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1. Introduction 

 
The Natural transform, initially was defined by Khan and Khan [5] as N - transform, 

who studied their properties and applications. Later , Belgacem et al. [3, 10] defined 

its inverse and studied some additional fundamental properties of this integral 

transform and named it the Natural transform. Applications of Natural transform in 

the solution of differential and integral equations and for the distribution and 

Boehmians spaces can be found in [1, 4, 5, 6,7, 8, 9, 10]. 

 

In this paper, we give definitions of fractional calculus and state properties of Natural 

transform. Further, using derivative of Natural transform of fractional order, solution 

of fractional ordinary differential equations are derived. 
 

2. Fractional Calculus and Natural Transform 

 
The theory of fractional calculus plays an important role in many fields of pure and 

applied mathematics. Fractional integrals and derivatives, in association with  

different integral transforms, are used to solve different types of differential and 

integral equations. A derivative of fractional order, in the Abel - Riemann sense [4] , 

is defined by 

                                                        

1 The corresponding author 

http://www.ijmes.com/
https://sites.google.com/site/ijmesjournal/


International Journal of Mathematical Engineering and Science 

ISSN : 2277-6982                            Volume 2 Issue 12 (December 2013)     

http://www.ijmes.com/                   https://sites.google.com/site/ijmesjournal/             

 

2 

 

                           












 

mtf

mmd
tfD

m

m

mm

dt

d

t

ft

dt

d
m









  ,  )(

1  ,
)]([

1)(

)(

0)(
1

                     (1) 

where  Zm   and  R   and the integral operator is defined by implementing an 

integral of fractional order in Abel - Riemann sense as 
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Podlubny [9] introduced the fundamental properties of fractional integration and 

differentiation, respectively, described as 
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The Caputo derivative [9] is defined by 
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and one of the property is  
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The Natural transformation  ),( usR  of the function )(tf  for all  ,0t   is given by 

[3, 10] 
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where  ut,  are time variables and  s  is the frequency variable, provided the function   

)(tf   is defined in the set  A by 
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where  M  is a constant of finite number,  1   and  2   may be finite or infinite. 

The discrete form of Natural transform is given by [3] 
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The inverse Natural transformation is defined by [3] and [10] 
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The duality relation between Natural-Laplace and Natural-Sumudu transform is given 

by 
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where ),( usR    denote the Natural transform, )(sF is the Laplace transform and  )(uG   

is the Sumudu transform. The Sumudu transform, its properties and applications can 

be seen in [2,4]. Properties of Natural transform, some mentioned below, can be seen 

in [3,5,6,10] . 

1. Natural transform of derivative : The   derivative of  )(tf   with respect to  t  and 

the  n th order derivative of  the same with respect to  t  are, respectively, defined by 
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2. Convolution Theorem : If ),( usF and ),( usG are Natural transforms of the 

functions )(tf  and )(tg , respectively, defined in set  A  then the convolution is given 

by 

                                 .  ),(),( )])([( usGusFutgfN                                            (15) 

3. When  )()( ttf    (the Dirac delta function),   the Natural transform becomes 
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4. Multiple Shift : When the function  )(tf   in set  A  is multiplied with shift functions  

t and  nt  , the Natural transforms of these are given by 
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On distribution spaces, the Natural transform is defined by   )(tf    
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One may refer to [6, 7, 8] for details. 

 

The fractional integral for the function  ),(tf   as in (2) , can also be written as 
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Proposition 1: If  ),( usF   is the Natural transform of the function  ),(tf   then the 

Natural transform of fractional integral of  order   is defined by 
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Proof : Applying Natural transform in the equation (21) and invoking properties 

given by (15) and (17), we have 
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Proposition 2 : If  ),( usF   is the Natural transform of the function ),(tf   then the 

Natural transform of fractional derivative of  order   is defined as 
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Proof : We consider the derivative of Laplace transform as 
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Further, considering the duality relation of Laplace and Natural transform and 

property of derivative of Natural transform and the fractional derivative for Natural 
transform is derived ((proof can be seen in [3, 5]).  

3. Applications of Natural Transform to Non - homogenous 

Fractional Ordinary Differential Equations 

 
We intend to use the Natural transform to obtain solutions of certain fractional 

differential equations [4] 

 

Example 1 : To obtain the solution of non-homogenous fractional ordinary 

differential equation 
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Solution : Invoking the definition of the Natural transform and, simultaneously, using 

(12), (13) and (23) together with values from [3,10], we express (24) as 
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Using inverse Natural transform (10), we obtain the solution of (24) as 
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Example 2 : Solve the non - homogenous fractional ordinary differential equation 
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Taking inverse Natural transform (10), in (28) , we obtain the required solution 

                                                         2)( ttU                                                             (29) 

 

Conclusion : The current paper describes an approach by which it is found that the 

Natural transform has an extensive affinity with the solutions of differential and 

integral equations, and more specifically with the fractional differential equations 

which has been the centre forum of this paper. The solution of fractional ordinary 
differential equations can be obtained in the form of distributional fractional ordinary 

differential equations, when distributional Natural transform are invoked. 
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