The Pell Prime Conjectures

Al Kelley

Department of Mathematics
University of California, Santa Cruz
Santa Cruz, CA 95064, USA

email: blufox@ucsc.edu

Abstract

For each positive integer d>2 and d not square the Pell equation x’-~dy®=1 has an infinite number of
positive integer solutions x, y. For a given d there is a smallest solution x, y with both x and y positive
called the fundamental solution. These are the only solutions that we will consider. Using the x increasing
algorithm to select solutions d of the Pell equation, we generate an infinite sequence of integers that are
conjectured to be primes. The sequence is closely related to A033316 at oeis.org:

53, 61, 109, 181, 277, 397, 409, 421, 541, 661, 1021, 1069, 1381, 1549, ...

Algorithm

Start with a non-square positive integer d,>2 and let (dO,xO, ¥,) be the associated fundamental solution
to the Pell equation. Choose the least d,>d, such that x,>x, where (d, x,y,) is the solution to the
Pell equation associated with d,. Similarly, choose the least d,>d, such that x,>x,, where x,comes
from the solution to the Pell equation associated with d,. Continuing in this manner we get an increasing
sequence of positive integers:

d,<d,<d,<d, ...

Getting started

Here is a list of fundamental solutions to the Pell equation starting with d = 2:

d X y d X y d X y
2 3 2 24 5 1 45 161 24
3 2 1 26 51 10 46 24335 3588
5 9 4 27 26 5 47 48 7
6 5 2 28 127 24 48 7 1
7 8 3 29 9801 1820 50 99 14
8 3 1 30 11 2 51 50 7
10 19 6 31 1520 273 52 649 920
11 10 3 32 17 3 53 66249 9100
12 7 2 33 23 4 54 485 66
13 649 180 34 35 6 55 89 12
14 15 4 35 6 1 56 15 2
15 4 1 37 73 12 57 151 20
17 33 8 38 37 6 58 19603 2574
18 17 4 39 25 4 59 530 69
19 170 39 40 19 3 60 31 4
20 9 2 41 2049 320 61 1766319049 226153980
21 55 12 42 13 2 62 63 8
22 197 42 43 3482 531 63 8 1
23 24 5 44 199 30 65 129 16

mailto:blufox@ucsc.edu

For d in the range 2<d <108 it is well known that d = 61 produces the largest x, y values. We want to use
the above list of solutions to the Pell equation to start building our sequence of integers. From the first line
in the list we see that d = 2, x = 3, y = 2 is a fundamental solution to the Pell equation. Starting with the x
value of 3 in the second column and writing down only the increasing values of x as we go down the column,
we get

3,9, 19, 649, 9801, 24335, 66249, 1766319049
The corresponding d values are

2,5, 10, 13, 29, 46, 53, 61

We use our C++ program called pell [it will be described below] to get more d values that correspond to
increasing x values. Here is some output from the pell program:

2 3 2

5 9 4
10 19 6
13 649 180
29 9801 1820
46 24335 3588
53 66249 9100
61 1766319049 226153980
109 158070671986249 15140424455100
181 2469645423824185801 183567298683461940
277 159150073798980475849 9562401173878027020
397 838721786045180184649 42094239791738433660
409 25052977273092427986049 1238789998647218582160
421 3879474045914926879468217167061449 189073995951839020880499780706260
541 3707453360023867028800645599667005001 159395869721270110077187138775196900
661 16421658242965910275055840472270471049 638728478116949861246791167518480580

1021 198723867690977573219668252231077415636351801801 6219237759214762827187409503019432615976684540
1069 742925865816843150858935268959512942700219559049 22722526912283010072320240710785462723519145740
1381 #65:9 #64:0
1549 #71:1 #70:0

Observe that in the last two rows the values of x and y are not printed, because the values are too large to
fit on one line. In the last row with d = 1549 the program printed instead #71:1 and #70:0, which means
that x has 71 digits and ends in 1 and that y has 70 digits and ends in 0. The pell program writes the
actual values of x and y corresponding to each d into a file. Thus the values are available if for some reason
we want to see them. Here, for example, are the values of x and y corresponding to d = 1549:

X = 48106848972197087743588687481413975084698632248110750633952591202305801
y = 1222309542826747495934242683346380508818076263178681966098672827963220
Conjecture

Starting at d = 53 and using the increasing x algorithm described above, we generate an infinite increasing
sequence of integers that we conjecture consists of primes, the Pell primes:

53, 61, 109, 181, 277, 397, 409, 421, 541, 661, 1021, 1069, 1381, 1549, 1621, 2389, 3061, 3469, 4621, ...

