ON ALMOST b-I - CONTINUOUS FUNCTIONS

R.BALAJI¹ AND N.RAJESH²

Abstract. The aim of this paper is to introduce and characterize a new class of functions called almost b-I-continuous functions in ideal topological spaces by using b-I-open sets.

Keywords: Ideal topological spaces, b-I-open sets, almost b-I-continuous functions.

1 Introduction

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [12] and Vaidyanathaswamy,[21]. An ideal I on a topological space (X,τ) is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X,τ) with an ideal I on X and if P(x) the set of all subsets of X, a set operator (.)* $P(X) \rightarrow P(X)$, called the local function [21] of A with respect to τ and I, is defined as follows: for $A \subset X$, $A^*(\tau,I) = \{x \in X \mid U \cap A \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $C1^*(.)$ for a topology $\tau * (\tau,I)$ called the *-topology, finer than τ is defined by $C1^*(A) = A \cup A^*(\tau,I)$ when there is no chance of confusion, $A^*(I)$ is denoted by A^* . If I is an ideal on X, then (X, τ, I) is called an ideal topological space. The aim of this paper is to introduce and characterize a new class of functions called almost b-I continuous functions in ideal topological spaces by using b-I-open sets.

2 PRELIMINARIES

Let A be a subset of a topological space (X, τ) . We denote the closure of A and the interior of A by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be regular open [20] if A= Int(Cl(A)). A set $A \subset X$ is said to be δ -open [22] if it is the union of regular open sets of X. The complement of a regular open (resp. δ -open) set is called regular closed (resp. δ -closed). The intersection of all δ -closed sets of (X, τ) containing A is called the δ -closure [22] of A and is denoted by $Cl_{\delta}(A)$. A point $x \in X$ is called a θ -closure of A if $Cl(A) \cap A \neq \emptyset$ for

R.BALAJI AND N.RAJESH

every open set V of X containing x. The set of all θ -cluster points of A is called the θ -closure of A [22] and is denoted by $Cl_{\theta}(A)$, If A= $Cl_{\theta}(A)$, then A is said to be θ -closed [22].

2000 mathematics subject Classifications. 54D10.

The complement of θ -closed set is said to be θ -open [22]. A subset A of a topological space (X, τ) is said to be b-open [4] (resp. semiopen [13], preopen [14], β -open [1]) if A \subset Int(Cl(A)) \cup Cl(Int(A))(resp. A \subset Cl(Int(A)), A \subset Int(Cl(A)), A \subset Cl(Int(Cl(A)))). The set of all regular open (resp. regular closed, δ -open, δ -closed, b-open preopen) sets of (X, τ) is denoted by RO(X) (resp. RC(X), δ O(X), δ C(X), BO(X), PO(X)). A subset S of an ideal topological space (X, τ, I) is called b-I-open [7] if $S \subset$ Int(Cl*(S)) \cup Cl*(Int(S)). The complement of a b-I-open set is called a b-I-closed set [7]. The intersection of all b-I-closed sets containing S is called the b-I- clouser of S and is denoted by bI Cl(S). The b-I interior of S is defined by the union of all b-I-open sets contained in S and is denoted by bI Int(S). The set of all b-I-open sets of (X, τ, I) is denoted by BIO(X). The set of all b-I-open sets of (X, τ, I) is denoted by BIO(X). The set of all b-I-open sets of (X, τ, I) is denoted by BIO(X, x).

Definition 2.1 A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be:

- (1) b-continuous [4] if $f^{-1}(V)$ is b-open in X for every open set V of Y;
- (2) almost continuous [18] if $f^{-1}(V)$ is open in X for every regular open set V of X;
- (3) R-map [8] if $f^{-1}(V)$ is regular open in X for every regular open set V of X.
- (4) almost b-continuous [19] if $f^{-1}(V)$ is b-open in X for every regular open set V of Y.

Definition 2.2 A function $f : (X, \tau, I) \rightarrow (Y, \sigma, I)$ is said to be b-I-irresolute if $f^{-1}(V)$ is b-I-open in X for every b-I-open subset V of Y.

Definition 2.3 A function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be:

(1) b-I-continuous [7] if $f^{-1}(V)$ is b-I-open in X for every open set V of Y,

(2) weakly b-I-continuous [5] if for each $x \in X$ if for each open subset V in

ISSN : 2277-6982Volume 2 Issue 4 (April 2013)http://www.ijmes.com/https://sites.google.com/site/ijmesjournal/

ON ALMOST
$$b-I$$
 - CONTINUOUS FUNCTIONS

Y containing f(x), there exists $U \in BIO(X, x)$ such that $f(U) \subset Cl(V)$. **Definition 2.4** An ideal topological space (X, τ, I) is said to be:

- (1) b-I-T₁[6] (resp. $r-T_1$ [10]) if for each pair of distinct points x and y of X, there exists b-I-open (resp.regular open) sets and U and V such that $x \in U, y \notin U$ and $x \notin V, y \in V$.
- (2) b-I-T₂ [6] (resp. $r-T_2$ [10]) if for each pair of distinct points x and y of X, there exists b-I-open (resp. regular open) sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Lemma 2.5. The following statements are true:

- (1) Let A be a subset of a space (X, τ) . Then $A \in PO(X)$ if and only if SCl(A) = Int(Cl(A)) [11].
- (2) A subset A of a space (X, τ) is β -open if and only if Cl(A) is regular closed [3].

