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Within the framework of the covariant theory of gravitation (CTG) the energy is calculated for a 

system with continuously distributed matter, taking into account the contribution of the gravitational 

and electromagnetic fields and the contribution of the pressure and acceleration fields. The total 

energy of all the fields is equal to zero, and the system’s energy is formed from the energy of the 

particles, which are under the influence of these fields. From the expression for the energy the inertial 

M and gravitational mg masses of the system are found. These masses are compared with mass mb, 

obtained by integrating the density over the volume, and with the total mass m’ of the body particles 

scattered to infinity in order to make the energy of macroscopic fundamental fields equal to zero. The 

ratio for the masses is obtained:  m’ = M < mb = mg . From this the possibility of non-radiative ideal 

spherical collapse follows, when the system’s mass M does not change during the collapse. In 

addition, the mass of the system is less than the gravitational mass. In contrast, in the general theory 

of relativity (GTR) the ratio for masses is obtained in a different form: M = mg < mb < m’. In CTG the 

electromagnetic field energy reduces the gravitational mass and in GTR, on the contrary, increases. In 

order to verify the obtained results it is suggested to conduct an experiment on measuring the change 

of the gravitational mass of the body with increasing its electrical charge. 
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1. Introduction 

Modern physical theories usually describe the energy, momentum and mass of the system in four-

dimensional formalism and introduce various 4-vectors and 4-tensors into consideration. In order to 

simplify comparison of the obtained expressions it is convenient to turn to such a weak field limit, 

that most of the formulas could be written in the same form as in the special theory of relativity, 

without loss of accuracy. In this work it will be done for the covariant theory of gravitation and 

general theory of relativity; particular attention will be paid to the meaning acquired by the mass in 

these theories. 

 

2. Energy and mass in the covariant theory of gravitation 

We will calculate the relativistic energy for the body in the form of a sphere with the uniform 

density of mass and charge, moving at velocity v  along the axis OX  of the reference frame K . The 
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body under consideration is a set of identical particles moving randomly in different directions within 

the specified sphere with the radius a . We will assume that all of these particles are held together by 

the force of gravitation. In order to simplify we will assume that the spaces between the particles are 

so small that integration over the volume of all the particles is equivalent to integration over the 

volume of the sphere. The sphere is at rest in the co-moving reference frame K , associated with the 

center of mass, and the velocities of particles in K  are equal to v  and depend on the coordinates. 

The Hamiltonian for continuously distributed matter in the covariant theory of gravitation is 

obtained from the Lagrangian with the help of Legendre transformations. This Hamiltonian is equal to 

the relativistic energy of the system and has the form [1-2]: 
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Here c  is the speed of light, 0  is the mass density of an arbitrary point particle in the reference 

frame pK  associated with the particle,   is the scalar potential of the acceleration field,   is the 

scalar potential of the gravitational field, 0q  is the charge density in the reference frame pK ,   is 

the scalar potential of the electromagnetic field,  is the scalar potential of the pressure field, 
0u  

denotes the timelike component of the 4-velocity of the particle, g  includes the determinant g  of 

the metric tensor with the minus sign, 
1 2 3dx dx dx  is an element of the three-dimensional volume in 

the reference frame K , G  is the gravitational constant, Φ  is the gravitational tensor, 0  is the 

vacuum permeability, F  is the electromagnetic tensor, u  is the acceleration tensor, f  is the 

pressure field tensor,   and   are constants. 

 

For our purposes, it suffices to consider the expression for relativistic energy (1) in the case when 

the sphere under consideration is at rest in K . Then all the calculations can be performed in the 

reference frame K  associated with the system’s center of mass. Let us assume that the gravitational 

field is small and the covariant theory of gravitation turns into the Lorentz-invariant theory of 

gravitation. In this case, the metric tensor g  no longer depends on the coordinates and is 

transformed into the metric tensor of Minkowski spacetime   which is used in the special theory of 

relativity. For the case of the single fixed system the expressions for physical quantities are as 

follows: 
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where the Lorentz factor is 
2 2

1

1 v c
  


, v  is the particle’s velocity in K , Γ  is the 

gravitational field strength, Ω  is the torsion field vector, E  is the electric field strength, B  is the 

magnetic field induction, 0  is the vacuum permittivity, C  is the pressure field strength, I  is the 

solenoidal vector of the pressure field, S  is the acceleration field strength, N  is the solenoidal vector 

of the acceleration field. 

