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journal Miskolc Mathematical Notes, Vol. 12  (2011), no. 2. 

Keywords: near-rings,  ,    -derivation, generalized ,    -

derivation. 

1   Definitions and terminology 

A right near-ring is a set N with two operation + and . such that  ,N   is a group 

(not necessarily abelian) and  ,  . N  is a semigroup satisfying the right distributive 

law ( ). . .x y z x z y z    for all ,  ,  .x y z N  Recalling that a near-ring 

N is called prime if for any ,  x y N ,  0xNy  implies that 0x  or 

0y  . For ,  x y N the symbol  ,  x y  (resp.  x y ) will denote xy yx  

(resp. xy yx ). ( )Z N  is the multiplicative center of N . An additive mapping 

:d N N is said to be a derivation if  ( ) ( ) ( )d xy xd y d x y  for all 

,  x y N , or equivalently, as noted in [12], that ( ) ( ) ( )d xy d x y xd y   for 

all ,  x y N . Recently, in [7], Bresar defined the following concept. An additive 

mapping :F N N is called a generalized derivation if there exists a derivation 

:d N N such that ( ) ( ) ( )F xy F x y xd y   for all ,  .x y N  Basic 

examples are derivations and generalized inner derivations (i.e., maps of type 

x ax xb  for some ,  a b N ). One may observe that the concept of 

generalized derivations includes the concept of derivations and of left multipliers (i.e., 

( ) ( )F xy F x y for all ,  x y N ). Inspired by the definition of derivation 

(resp. generalized derivation), we define the notion of ( ,  )  -derivation (resp. 

generalized ( ,  )  -derivation) as follows: Let ,     be two near-ring 
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automorphisms of N . An additive mapping :d N N is called a ( ,  )  -

derivation if ( ) ( ) ( ) ( ) ( )d xy x d y d x y    for all ,  x y N .   An additive 

mapping :F N N is called a generalized ( ,  )  -derivation if there is  a 

( ,  )  -derivation d such that  ( ) ( ) ( ) ( ) ( )F xy F x y x d y   . It is noted 

that ( ) ( ) ( ) ( ) ( )d xy d x y x d y    for all ,  x y N  in [9, Lemma 1]. 

2   The Main Results 

In [9] the theorems 3, 4, 5 and 6 are not correct in general. Moreover the following 

theorems show the non existence of generalized ( ,  )  -derivation of N satisfying 

the theorems. 

 

Theorem 1. Let N be a 2-torsion free 3-prime near-ring, then there is no generalized 

( ,  )  -derivation ( ,  )F d  of N and 0d   such that ( ) 0F x y   for all 

, .x y N  

Proof.  If there exists a generalized ( ,  )  -derivation ( ,  )F d  of N and 

0d  such that 

                        ( ) 0   for all  ,  .                             (1)F x y x y N    

From the proof of [9, Theorem 3], we conclude that N is a commutative ring and 

using equation (1) , we obtain 

                           ( ) 0   for all  ,  .                                (2)F xy x y N   

It follows 

               ( ) ( ) ( ) ( ) 0   for all  ,  .                  (3)F x y x d y x y N     

Replacing x by xz in  (3)  and using (2) , we get 

                     ( ) ( ) ( ) 0   for all  ,  ,  .                    x z y x y z N      

Since   is an automorphism of N , we have 

                      ( ) ( ) 0    for all  ,  ,  .                   (4)   x N y x y z N     

By the primeness of N , we obtain that 0d  ; a contradiction. This completes the 

proof of our theorem. 

 

Theorem 2. Let N be a 2-torsion free 3-prime near-ring, then there is no generalized 

( ,  )  -derivation ( ,  )F d  of N and 0d   such that ( ) ( )F x y x y     

for all , .x y N  
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Proof.  If there exists a generalized ( ,  )  -derivation ( ,  )F d  of N and 

0d  such that 

                    ( ) ( )   for all  ,  .                         (5)F x y x y x y N      

Using the proof of [9, Theorem 4], we conclude that N is a commutative ring and by 

(5) , we arrive at 

                      ( ) ( )   for all  ,                               (6)F xy xy x y N    

which implies that 

      ( ) ( ) ( ) ( ) ( ) ( )   for all  ,  .            (7)F x y x d y x y x y N        

Taking xz instead of x in (7)  and using (6) , we get 

                     ( ) ( ) ( ) 0   for all  ,  ,  .                    x z y x y z N      

Since   is an automorphism of N , we have 

                      ( ) ( ) 0    for all  ,  ,  .                     (8)   x N y x y z N   

 By the primeness of N , we conclude that 0d  ; a contradiction. 

 

Theorem 3. Let N be a 2-torsion free 3-prime near-ring, then there is no generalized 

( ,  )  -derivation ( ,  )F d  of N and 0d   such that  ( ,  ) ( )F x y x y    

for all , .x y N  

 

Proof.  Suppose that there exists a generalized ( ,  )  -derivation ( ,  )F d  of 

N and 0d   such that 

                     ( ,  ) ( )   for all  ,  .                      (9)F x y x y x y N     

According to the proof of [9, Theorem 5], N is a commutative ring and returning to 

(9) , we get 

                   ( ) 0   for all  ,                         xy x y N    

it means that, 

                   ( ) ( ) 0     for all  ,  .                             (10)x y x y N     

By (10) and the primeness of N , it is easy to verify that 0  for all  ;x x N   a 

contradiction. 
 

Theorem 4. Let N be a 2-torsion free 3-prime near-ring, then there is no generalized 

( ,  )  -derivation ( ,  )F d  of N and 0d   such that  ( ) ( ,  )F x y x y    

for all , .x y N  
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Proof.  Let ( ,  )F d  be a generalized ( ,  )  -derivation ( ,  )F d  of N and 0d   

such that 

                    (xοy)=± ( x, y )    for all    x, y .                 (11) F N   

Using the same proof of [9, Theorem 6], we find that N is a commutative ring and by 

 11 , we arrive at 

                             (xy)=0    for all    x, y .                       (12) F N  

Since equation  12 is the same as  2 , arguing as in the proof of Theorem 1 we 

conclude that 0d  ; a contradiction. 

 
Acknowledgments. The author would like to thank the referee for providing very 

helpful comments and suggestions. 
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