3. ALMOST *b-1*-CONTINUOUS FUNCTIONS

Definition 3.1. A function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be:

(1) almost b-I-continuous at a point x∈X if for each open subset V of Y Containing f(x), there exists U∈BIO(X,x) such that f(U)⊂Int(Cl(V));
(2) almost b-I-continuous if it has this property at each point of X.

Remark 3.2. almost b-I-continuity implies weak b-I-continuity and it is obvious that almost b-I-continuity implied by b-I-continuity. However, the converses of these implications is not true in general as the following examples show.

Example 3.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a\}, \{a, b\}, X\}, \sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $I = \{\emptyset, \{a\}\}$. Define a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = cand f(c) = a. Then f is almost b - I-continuous but not b - I-continuous.

Example 3.4. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}\}$, $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $I = \{\emptyset, \{a\}\}$. Then the identity function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is weakly b - I-continuous but not almost b - I-continuous.

Theorem 3.5. For a function $f:(X,\tau,I)\to(Y,\sigma)$, the following statements are equivalent:

R.BALAJI AND N.RAJESH

(1) f is almost b - I -continuous at $x \in X$; (2) $x \in \text{Int}(\text{Cl} \star (f^{-1}(s\text{Cl}(V)))) \cup \text{Cl} \star (\text{Int}(f^{-1}(s\text{Cl}(V)))))$ for every open set V of Y containing f(x); (3) $f^{-1}(V) \subset bI \operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))$ for every open set V of Y; (4) $bI \operatorname{Cl}(f^{-1}(s \operatorname{Int}(F))) \subset f^{-1}(F)$ for every closed set F of Y. Proof. (1) \Rightarrow (2): Let V be an open set of Y containing f(x). Then there exists $U \in BIO(X,x)$ such that $f(U) \subset Int(Cl(V)) = sCl(V)$. Then $U \subset f^{-1}(sCl(V))$. Since $U \in BIO(X,x)$, $x \in U \subset Int(Cl^{+}(f^{-1}(U))) \cup Cl^{+}Int(f^{-1}(U)))) \subset Int(Cl^{+}(f^{-1}(U))) \subset Int(Cl^{+}(f^{-1}(U)))) \subset Int(Cl^{+}(f^{-1}(U))) \subset Int(Cl^{+}(f^{-1}(U)))) \subset Int(Cl^{+}(f^{-1}(U))) \subset Int(Cl^{+}(f$ $(f^{-1}(sCl(V)))) \cup Cl^{(1)}(Int(f^{-1}(sCl(V)))).$ (2) \Rightarrow (3): Let V be open set of Y containing f(x) and U an open set of X containing x. Since $x \in Int(Cl^{(1)}(sCl(V)))) \cup Cl^{(1)}(sCl(V)))$, we have $x \in f^{-1}(sCl(V)) \cap Int(Cl^{+}(f^{-1}(sCl(V)))) \cup Cl^{+}(Int(f^{-1}(sCl(V))))) = bI$ $\operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))$ by [16], Theorem 2.4]. Hence $f^{-1}(V) \subset bI \operatorname{Int}(f^{-1}(s\operatorname{Cl}(V))))$. (3) \Rightarrow (1): Let V be an open set of Y containing f(x), then $x \in f^{-1}(V) \subset$ $bI \operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))$. Set U= $bI \operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))$, then $U \in BIO(X,x)$ such that $f(U) \subset sCl(V)$. This shows that f is almost b-I-continuous at x. (3) \Rightarrow (4): Clear.

Theorem 3.6. For a function $f:(X,\tau,I)\rightarrow(Y,\sigma)$, the following statements are equivalent:

- (1) f is almost b-I -continuous;
- (2) $f^{-1}(Int(Cl(V)) \in BIO(X)$ for every open set V of Y;
- (3) $f^{-1}(Cl(Int(V)) \in BIO(X)$ for every closed set V of Y;
- (4) $f^{-1}(V) \in BIO(X)$ for every $V \in RO(Y)$;
- (5) $f^{-1}(F) \in BIC(X)$ for every $F \in RC(Y)$;
- (6) For each $x \in X$ and each open set V of Y containing f(x) there exists $U \in BIO(X,x)$ such that $f(U) \subset sCl(V)$;
- (7) $bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(\operatorname{Int}(F))) \subset f^{-1}(F))$ for every closed set F of Y;
- (8) $bI \operatorname{Cl}(f^{-1}(A)) \subset f^{-1}(\operatorname{Cl}(A))$ for every $A \in \operatorname{BO}(Y)$;
- (9) $bI \operatorname{Cl}(f^{-1}(A)) \subset f^{-1}(\operatorname{Cl}(A))$ for every $A \in SO(Y)$;
- (10) $f^{-1}(V) \subset bI \operatorname{Int}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(V))))$ for every open set $V \in \operatorname{PO}(Y)$;
- (11) $f(bI \operatorname{Cl}(A)) \subset \operatorname{Cl}_{\delta}(f(A))$ for every subset A of X;

