tttttttf bntt  
     (3.4) 

On the other hand, since the first normal line at the each point of     is 

lying in the plane generated by the second and the third normal line of  
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   at the corresponding points under bijection  ,   the vector field  

)(tn   is obtained as follows 

))(()())(()()( tfthtftgt   ebn  

where  g   and  h   are some smooth functions on  .RI   Taking into 

account of the following equation 

0))(()())(()()),((  

Gtfthtftgtf ebt  

and using (3.4), we have  .0)( 


t   Then we decompose the equation 

(3.4) as follows 

),()()()(()( ttttftf btt 

    (3.5) 

that is 

)()()()(( ttttf btt        (3.6) 

where  .1)( 


tf   

Differentiating both sides of the equation (3.6) with respect to  It  , 

we obtain 
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 (3.7) 

 

Using  

,0))(()())(()()),((  

Gtfthtftgtf ebn  

the coefficient of  )(tn   in equation (3.7) vanishes, that is, 

.0)()( 2  tt   

 

Then the proof is completed. 

 

Theorem 3.2. Let     be a special Frenet curve such that its non-

constant first and second curvature functions satisfy the following 

equation 

)()( 2 tt    

for all  .R It   If the special Frenet curve     given by the 

following form 

)()()( ttt n   

then     is a generalized Mannheim mate curve of  .   
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Proof. The arclength parameter of     is given by the equation 
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Let us assume that 

),()( 2 tt    

then we obtain  1)( 


tf  ,  .It   

Differentiating the equation  )()())(( tttf n    with respect to  t   

the we get 

).()()()(()( ttttftf btt 

 

Then we can see 

.),()()()(( Itttttf 
btt          (3.8) 

Differentiating the last equation with respect to  t   is 

).()()(

)())(()())()(())(())(( 2

ttt

ttttttftf

e

bnn










  (3.9) 

From the assumption, we obtain 

.0)()( 2  tt   

Then, the coefficient of  )(tn   in the equation (3.9) is zero. One can see 

from the equation (3.8) that  )(( tf
t   is a linear combination of  )(tt   

and  ).(tb   In addition, from equation (3.9),  ))(( tf
n   is given by 

linear combination of  )(tb   and  ).(te   On the otherhand,     is a 

special Frenet curve that the vector  )(tn   which satisfies the following 

linear combination of  )(( tf
t   and  )).(( tf

n   

Therefore, the first normal line     lies in the plane generated by the 

second and third normal line of     at the corresponding points under 

the     bijection which is defined by  

  )).(())(( tftf      

The proof is completed. 
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Remark 3.1. In 4D Galilean space  ,4G   a special Frenet curve     

with curvature functions     and     satisfying  ),()( 2 tt     it is not 

clear that a smooth curve     given by (3.1) is a special Frenet curve. 

The reverse of Theorem 3.1 is still a great puzzle for the authors. 
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