 

Substituting expressions (2) into (1) gives the following: 
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First we will calculate the first integral in (3). According to [2], the Lorentz factor    for the 

particles inside the fixed sphere is the function of the current radius r : 
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where 
2 2

1

1
c

cv c
 


 is the Lorentz factor for velocities cv  of the particles in the center of the 

sphere, and due to the smallness of the argument the sine can be expanded to the second-order terms. 

 

For the first term in the first integral in (3) with regard to (4) in spherical coordinates we can write: 
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In (5) the mass m  is the product of the density of the particles’ mass 0  by the volume bV  of the 

sphere which is at rest in the reference frame K . The origin of the factor 
2

c  in (5) can be understood 

from the following. The quantity 0 c   is the mass density of the particles in the center, which can be 

seen in the reference frame K . Then the product 0 c b c cV m m     gives the mass of the particles 

in the sphere for the observer in K  in the case, as if all the particles were in the center of the sphere. 

It is obvious that 0c bm m V  . In (5) it occurs that 
2 2 2

c c cmc m c  , that means that the total 

energy of the particles, increased due to the internal motion of the particles, is regarded by the Lorentz 

factor c . The second term in (5) appears due to the radial gradient of mean velocities of the particles 

inside the sphere and it takes into account that not all the particles are located in the center of the 

sphere. 

The scalar potential of the gravitational field in (3) inside the sphere, according to [2] is equal to: 
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Based on the similarity of the gravitational and electromagnetic fields, we can write for the electric 

potential similarly to (6): 
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The scalar potential of the pressure field inside the sphere equals: 
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where c  denotes the potential of the pressure field in the center of the sphere. 
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Substituting (6), (7) and (8) in (3), taking into account (4) we find: 
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With regard to (5) and (9-11) the first integral in (3) will equal: 
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The gravitational field strength and the torsion field inside the sphere are given by the formulas: 
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where D  is the vector potential of the gravitational field. 

 

The vector potential of each particle is directed along its velocity, and due to random directions of 

the particles’ velocities the total vector potential D  inside and outside the sphere is zero. 

Consequently, the torsion field will also be zero: 0Ω . Substituting the scalar potential (6) in (13), 

we find the gravitational field strength: 
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Taking into account (14) and the equality 0Ω  for the integral of the first term in the second 

integral in (3) we have: 
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According to [2], the potential of the gravitational field outside the sphere equals: 
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From this it follows that the gravitational mass of the sphere is equal to the quantity 
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Using (13), with 0D  we find the field strength: 
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Substituting oΓ  in (3), using the equation 0Ω , we find for the gravitational field outside the 

sphere: 
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The sum of (15) and (16) equals: 
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The calculation of the term with the electromagnetic field in (3) is done similarly and it gives for 

uniformly charged particles inside the stationary sphere the following: 
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where the charge q  is the product of the charge density 0q  of an arbitrary particle in the 

reference frame pK  associated with the particle by the volume bV  of the stationary sphere. 
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In Minkowski space, the 4-velocity of the stationary sphere is ˆ ( ,0,0,0)u u c 
  , and based on 

the definition of the total 4-potential of the sphere’s pressure field 
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 , 0Π , where b  denotes the density inside the stationary sphere. In this case the 

scalar potential , density b  and pressure inside the sphere bp  are the functions of the current 

radius inside the sphere, and the equality 0Π  for the vector potential of the pressure field in this 

case follows from the absence of ordered motion of particles inside the sphere. In view of this and (8) 

for , the vectors C  and I  inside the sphere are expressed as follows: 
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In case of uniform mass density 0 , calculations for the vector of the pressure strength inside the 

sphere give the following: 
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Using it we calculate the integral for the pressure: 
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We have to calculate one more term in the second integral in (3). The components of vectors S  

and N  for the acceleration field are found as follows: 
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where the scalar potential   and the vector potential U  are part of the 4-potential of the 

acceleration field ,u
c



 
  
 

U , which is a covariant 4-velocity.  