ON ALMOST b-I - CONTINUOUS FUNCTIONS

- (12) $bI \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}\operatorname{Cl}_{\delta}(f(B))$ for every subset B of Y;
- (13) $f^{-1}(\mathbf{F}) \in BIC(\mathbf{X})$ for every $F \in \delta C(\mathbf{Y})$;
- (14) $f^{-1}(V) \in BIO(X)$ for every $V \in \delta O(Y)$.

Proof. (4) \Rightarrow (5): Let $F \in RC(Y)$. Then $Y \setminus F \in RO(Y)$. Take $x \in f^{-1}(Y \setminus F)$, then $f(x) \in Y \setminus F$ and since f is almost b-I-continuous, there exists $W_x \in BIO(X,x)$ such that $x \in W_x$ and $f(W_x) \subset Y \setminus F$. Then $x \in W_x \subset f^{-1}(Y \setminus F)$ so that $f^{-1}(Y \setminus F) = \bigcup_{x \in f^{-1}(Y \setminus F)} W_x$

Since any union of b-I-open sets is b-I-open [2], $f^{-1}(Y \setminus F)$ is b-I-open in X and hence $f^{-1}(F) \in BIC(X)$.

(5) \Rightarrow (11): Let A be a subset of X. Since $\operatorname{Cl}_{\delta}(f(A))$ if δ -closed in Y, it is equal to $\cap \{F_{\alpha} : F_{\alpha} \text{ is regular closed in } Y, \alpha \in \Lambda\}$, where Λ is an index set. From (5), we have $A \subset f^{-1}(\operatorname{Cl}_{\delta}(f(A))) = \cap \{f^{-1}(F_{\alpha}) : \alpha \in \Lambda\} \in \operatorname{BIC}(X)$ and hence $bI \operatorname{Cl}(A) \subset f^{-1}(\operatorname{Cl}_{\delta}(f(A)))$. Therefore, we obtain $f(bI \operatorname{Cl}(A)) \subset \operatorname{Cl}_{\delta}(f(A))$.

 $(11) \Rightarrow (12)$: Set $A = f^{-1}(B)in(11)$, then $f(bI \operatorname{Cl}(f^{-1}(B))) \subset \operatorname{Cl}_{\delta}(f(f^{-1}(B)))$

 \subset Cl_{δ}(*B*) and hence *bI* Cl($f^{-1}(B)$) $\subset f^{-1}(Cl_{\delta}(B))$.

(12) \Rightarrow (13): Let F be δ -closed set of Y, then $bI \operatorname{Cl}(f^{-1}(F)) \subset f^{-1}(F)$

so $f^{-1}(F) \in BIC(X)$.

(13) \Rightarrow (14): Let V be δ -open set of Y, then Y\V is δ -closed set in Y. This gives $f^{-1}(Y|V) \in BIC(X)$ and hence $f^{-1}(V) \in BIO(X)$.

(14) \Rightarrow (1): Let V be any regular open set of Y. Since V is δ -open in Y, $f^{-1}(V) \in BIO(X)$ and hence from $f(f^{-1}(V)) \subset V = Int(Cl(V))$. then f is almost b-I-continuous.

(5) \Rightarrow (8): Let A be any *b*-open set in Y. Since Cl(A) is regular closed, $f^{-1}(Cl(A))$ is δ -closed and $f^{-1}(A) \subset f^{-1}(Cl(A))$. Hence, $bI Cl(f^{-1}(A)) \subset f^{-1}(Cl(A))$. (8) \Rightarrow (9): obvious.

 $(9) \Rightarrow (10)$: Let V be a preopen set. Then we have $V \subset Int(Cl(V))$ and $Cl(Int(Y \setminus V))$

 \subset Y\V.Moreover, since the set Cl(Int(Y\V)) is semi open, it follows that

 $X \setminus bI \operatorname{Int}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(V)))) = bI \operatorname{Cl}(X \setminus f^{-1}(\operatorname{Int}(\operatorname{Cl}(V)))) = bI \operatorname{Cl}(f^{-1}(Y \setminus \operatorname{Int}(\operatorname{Cl}(V))))$ = $bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(\operatorname{Int}(Y \setminus V)))) \subset f^{-1}(\operatorname{Cl}(\operatorname{Int}(Y \setminus V))) \subset f^{-1}(Y \setminus V) \subset X \setminus f^{-1}(V)$. Hence, we obtain $f^{-1}(V) \subset bI \operatorname{Int}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(V))))$.

