

Erratum on the paper notes on the commutativity of prime near-rings

Abdelkarim Boua, karimoun2006@yahoo.fr

Abstract. In this paper, we correct some results of the article entitled "Notes on the commutativity of prime near-rings" published in the journal Miskolc Mathematical Notes, Vol. 12 (2011), no. 2.

Keywords: near-rings, (θ, θ) -derivation, generalized (θ, θ) derivation.

1 Definitions and terminology

A right near-ring is a set N with two operation $+$ and . such that $(N,+)$ is a group (not necessarily abelian) and $(N, .)$ is a semigroup satisfying the right distributive law $(x + y)z = x z + y z$ for all $x, y, z \in N$. Recalling that a near-ring *N* is called prime if for any $x, y \in N$, $xNy = \{0\}$ implies that $x = 0$ or $y = 0$. For $x, y \in N$ the symbol $\begin{bmatrix} x, y \end{bmatrix}$ (resp. $x \, oy$) will denote $xy - yx$ (resp. $xy + yx$). $Z(N)$ is the multiplicative center of N. An additive mapping $d : N \to N$ is said to be a derivation if $d(xy) = xd(y) + d(x)y$ for all $x, y \in N$, or equivalently, as noted in [12], that $d(xy) = d(x)y + xd(y)$ for all $x, y \in N$. Recently, in [7], Bresar defined the following concept. An additive mapping $F: N \to N$ is called a generalized derivation if there exists a derivation $d : N \rightarrow N$ such that $F(xy) = F(x)y + xd(y)$ for all $x, y \in N$. Basic examples are derivations and generalized inner derivations (i.e., maps of type $x \rightarrow ax + xb$ for some $a, b \in N$). One may observe that the concept of generalized derivations includes the concept of derivations and of left multipliers (i.e., $F(xy) = F(x)$ *y* for all $x, y \in N$. Inspired by the definition of derivation (resp. generalized derivation), we define the notion of (θ, ϕ) -derivation (resp. generalized (θ, ϕ) -derivation) as follows: Let θ , ϕ be two near-ring

automorphisms of N. An additive mapping $d : N \to N$ is called a (θ, ϕ) . automorphisms of *N*. An additive mapping $d : N \rightarrow N$ is called a (θ, ϕ) -
derivation if $d(xy) = \phi(x)d(y) + d(x)\theta(y)$ for all $x, y \in N$. An additive mapping $F: N \to N$ is called a generalized (θ, ϕ) -derivation if there is a mapping $F: N \to N$ is called a generalized (θ, ϕ) -derivation if there is a (θ, ϕ) -derivation d such that $F(xy) = F(x)\theta(y) + \phi(x)d(y)$. It is noted (*b*, φ) -derivation d such that $F(xy) = F(x) \theta(y) + \varphi(x) \alpha(y)$. It is
that $d(xy) = d(x) \theta(y) + \varphi(x) d(y)$ for all $x, y \in N$ in [9, Lemma 1].

2 The Main Results

In [9] the theorems 3, 4, 5 and 6 are not correct in general. Moreover the following theorems show the non existence of generalized (θ, θ) -derivation of N satisfying the theorems.

Theorem 1. Let N be a 2-torsion free 3-prime near-ring, then there is no generalized (θ, θ) -derivation (F, d) of N and $d \neq 0$ such that $F(x \, oy) = 0$ for all $x, y \in N$.