The gmod and the signed count

Our pell program can be used to produce further information that we now want to illustrate. Here is some
program output that again starts at d = 2 and continues with successive values of d:

2 p 2:2:2:2:2:2:2 0 3 2
3 p 0:3:3:3:3:3:3 -1% 2 1
5 p 2:1:0:5:5:5:5 +1* 9 4
6 0:2:1:0:6:6:6 -1* 5 2
7 p 1:3:2:1:0:7:7 +1* 8 3
8 2:0:3:2:1:0:8 -1%* 3 1
10 1:2:0:4:3:2:1 +1%* 19 6
11 p 2:3:1:5:4:3:2 -1 10 3
12 0:0:2:0:5:4:3 -2* 7 2
13 pn 1:1:3:1:6:5:4 +1* 649 180
14 2:2:4:2:0:6:5 -1 15 4
15 0:3:0:3:1:7:6 -2* 4 1
17 p 2:1:2:5:3:1:8 +1* 33 8
18 0:2:3:0:4:2:0 -1%* 17 4
19 p 1:3:4:1:5:3:1 +1* 170 39
20 2:0:0:2:6:4:2 -1%* 9 2
21 0:1:1:3:0:5:3 +1 55 12
22 1:2:2:4:1:6:4 +2* 197 42
23 p 2:3:3:5:2:7:5 -1 24 5

Note that d is on the left and x and y are on the right. The letter p following a d value is used to indicate
that the value of d is prime. Later, we will use g to indicate that d is probabilistically prime. In the line
corresponding to d = 13 there is 13 followed by p which in turn is followed by n. We use n to indicate that
the so-called negative Pell equation x°—dy°=-1 has a solution for the associated d, in this case d = 13.
For a given non-square d the Pell equation always has solutions, but for the negative Pell equation, this
need not be the case. In the above list only d = 13 has a solution to the negative Pell equation.

Although our pell program does not exhibit a solution to the negative Pell equation on the screen, the
solution does get written to a file so that we can look at it if we want to. For example, from one of the
program output files, we find that d = 13, x = 18, y = 5 is a solution to the negative Pell equation, which is
easily checked.

In each line in the program output listed above there are seven integers separated by colons. The numbers
with colons between them are the values of

dmod 3,4,5,6,7,8,9

For convenience we will call this the gmod [g for general] and we will see below that it provides useful
information. In the above list a signed count follows each gmod. We want to explain how the signed count
is computed. In the first line in the above list x = 3 and the signed count is zero, because this is the starting
point. When we go from the first line to the second line, the value of x goes from 3 down to 2, and because
the value went down the signed count is -1. [We will discuss the star following the -1 below]. What we are
counting is the signed direction of the value of x from one line to the next, or more precisely from one d to
the next d. When we go from the second line to the third line, the value of x goes from 2 up to 9. We have
changed direction, so the signed count is +1. When we go from the third line to the fourth line, the value of
x goes from 9 down to 5. We have changed direction again, so the signed count goes from +1 to -1. Note that
when x goes from 19 to 10 to 7, decreasing in value twice, we get a signed count of -2.