(10) \Rightarrow (4): Let V be a regular open set. Since V is preopen, we get $f^{-1}(V) \subset bI \operatorname{Int}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(V)))) = bI \operatorname{Int}(f^{-1}(V))$. Hence $f^{-1}(V) \in \operatorname{BIO}(X)$.

ISSN : 2277-6982 http://www.ijmes.com/ Volume 2 Issue 4 (April 2013) https://sites.google.com/site/ijmesjournal/

R.BALAJI AND N.RAJESH

The other implications are obvious.

Theorem 3.7. For a function $f:(X,\tau,I)\to(Y,\sigma)$, the following statements are equivalent:

(1) f is almost b-I -continuous;

- (2) $bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(B))))) \subset f^{-1}(\operatorname{Cl}(B)))$ for every open subset B of Y.
- (3) $bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(\operatorname{Int}(F))))) \subset f^{-1}(F))$ for every closed subset F of Y;
- (4) $bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(V)))) \subset f^{-1}(\operatorname{Cl}(V))$ for every open subset V of Y;
- (5) $f^{-1}(V) \subset bI \operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))$ for every open subset V of Y;
- (6) $f^{-1}(V) \subset \text{Int}(\operatorname{Cl}^{\star}(f^{-1}(s\operatorname{Cl}(V)))) \cup \operatorname{Cl}^{\star}(\operatorname{Int}(f^{-1}(s\operatorname{Cl}(V))))$ for every Open subset V of Y;
- (7) $f^{-1}(V) \subset \text{Int}(\text{Cl} \star (f^{-1}(\text{Int}(\text{Cl}(V))))) \cup \text{Cl} \star (\text{Int}(f^{-1}(\text{Int}(\text{Cl}(V)))))$ for every open subset V of Y.

proof. (1) \Rightarrow (2): Let B be any subset of Y. Assume that $x \in X \setminus f^{-1}(Cl(B))$. Then $f(x) \in Y \setminus Cl(B)$ and there exists an open set V containing f(x) such that $V \cap B = \emptyset$; hence $Int(Cl(V)) \cap Cl(Int(Cl(B))) = \emptyset$. since f is almost b - I -continuous, there exists $U \in BIO(X,x)$ such that $f(U) \subset Int(Cl(V))$. Therefore, we have $U \cap f^{-1}(Cl(Int(Cl(B)))) = \emptyset$ and hence $x \in X \setminus bI Cl(f^{-1}(Cl(Int(Cl(B)))))$. Thus, we obtain $bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(B))))) \subset f^{-1}(\operatorname{Cl}(B))).$ (2) \Rightarrow (3): Let F be any closed set of Y. Then we have $bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F))))))$ $= bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(\operatorname{Int}(F)))) \subset f^{-1}(\operatorname{Cl}(\operatorname{Int}(F))) \subset f^{-1}(F).$ $(3) \Rightarrow (4)$: For any open set V of Y, Cl(V) is regular closed in Y and we have $bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(V))) = bI \operatorname{Cl}(f^{-1}(\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(V))))) \subset f^{-1}(\operatorname{Cl}(V))$. (4) \Rightarrow (5): Let V be any open set of Y. Then Y\Cl(V) is open in Y and we have $X \setminus bI \operatorname{Int}(f^{-1}(\operatorname{sCl}(V))) = bI \operatorname{Cl}(f^{-1}(Y \setminus \operatorname{sCl}(V))) \subset f^{-1}(\operatorname{Cl}(Y \setminus \operatorname{Cl}(V))) \subset X \setminus f^{-1}(V)$ Therefore, we obtain $f^{-1}(V) \subset bI \operatorname{Int}(f^{-1}(\operatorname{sCl}(V)))$. (5) \Rightarrow (6): Let V be any open set of Y. Then we obtain $f^{-1}(V) \subset bI \operatorname{Int}(f^{-1}(\operatorname{sCl}(V)))$ \subset Int(Cl* ($f^{-1}(sCl(V)))) \cup Cl* (Int(f^{-1}(sCl(V))))$. (6) \Rightarrow (1): Let x be any point of X and V any open set of Y containing f(x). Then

 $x \in f^{-1}(V) \subset \text{Int}(\operatorname{Cl} (f^{-1}(s\operatorname{Cl}(V)))) \cup \operatorname{Cl} (\operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))))$. It follows from Theorem 3.5 that f is almost b-I-continuous at any point x of X. Therefore, f is almost b-I-continuous at any point x of X. (6) \Rightarrow (7): Clear.

ON ALMOST b-I - CONTINUOUS FUNCTIONS

Theorem 3.8. (1) A function $f:(X,\tau,\{\emptyset\}) \to (Y,\sigma)$ is almost b-I-continuous if and only if it is almost b-I-continuous.

- (2) A function $f:(X,\tau,N) \rightarrow (Y,\sigma)$ is almost *b* -continuous if and only if it is almost b-I -continuous (N is the ideal of all nowhere dense sets).
- (3) A function $f:(X,\tau,p(X)) \to (Y,\sigma)$ is almost b-I-continuous if and only if it is almost continuous.