Proof. If there exists a generalized (θ, θ) -derivation (F, d) of N and $d \neq 0$ such that
 $F(x \, oy) = 0$ for all $x, y \in N$. (1)

From the proof of $[0, \text{Theorem 31}]$ we conclude that N is a commutative ring and $d \neq 0$ such that

$$
F(x \, oy) = 0 \quad \text{for all} \quad x, \quad y \in N. \tag{1}
$$

From the proof of [9, Theorem 3], we conclude that N is a commutative ring and using equation (1) , we obtain From the proof of [9, Theorem 3], we conclude that N is a commutative ring a
sing equation (1), we obtain
 $F(xy) = 0$ for all $x, y \in N$. (2)

$$
F(xy) = 0 \quad \text{for all } x, y \in N. \tag{2}
$$

It follows

$$
F(xy) = 0 \text{ for all } x, y \in N. \tag{2}
$$
\nIt follows

\n
$$
F(x)\theta(y) + \theta(x)d(y) = 0 \text{ for all } x, y \in N. \tag{3}
$$
\nReplacing x by xz in (3) and using (2), we get

\n
$$
\theta(x)\theta(z)\theta(y) = 0 \text{ for all } x, y, z \in N.
$$
\nSince θ is the following property:

\n
$$
F(x) = \frac{\theta(x)}{\theta(z)} + \frac{\theta(y)}{\theta(z)} = 0 \text{ for all } x, y, z \in N.
$$

Replacing x by xz in (3) and using (2), we get

$$
\theta(x)\theta(z)\theta(y)=0
$$
 for all $x, y, z \in N$.

Since θ is an automorphism of N, we have

$$
\theta(x)\theta(z)\theta(y) = 0 \text{ for all } x, y, z \in N.
$$

Since θ is an automorphism of N , we have

$$
\theta(x)N\theta(y) = \{0\} \text{ for all } x, y, z \in N.
$$
 (4)

By the primeness of N, we obtain that $d = 0$; a contradiction. This completes the proof of our theorem.

Theorem 2. Let N be a 2-torsion free 3-prime near-ring, then there is no generalized (θ , θ) -derivation (*F*, *d*) of *N* and $d \neq 0$ such that $F(x \circ y) = \pm \theta(x \circ y)$ for all $x, y \in N$.

International Journal of Mathematical Engineering and Science

Proof. If there exists a generalized (θ, θ) -derivation (F, d) of N and $d \neq 0$ such that **Proof.** If there exists a generalized (θ, θ) -derivation (F, d) of N and $d \neq 0$ such that $F(x \, dy) = \pm \theta(x \, dy)$ for all $x, y \in N$. (5)

$$
F(x \, oy) = \pm \theta(x \, oy) \quad \text{for all} \ \ x, \ y \in N \,. \tag{5}
$$

Using the proof of [9, Theorem 4], we conclude that N is a commutative ring and by (5) , we arrive at (5)
Using the proof of [9, Theorem 4], we conclude that N is a commutative ring and b
(5), we arrive at
 $F(xy) = \pm \theta(xy)$ for all $x, y \in N$ (6)
which implies that

$$
F(xy) = \pm \theta(xy) \quad \text{for all} \ \ x \, , \ y \in N \tag{6}
$$

which implies that

(3), we arrive at
 $F(xy) = \pm \theta(xy)$ for all $x, y \in N$ (6)

which implies that
 $F(x) \theta(y) + \theta(x) d(y) = \pm \theta(x) \theta(y)$ for all $x, y \in N$. (7) Taking xz instead of x in (7) and using (6), we get $F(x) \theta(y) + \theta(x) d(y) = \pm \theta(x) \theta(y)$ for all $x, y \in N$.

sing xz instead of x in (7) and using (6), we get
 $\theta(x) \theta(z) \theta(y) = 0$ for all $x, y, z \in N$.

$$
\theta(x)\theta(z)\theta(y) = 0
$$
 for all $x, y, z \in N$.

Since θ is an automorphism of N, we have

Taking
$$
xz
$$
 instead of x in (7) and using (0), we get

\n
$$
\theta(x)\theta(z)\theta(y) = 0 \quad \text{for all } x, y, z \in N.
$$
\nSince θ is an automorphism of N , we have

\n
$$
\theta(x)N\theta(y) = \{0\} \quad \text{for all } x, y, z \in N.
$$
\n(8)

By the primeness of N, we conclude that $d = 0$; a contradiction.