We can think of the signed count as being defined for each d because the d's determine the x's and the
direction of the value of the x's determines the signed count. Here is a graph of the signed count given in
the above list:

Signed count
<)
|

T T T T T T T T
2 3 4 5 6 21 22 23

27
N A A
-2 -

T T T | I T T T T T I I T T

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Values of d

The graph is inaccurate because d = 4, 9, 16 do not exist. Nonetheless the graph conveys the right ideas.
Except for the three points on the graph marked with arrows, the signed count values occur at a local
extremum. In the program output listed above, a star after a signed count means that the signed count is at
a local extremum. We do not need the graph to see this. If we see, for example, +1* next to an x value, it
means that values of x just above and below have less value. In the above list consider d = 12, x = 7,y = 2.
The signed count is -2 and the star following indicates that the value of the x's just above and below 7 have
higher value, namely 10 and 649.

The ups and downs of the x values are quite unpredictable. Although the direction of the x values changes
often, there can be repeated change in the same direction, at least for a while. Here is some program output
that shows the value of x going down 5 times in a row:

539 2:3:4:5:0:3:8 -1%* 3970 171
540 0:0:0:0:1:4:0 +1 119071 5124
541 pn 1:1:1:1:2:5:1 +2* #37:1 #36:0
542 2:2:2:2:3:6:2 -1 4293183 184408
543 0:3:3:3:4:7:3 -2 669337 28724
544 1:0:4:4:5:0:4 -3 2449 105
545 2:1:0:5:6:1:5 -4 1961 84
546 0:2:1:0:0:2:6 -5% 701 30
547 p 1:3:2:1:1:3:7 +1* 160177601264642 6848699678673

Looking at the first line, we cannot tell that the signed count value -1 is correct without looking at previous
x values, but we will assume that the pell program gets it right. Looking at the x values in the next to the
last column, we see that the direction of the value of x, either up or down, is captured by the corresponding
signed count value. Note that there is a +2 because the value of x went up from 3970 to 119071 to #37:1.
Although we do not know what this last value is, since it has 37 digits it is certainly larger than the value
of x just above it.

Let us use our pell program to generate output where the d's consist of consecutive primes:

3701 pn 2:1:1:5:5:5:2 +1%* #44:9 #43:0
3709 pn 1:1:4:1:6:5:1 +3* 498938622490100272191791386249 8192542575130583730660585900
3719 p 2:3:4:5:2:7:2 -1 3720 61
3727 p 1:3:2:1:3:7:1 +4% #38:4 #36:5
3733 pn 1:1:3:1:2:5:7 +1%* #78:9 #76:0
3739 p 1:3:4:1:1:3:4 +2% 209743543470762890 3430132277703579
3761 pn 2:1:1:5:2:1:8 +1%* #57:9 #55:0

We see that many primes have solutions to the negative Pell equation, but not all primes do. Also, we see
that many primes have positive signed counts, but again not all do. Moreover, the signed count for a prime
is often a local extremum, but not always. Note that what looks like the largest x in the in the second row
in the list is actually one of the smaller x values. The largest x is #78:9. Finally, observe that many x's end
in 9 and many y's end in 0.

Now let us use our pell program with the -i option, which implements the increasing x algorithm described
above. Here is some output that gets written to a file:

2 p 2:2:2:2:2:2:2 0 3 2

5 p 2:1:0:5:5:5:5 +1%* 9 4

10 1:2:0:4:3:2:1 +1* 19 6

13 pn 1:1:3:1:6:5:4 +1%* 649 180

29 pn 2:1:4:5:1:5:2 +2%* 9801 1820

46 1:2:1:4:4:6:1 +1%* 24335 3588

53 pn 2:1:3:5:4:5:8 +2% 66249 9100

61 pn 1:1:1:1:5:5:7 +1* 1766319049 226153980

109 pn 1:1:4:1:4:5:1 +2% #15:9 #14:0

181 pn 1:1:1:1:6:5:1 +1%* #19:1 #18:0

277 pn 1:1:2:1:4:5:7 +2* #21:9 #19:0

397 pn 1:1:2:1:5:5:1 +2% #21:9 #20:0

409 pn 1:1:4:1:3:1:4 +1%* #23:9 #22:0

421 pn 1:1:1:1:1:5:7 +1%* #34:9 #33:0

541 pn 1:1:1:1:2:5:1 +2*% #37:1 #36:0

661 pn 1:1:1:1:3:5:4 +1* #38:9 #36:0

16021 pn 1:1:1:1:6:5:4 +1%* #48:1 #46:0

1069 pn 1:1:4:1:5:5:7 +2%* #48:9 #47:0

8941 pon 1:1:1:1:2:5:4 +1%* #202:1 #200:0

9949 pn 1:1:4:1:2:5:4 +1%* #212:9 #210:0
12541 pn 1:1:1:1:4:5:4 +1*% #236:1 #234:0
13381 pn 1:1:1:1:4:5:7 +2* #256:9 #254:0
16069 p n 1:1:4:1:4:5:4 +1%* #261:9 #259:0
82021 pn 1:1:1:1:2:5:4 +1%* #682:9 #680:0
92821 pn 1:1:1:1:1:5:4 +1%* #724:9 #722:0
107101 pn 1:1:1:1:1:5:1 +1* #726:1 #723:0
115021 pn 1:1:1:1:4:5:1 +1* #771:1 #768:0
125101 p n 1:1:1:1:4:5:1 +2* #818:1 #815:0
799621 pn 1:1:1:1:4:5:7 +1%* #2398:1 #2395:0
952429 p n 1:1:4:1:2:5:4 +2%* #2475:9 #2472:0
1026061 g n 1:1:1:1:1:5:7 +2* #2555:9 #2552:0
1027261 g n 1:1:1:1:4:5:1 +1* #2638:9 #2635:0
1047589 g n 1:1:4:1:4:5:7 +1%* #2651:1 #2648:0
9670621 g n 1:1:1:1:2:5:4 +1%* #8682:1 #8678:0
9747061 g n 1:1:1:1:2:5:7 +1* #8982:9 #8979:0
10675261 g n 1:1:1:1:2:5:1 +1%* #9135:9 #9132:0
10774261 g n 1:1:1:1:1:5:1 +1* #9344:1 #9341:0
11486029 g n 1:1:4:1:2:5:4 +2%* #9689:9 #9685:0
92919061 g n 1:1:1:1:4:5:1 +1%* #29564:9 #29560:0
99890389 g n 1:1:4:1:4:5:1 +1* #29739:9 #29735:0
100460221 g n 1:1:1:1:1:5:7 +1%* #29983:1 #29979:0
100685341 g n 1:1:1:1:1:5:1 +1* #30410:9 #30406:0
101247589 g n 1:1:4:1:2:5:1 +2%* #30446:1 #30442:0
235311301 g n 1:1:1:1:1:5:1 +1%* #47427:9 #47423:0
236690749 g n 1:1:4:1:1:5:1 +1%* #48517:9 #48513:0
251342701 g n 1:1:1:1:1:5:7 +1%* #48972:1 #48968:0
262831501 g n 1:1:1:1:2:5:1 +2%* #49317:1 #49313:0
266208541 g n 1:1:1:1:4:5:7 +1%* #49648:9 #49644:0
346477069 g n 1:1:4:1:1:5:1 +1* #58388:1 #58384:0
362047981 g n 1:1:1:1:1:5:4 +1* #59136:9 #59132:0
380960869 g n 1:1:4:1:2:5:4 +3* #59957:1 #59953:0
382399021 g n 1:1:1:1:4:5:1 +1%* #60540:1 #60536:0
395479309 g n 1:1:4:1:1:5:4 +1* #62416:9 #62412:0

The Pell prime conjectures

Based on the computational evidence presented above, we make the following conjectures:

e Starting at d = 53 and using the increasing x algorithm described above, we generate an infinite
increasing sequence of integers, the d's, that we conjecture are primes, the Pell primes:

53, 61, 109, 181, 277, 397, 409, 421, 541, 661, 1021, 1069, 1381, 1549, 1621, 2389, 3061, 3469, ...

e In addition to being prime, each d has a solution to the negative Pell equation, and the signed count
is positive and occurs at a local maximum.

e For each d the corresponding solution x, y to the Pell equation has the property that x ends in 1 or 9
and y ends in 0.