Proof. It follows from proposition 2 of [7].

- **Definition 3.9.** [9] Let A and B be subsets of an ideal topological space (X, τ, I) such that $A \subset B \subset X$. Then $(B, \tau_{|_B}, I_{|_B})$ is an ideal topological space with an ideal $I_{|_B} = \{I \in I | I \subset B\} = \{I \cap B | I \in I\}.$
- **Lemma 3.10**. [7] Let A and B be subsets of an ideal topological space (X, τ, I) . If $A \in BIO(X)$ and B is open in (X, τ) , then $A \cap B \in BIO(B)$.
- **Theorem 3.11.** Let $f:(X,\tau,I) \to (Y,\sigma)$ be an almost b-I -continuous function and $A \subset X$. If $A \in \tau$, then $f_{|_A}:(A,\tau_{|_A},I_{|_A}) \to (Y,\sigma)$ is almost $b-I_{|_A}$ - continuous. Proof. It follows from Lemma 3.10.
- **Theorem 3.12.** Let $f:(X,\tau,I) \to (Y,\sigma)$ be a function and $\Lambda = \{U_i: i \in I\}$ be a Family such that $U_i \in \tau$ for each $i \in I$. If $f \mid U_i$ is almost b-I -continuous for each $i \in I$, then f is almost b-I -continuous.

Proof. Suppose that V is any regular open subset of (Y, σ) . Since $f | U_i$ is almost b-I-continuous for each $i \in I$, it follows that $(f | U_i)^{-1}(V)$ is b-I-open in U_i . We have $f^{-1}(V) = \bigcup_{i \in I} (f^{-1}(V) \cap U_i) = \bigcup_{i \in I} (f | U_i)^{-1}(V)$. Since any union of b-I-open sets is b-I-open, $f^{-1}(V) \in BIO(X)$. Hence f is b-I-continuous.

Definition 3.13. A filter base Λ is said to be

- (1) b-I-convergent to a point x in X if for any $U \in BIO(X,x)$, there exists $B \in \Lambda$ such that $B \subset U$.
- (2) r convergent to a point x in X if for any regular open set U of X containing x, there exists $B \in \Lambda$ such that $B \subset U$.
- **Theorem 3.14.** If a function $f:(X,\tau,I) \to (Y,\sigma)$ is almost b-I-continuous, then for each point $x \in X$ and each filter base Λ in $X \ b-I$ - converging to x, the

R.BALAJI AND N.RAJESH

filter base $f(\Lambda)$ is r – convergent to f(x).

Proof. Let $x \in X$ and Λ be any filter base in X b-I - converging to x. Since f is b-I -continuous, then for any open set V of (Y, σ) containing f(x), there exists $U \in BIO(X,x)$ such that $f(U) \subset V$. Since Λ is b-I - converging to x, there exists $B \in \Lambda$ such that $B \subset U$. This means that $f(B) \subset V$ and hence the filter base $f(\Lambda)$ is convergent to f(x).

Definition 3.15. A sequence (x_n) is said to be b-I-convergent to a point x if for Every b-I-open set V containing x, there exists an index η_0 such that for $n \ge \eta_0, x_n \in V$.

Theorem 3.16. If a function $f:(X,\tau,I) \to (Y,\sigma)$ is almost b-I-continuous, then for each point $x \in X$ and each net (x_n) which is b-I-converge to x, the net $(f(x_n))$ is r-convergent to f(x).

Proof. The proof is similar to that of Theorem 3.14.

Theorem3.17. If an injective function $f:(X,\tau,I) \to (Y,\sigma)$ is almost b-I-continuous and (Y,σ) is $r-T_{\downarrow}$, then (X,τ,I) is $b-I-T_{\downarrow}$.

Proof. Suppose that Y is $r - T_1$. For any distict points x and y in X, there exist regular open sets V and W such that $f(x) \in V$, $f(y) \notin V$, $f(x) \notin W$ and $f(y) \in W$. Since f is almost b-I-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are b-I-open subsets of (X, τ, I) such that $x \in f^{-1}(V)$, $y \notin f^{-1}(V)$, $x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that (X, τ, I) is $b-I-T_1$.

Theorem 3.18. If $f:(X,\tau,I) \to (Y,\sigma)$ is a almost b-I-continuous injective function and (Y,σ) is $r-T_2$, then (X,τ) is $b-I-T_2$.

Proof. For any pair of distinct points x and y in X, there exist disjoint regular open sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since f is almost b-Icontinuous, $f^{-1}(U)$ and $f^{-1}(V)$ are b-I-open sets in X containing x and y, respectively. Therefore, $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. because $U \cap V = \emptyset$. This shows that (X, τ, I) is $b-I-T_2$.

International Journal of Mathematical Engineering and Science	
ISSN : 2277-6982	Volume 2 Issue 4 (April 2013)
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/

ON ALMOST b-I - CONTINUOUS FUNCTIONS

Theorem 3.19. If $f:(X,\tau,I) \to (Y,\sigma)$ is a almost continuous function and $g:(X,\tau,I) \to (Y,\sigma)$ is almost b-I-continuous function and Y is a $r-T_2$ -space, then the set $E = \{x \in X : f(x) = g(x)\}$ is b-I-closed set in (X,τ,I) .