Theorem 3. Let N be a 2-torsion free 3-prime near-ring, then there is no generalized (θ , θ) -derivation (*F*, *d*) of *N* and $d \neq 0$ such that $F([x, y]) = \pm \theta(x \, dy)$ for all $x, y \in N$.

Proof. Suppose that there exists a generalized (θ, θ) -derivation (F, d) of *N* and $d \neq 0$ such that **Proof.** Suppose that there exists a generalized (θ, θ) -derivation (F, d) or
 N and $d \neq 0$ such that
 $F([x, y]) = \pm \theta(x \, dy)$ for all $x, y \in N$. (9)

$$
F([x, y]) = \pm \theta(x \, oy) \quad \text{for all} \ \ x, \ y \in N. \tag{9}
$$

According to the proof of [9, Theorem 5], N is a commutative ring and returning to (9), we get
 $\pm \theta(xy) = 0$ for all $x, y \in N$ (9) , we get

it means that,

(9), we get
\n
$$
\pm \theta(xy) = 0 \text{ for all } x, y \in N
$$
\nt means that,
\n
$$
\pm \theta(x)\theta(y) = 0 \text{ for all } x, y \in N.
$$
\n(10)

By (10) and the primeness of N, it is easy to verify that $x = 0$ for all $x \in N$; a contradiction.

Theorem 4. Let N be a 2-torsion free 3-prime near-ring, then there is no generalized (θ, θ) -derivation (F, d) of N and $d \neq 0$ such that $F(x \circ y) = \pm \theta([x, y])$ for all $x, y \in N$.

International Journal of Mathematical Engineering and Science

Proof. Let (F, d) be a generalized (θ, θ) -derivation (F, d) of N and $d \neq 0$
such that
 $F(xoy)=\pm \theta([x, y])$ for all $x, y \in N$. (11) such that

$$
F(xoy) = \pm \theta([x, y])
$$
 for all $x, y \in N$. (11)

Using the same proof of [9, Theorem 6], we find that N is a commutative ring and by (11), we arrive at $F (xy)=0$ for all $x, y \in N$. (12) (11) , we arrive at

$$
F(xy)=0 \quad \text{for all} \quad x, y \in N. \tag{12}
$$

Since equation (12) is the same as (2) , arguing as in the proof of Theorem 1 we conclude that $d = 0$; a contradiction.

Acknowledgments. The author would like to thank the referee for providing very helpful comments and suggestions.

References

- 1. N. Argaç,: On prime and semiprime rings derivations, Algebra Colloq., vol. 13, no. 3, pp. 371--380, (2006).
- 2. M. Ashraf, A. Ali and S. Ali: (σ, τ) -derivation on prime near-rings, Arch. Math. (Brno), vol. 40, no. 3, pp. 281--286, (2004).
- 3. K. I. Beidar, Y. Fong and X. K. wang: Posner and Herstein theorems for derivation of 3-prime near-rings, Comm. Algebra, vol. 24, no. 5, pp. 1581--1589, (1996).
- 4. H. E. Bell and N. Argaç: Derivation , product of derivation and commutativity in near-rings, Algebra Colloq., vol. 8, no. 4, pp. 399--407, (2001).
- 5. H. E. Bell and G. Mason: On derivation in near-rings, North-Holand Mathematics Studies, 137 (1987), 31--35.
- 6. H. E. Bell and G. Mason: On derivation in near-rings and rings, Math. J. Okayama Univ., 34 (1992), 135--144.
- 7. A. Boua and L. Oukhtite: Derivation on prime near-rings, Int. J. Open Probl. Comput. Sci. Math., vol. 4, no. 2, pp. 162--167, (2011).
- 8. X. K. Wang: Derivation in prime near-rings, Proc. Amer. Math. Soc., 121 (1994), 361--366.
- 9. Emine Koc, Notes on the Commutativity of prime near-rings, Miskolc Mathematical Notes. 12 (2011), 193--200.