Moreover, each d satisfies
e d=1mod 3 except for d = 53
* d=1mod4
e d=1or4mod 5 except for d = 53, 277, 397
e d=1mod 6 except for d =53
* d=1,2,0r 4 mod 7 except for d = 61, 181, 397, 409, 661, 1021, 1069
* d =5 mod 8 except for d = 409 and 24049
e d=1,4,or 7mod9 except for d =53
e d=1or9mod 10 except for d = 53, 277, 397
e d=10mod 11 only for d = 109 [not shown in the above output]

The C++ program

The C++ program, pell, is being developed on a Dell Dimension XPS workstation that is now more than
eight years old. The CPU is a P4 Intel chip running at 3.6 ghz, and there is 2 gigabytes of main memory.
The linux operating system on the computer is Fedora 18, which is the most recent distribution of Fedora.

The program consists of some 6,000 lines of code. It is compiled with the -std=c++11 option using version
4.7.2 of the GNU g++ compiler. The program uses GMP, the GNU multiprecision arithmetic library, along
with the associated header file gmpxx.h that provides overloaded arithmetic operators. The algorithm that
is used to solve the Pell equation follows precisely what is given in [1], and each solution is checked to see
that it does, in fact, solve the Pell equation. The GMP package provides a means to check whether an
integer is composite or prime or probabilistically prime. An integer reported as probabilistically prime has
less than 1 chance 2% of being composite.

As of this writing, an older version of the program has been running for approximately 44 days on a
Toshiba Qosmio X505 laptop computer that is three years old. The chip in the laptop is an Intel Core i7
running at 2.93 ghz, and the laptop has 6 gigabytes of main memory. The linux operating system is also
Fedora 18.

The program that has been running for 44 days is using the -i increasing option to find solutions to the Pell
equation with increasing x values as described above. So far, 304 solutions have been found. The most
recent d value is 395,479,309 and the corresponding x value has 62,416 digits. In the last 6 days only 3 new
solutions have been found.

The computational evidence for our conjectures looks good, but the evidence is very skimpy. In general,
solving the Pell equation is much harder than factoring, which itself is known to be very difficult for large
integers. Nonetheless, factoring a 12-digit integer takes only a few milliseconds. By comparison, solving the
Pell equation when d has 12 digits can be much more difficult.

To show this, we construct via another program the 12-digit prime 753,352,993,489 and use the pell
program to write the following on the screen:

753352993487 2:3:2:5:3:7:2 -1%* #7775:1 #7769:0
753352993488 0:0:3:0:4:0:3 +1 #14237:7 #14231:9
753352993489 g n 1:1:4:1:5:1:4 +2* #1199818:9 #1199812:0
753352993490 2:2:0:2:6:2:5 -1x* #26592:9 #26586:0
753352993491 0:3:1:3:0:3:6 +1 #50076:1 #50070:0

Although it is the middle d that is of interest, we computed in addition two d's above and two d's below to
see the middle d in context. We chose the d in the middle to be a prime for this exercise, because in general,
but not always, primes are more difficult to solve than an adjacent composite d. In any case, to get the
above output required more than 29 minutes of computation time. Note that the x and y corresponding to
the d of interest have almost 1.2 million digits. The adjacent d's take very little time to solve in comparison
to the d of interest. For example, solving the Pell equation with the first d in the list takes just over a
minute.

Generating similar output when d is prime and has 13 digits can take more than 4.6 hours, but that is not
always the case. For some 13-digit primes the computation time is much less. For example, when d has the
value 8,735,653,484,527 the computation time is approximately 15 minutes.

The Pell primes have an interesting kind of fractal quality that we will report on later.

References
1. http:/mathworld.wolfram.com/PellEquation.html

2. http://en.wikipedia.org/wiki/Pell's equation

http://en.wikipedia.org/wiki/Pell's_equation
http://mathworld.wolfram.com/PellEquation.html

	The Pell Prime Conjectures
	Abstract
	Algorithm
	Getting started

	Conjecture
	The gmod and the signed count
	The Pell prime conjectures
	The C++ program
	References