Proof. If $x \in X \setminus E$, then it follows that $f(x) \neq g(x)$. Since Y is $r-T_2$, there exist disjoint regular open sets V and W of Y such that $f(x) \in V$ $g(x) \in W$. Since f is almost continuous and g is almost b-I-continuous, then $f^{-1}(V)$ is open and $g^{-1}(W)$ is b-I-open in X with $x \in f^{-1}(V)$ and $x \in g^{-1}(W)$.

Put A = $f^{-1}(V) \cap g^{-1}(W)$. By Lemma 3.10, A is b - I-open in X. Therefore,

 $f(A) \cap g(A) = \emptyset$ and it follows that $x \notin bIC1(E)$. This shows that E is b-I-closed in X.

Definition 3.20 A function $f:(X,\tau,I) \to (Y,\sigma)$ is said to be faintly b-I-continuous if for each $x \in X$ and each θ -open set V of Y containing f(x), there exists $U \in BIO(X,x)$ such that $f(U) \subset V$.

Theorem 3.21. A function $f:(X,\tau,I) \to (Y,\sigma)$ is faintly b-I-continuous if and only if for every θ -closed set V of Y $f^{-1}(V) \in BIC(X)$.

Theorem 3.22. The implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ hold for the following properties of a function $f:(X,\tau,I) \rightarrow (Y,\sigma)$:

- (1) f is b-I-continuous.
- (2) $f^{-1}(Cl_{\partial}(B))$ is b-I-closed in X for every subsets B of Y.
- (3) f is almost b-I-continuous.
- (4) f is weakly b-I-continuous.
- (5) f is faintly b-I-continuous.

If, in addition, Y is regular, then the five properties are equivalent of one another.

Proof. (1) \Rightarrow (2) : Since $Cl_{\partial}(B)$ is closed in Y for every subset B of Y, by Theorem 3.6, $f^{-1}(Cl_{\partial}(B))$ is b-I-closed in X.

(2) \Rightarrow (3):For any subset B of Y, $f^{-1}(Cl_{\partial}(B))$ is b-I-closed in X and hence we have $bI Cl(f^{-1}(B)) \subset bI Cl(f^{-1}(Cl_{\partial}(B))) = f^{-1}(Cl_{\partial}(B))$. It follows from Theorem 3.6 that f is almost b-I-continuous. (3) \Rightarrow (4):This is obvious.

International Journal of Mathematical Engineering and Science	
ISSN : 2277-6982	Volume 2 Issue 4 (April 2013)
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/

R.BALAJI AND N.RAJESH

(4) \Rightarrow (5): Let F be any θ -closed set of Y. It follows from 3.21 that $bIC1(f^{-1}(F)) \subset f^{-1}(Cl_{\theta}(F)) = f^{-1}(F)$. Therefore, $f^{-1}(F)$ is b-I-closed in X and hence f is faintly b-I-continuous.

Suppose that Y is regular. We prove that $(5) \Rightarrow (1)$. Let V be any open set of Y. Since Y is regular, V is θ -open in Y. By the faint b-continuity of f, f^{-1} is b-I-open in X. Therefore, f is b-I-continuous.

Definition 3.23. A function $f:(X,\tau,I) \to (Y,\sigma)$ is said to be b-I-preopen if $f(U) \in PO(Y)$ for every b-I-open set U of X.

Theorem 3.24. If a function $f:(X,\tau,I) \to (Y,\sigma)$ is b-I-preopen and weakly b-I-continuous, then f is almost b-I-continuous.

Proof. Let $x \in X$ and let V be an open set of Y containing f(x). Since f is weakly b-I-continuous, there exists $U \in BIO(X, x)$ such that $f(U) \subset Cl(V)$. Since f is b-I-preopen, $f(U) \subset Int(Cl(f(U))) \subset Int(Cl(V))$; hence f is almost b-I-continuous.

Theorem 3.25. Let $f:(X,\tau,I) \to (Y,\sigma)$ be a function and g: $X \to X \times Y$ the graph function defined by g(x) = (x, f(x)) for every $x \in X$. Then g is almost b-I-continuous if and only if f is almost b-I-continuous.

Proof. Let x be any point of X and V any regular open set of Y containing f(x). Then we have $g(x) = (x, f(x)) \in X \times V$ is regular open in $X \times Y$. Since g is almost b-I-continuous, there exists $U \in BIO(X)$ such that $g(U) \subset X \times Y$. Therefore, we obtain $f(U) \subset V$; hence f is almost b-I-continuous. Conversely, let $x \in X$ and W be a regular open set of $X \times Y$ containing g(x). There exist a regular open set U_1 in X and a regular open set V in Y such that $U_1 \times V \subset W$. Since f is almost b-I-continuous, there exist $U_2 \in BIO(X, x)$ such that $f(U_2) \subset V$. Put $U = U_1 \cap U_2$, then we obtain $x \in U \in BIO(X, x)$ and $g(U) \subset U \times V \subset W$. This shows that g is almost b-I-continuous.

Theorem 3.26. Let $f:(X,\tau,I) \to (Y,\sigma,I)$ and $g: (Y,\sigma,I) \to (z,\eta)$ be functions. Then the composition g o $f:(X,\tau,I) \to (z,\eta)$ is almost b-I-continuous if f and g satisfy one of the following conditions:

ISSN : 2277-6982Volume 2 Issue 4 (April 2013)http://www.ijmes.com/https://sites.google.com/site/ijmesjournal/

ON ALMOST b-I - CONTINUOUS FUNCTIONS

(1) f is almost b-I - continuous and g is R-map.

(2) f is b-I-irresolute and g is almost b-I- continuous

(3) f is b-I - continuous and g is almost continuous.

Proof. Clear.

Definition 3.27. A topological space (X, τ) is said to be:

- (1) almost regular [17] if for any regular closed set F of X and any point $x \in X \setminus F$ there exist disjoint open sets U of V such that $x \in U$ and $F \subset V$.
- (2) Semi-regular if for any open set U of X such that $x \in U$ there exists a regular open set V of X such that $x \in V \subset U$.

Theorem 3.28. If $f:(X,\tau,I) \to (Y,\sigma)$ is a weakly b-I - continuous function and Y is almost regular, then f is almost then b-I - continuous.

Proof. Let $x \in X$ and let V be any open set of Y containing f(x). By the almost regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset Cl(G) \subset Int(Cl(V))$ [[17], Theorem 2.2]. Since f is weakly b-I - continuous, there exists $U \in BIO(X, x)$ such that $f(U) \subset CI(G) \subset Int(Cl(V))$. Therefore, f is almost b-I - continuous.

Theorem 3.29. If $f:(X,\tau,I) \rightarrow (Y,\sigma)$ is an almost. If b-I - continuous function and Y is semi-regular, then f is b-I - continuous.

Proof. Let $x \in X$ and let V be any open set of Y containing f(x). By the semiregularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset V$. Since f is almost b-I - continuous, there exists $U \in BIO(X, x)$ such that $f(U) \subset Int(Cl(G)) = G \subset V$ and hence f is b-I - continuous.

Definition 3.30. : A b-I - frontier of a subset A of $f:(X,\tau,I)$ denoted by bI Fr(A), is defined be $bI Cl(A) \cap bI Cl(X \setminus A)$.

Theorem 3.31. The set of all points $x \in X$ in which a function $f: (X, \tau, I) \to (Y, \sigma)$ is not almost b-I - continuous is identical with the union of b-I -frontier of the inverse images of regular open sets containing f(x).

Proof. Suppose that f is not almost b-I-continuous at $x \in X$. Then there exists a regular open set V of Y containing f(x) such that $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for every $U \in BIO(X, x)$. Therefore, we have $x \in bIC(X \setminus f^{-1}(V)) = X \setminus bI$ Int $(f^{-1}(V))$ and

R.BALAJI AND N.RAJESH

 $x \in f^{-1}(V)$. Thus, we obtain $x \in bI$ Fr $(f^{-1}(U))$. Conversely, suppose that f is almost b-I - continuous at $x \in X$ and let V be a regular open set of Y containing f(x). Then there exists $U \in BIO(X,x)$ such that $U \subset f^{-1}(V)$. That is. $x \in bI$ Int $(f^{-1}(V))$. Therefore, $x \in X \setminus bIFr(f^{-1}(V))$.

Theorem 3.32. If $g:(X,\tau,I) \to (Y,\sigma)$ is almost b-I - continuous and S is δ -closed set of $X \times Y$, then $_{px}(S \cap G(g))$ is b-I -closed in X, Where P_X represents the projection of $X \times Y$ onto X and G(g) denotes the graph of g.

Proof. Let S be any δ -closed set of $X \times Y$ and $x \in bICl(_{p_x}(S \cap G(g)))$. Let U be any open set of X containing x and V any open set of Y containing g(x). Since g is almost b-I-continuous, we have $x \in g^{-1}(V) \subset bI$ $Int(g^{-1}(Int(Cl(V))))$ and $U \cap bI$ $Int(g^{-1}(IntCl(V)))) \in BIO(X, x)$. Since $x \in bICl(_{p_x}(S \cap G(g)), U \cap bI$ Int $(g^{-1}(IntCl(V)))) \cap_{p_x}(S \cap G(g))$ contains some point u of X. This implies that (u, g(u)) \in S and g(u) \in Int (Cl(V)). Thus, We have $\emptyset \neq (U \times Int(Cl(V)) \cap S \subset Int$ $(Cl(U \times V)) \cap S$ and hence $(x,g(x)) \in Cl_{\partial}(S)$. Since S is δ -closed,(x,g(x)) $\in (_{p_x}(S \cap G(g))$ and $x \in_{p_x}(S \cap G(g))$. Then $(_{p_x}(S \cap G(g))$ is b-I-closed.

Corollary 3.33. If $f:(X, \tau, I) \to (Y, \sigma)$ has a δ -closed graph and $g:(X, \tau, I) \to (Y, \sigma)$ is almost b-I-continuous, then the set $\{x \in X : f(x) = g(x)\}$ is b-I-closed in X.

Proof. Since G(f) is δ -closed and $_{px}(G(f) \cap G(g)) = \{x \in X : f(x) = g(x)\}$ it follows from theorem 3.32 that $\{x \in X : f(x) = g(x)\}$ is b - I-closed in X.

Theorem 3.34. If for each pair of distinct x_1 and x_2 in an ideal topological space (X, τ, I) there exists a function f of X into a Hausdorff space Y such that $f(x_1) \neq f(x_2)$, f is weakly b-I-continuous and f is almost b-I-continuous at x_2 , then X is $b-I-T_2$.

Proof. Since Y is Hausdorff, if for each pair of distinct point x_1 and x_2 there exist disjoint open sets V_1 and V_2 of Y containing $f(x_1)$ and $f(x_2)$, respectively; hence $C1(V_1) \cap Int(C1(V_2)) = \emptyset$. Since f is weakly b-I-continuous at x_1 , there exists $U_1 \in BIO(X, x)$ such that $f(U_1) \subset C1(V_1)$. Since f is almost b-I-

ISSN : 2277-6982Volume 2 Issue 4 (April 2013)http://www.ijmes.com/https://sites.google.com/site/ijmesjournal/

ON ALMOST b-I - CONTINUOUS FUNCTIONS

continuous at x_2 , there exists $U_2 \in BIO(X, x_2)$ such that $f(U_2) \subset Int(Cl(V_2))$. Therefore, We obtain $U_1 \cap U_2 = \emptyset$. This shows that X is $b - I - T_2$.

References

- [1] M.E. Abd EI-Monsef, S.N. EI-Deep and R.A. Mohamoud, β -open sets and β -continuous functions, *Bull. Fac. Sci. Assiut Uniu.* A, **12(1983)**, 77-90.
- [2]. M. Akdag, On b-I -open sets and b-I continuous functions, *Inter. J. Math. Math. Sci.*, **22(2007)**, 27-32.
- [3]. D. Andrijevic, Semi-preopen sets, *Math. Vesnik*, **38**(1986), 24-32.
- [4]. D. Andrijevic, On *b*-open sets, *Math.Vesnik*, **48** (1996), 59-64.
- [5]. R. Balaji and N. Rajesh, On Weakly b-I continuous functions (submitted).
- [6]. R. Balaji and N.Rajesh, Some New separation axioms in ideal topological space(submitted).
- [7]. A. Caksu Guler and G. Aslim, b-I -open sets and decomposition of continuity via idealization, proc. Inst. Math. Mech., National academy of sciences of Azerbaijan, 22(2005),27-32.
- [8]. D. Carnahan, Some properties related to compactness in topological spaces, Ph.D. Thesis, Univ. Arkansas (1973).
- [9].J. Dontchev, On Hausdorff spaces via topological ideals and *I*-irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, **767**(1995), 28-38.
- [10]. E. Ekici, Generalization of perfectly continuous, Regular set-connected and clopen functions, *Acta. Math. Hungar.*, 107(3)(2005), 193-206.
- [11].D.S. Jankovic, A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46 (1985), 8392.
- [12]. K. Kuratowski, Topology, Academic Press, NewYork, 1966.
- [13]. N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70(1963)**, 36-41.
- [14]. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [15]. R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Thesis, University of California, USA(1967).
- [16]. V. Renukadevi, Note on b-I-open sets, J. Adv. Res. Pure Math., 2(3) (2010), 53-60.
- [17]. M. K. Singal and S. P. Arya, On almost regular spaces, *Glasnik Mat.*, 4 (24) (1969), 89-99.
- [18]. M. K. Singal and A. R. Singal, Almost-continuous mappings, *Yokohama Math. J.*, 16(1968), 63-73.
- [19]. U. Sengul, On almost b -continuous functions, Int. J. Contemp. Math. Sciences,

ISSN: 2277-6982

http://www.ijmes.com/

Volume 2 Issue 4 (April 2013)

https://sites.google.com/site/ijmesjournal/

R.BALAJI AND N.RAJESH

3(30)(2008), 1469-1480.

- [20]. M. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-381.
- [21]. R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.

[22]. N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78(1968), 103-118.

DEPARTMENT OF MATHEMATICS, AGNI COLLEGE OF TECHNOLOGY, KANCHEEPURAM 603103, TAMILNADU, INDIA. E-mail address: balaji_2410@yahoo.co.in

DEPARTMENT OF MATHEMATICS, RAJAH SERFOJI GOVT. COLLEGE,

THANJAVUR-613005, TAMILNADU, INDIA.

E-mail address: nrajesh_topology@yahoo.co.in