 

In the limit of special theory of relativity  ,u c    v , where 
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 is the Lorentz 

factor for the velocity v  of the particle’s motion. In the reference frame K  the particle’s velocities 

inside the sphere are equal to v  and    should be used instead of  . Then the potentials of an 

arbitrary particle will be 
2c   ,    U v . We need the total potentials of the acceleration field 

inside the sphere, emerging due to direct interaction of the particles with each other and due to the 

influence of fields. In case of random motion of particles the velocities v  are directed in different 

directions, and therefore inside the sphere 0U  and 0N . However, the total Lorentz factor of 

particles    is a function of the current radius, and the total scalar potential 
2c    is not equal to 

zero. With regard to (4), for    it gives the following: 
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We will calculate the last integral: 
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Substituting (12), (17), (18), (19) and (20) in (3), we find the relativistic energy of the system: 
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In [2] the coefficients   and   were calculated for the case under consideration: 
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If we substitute (22) in (21), we will see that the field energies are canceled completely. Only the 

energy of particles in corresponding fields remains: 
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Equation (22) fixes a definite relation between the pressure field, acceleration field and 

gravitational and electromagnetic fields. This relation according to [2] reveals in the fact, that the 

conserved integral 4-vector, which is the result of integrating the equations of motion, is equal to zero. 

In this case condition (22) appears, and within the given model the 4/3 problem is explained. 

Let us estimate the total mass of particles in the sphere, for which, taking into account (4), we 

integrate the mass density 0b     of particles in K  over the sphere’s volume: 
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Hence, by solving the quadratic equation we obtain: 
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  . We will substitute this in (23), given    from (22): 
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From (8) we will express the scalar potential c  of the pressure field in the center in terms of the 

potential s  near the surface of the sphere, and will consider the ratio 
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Similarly, from (4) we will express c  in terms of the Lorentz factor s  of the particles near the 

surface of the sphere: 
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If we take into account (27) and (22) in (24), we can specify the relation between bm  and m : 
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Substitution of (22), (26) and (27) in (25) gives the following: 
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(29) shows that when the covariant theory of gravitation in the weak field limit turns into Lorentz- 

invariant theory of gravitation, all fields in the system, including the acceleration field, pressure field, 

electromagnetic and gravitational fields compensate each other so that the relativistic energy depends 

only on the mass, the energy of gravitational and electromagnetic fields, the energy of the surface 

pressure and the velocity of particles on the surface. 

The scalar potential of the pressure field near the sphere’s surface is connected with the pressure 

by relation: s
s

s

p


  , where sp  and s  denote the pressure and the mass density near the surface of 
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the sphere. Using the relation b bm V , where   is the average density with respect to the sphere’s 

volume, we find: b s s b s b
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   . For those massive bodies, in which we can assume 

1s   and neglect the pressure sp  on the surface, (29) becomes a simple expression: 
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From (29) we will express the mass of the system, consisting of the matter mass bm  and the mass 

of the four fields associated with this system: 
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The mass M  is identical and at rest and in motion, and it is the invariant inertial mass of the 

system. Above we found from the formula for the external gravitational potential o  that the 

gravitational mass of the sphere is the quantity 
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. Comparison with (24) shows 

that the sphere’s mass bm  according to our assumptions is equal to the gravitational mass gm . 

According to (31), the system’s inertial mass M  increases relative to the mass bm  by the value of 

mass-energy of the surface pressure, and to a certain share of the mass-energy of the electromagnetic 

field, but it decreases due to the same share of the mass-energy of the gravitational field. 

 

3. Relations between the energies 

We will compare the different energy components that make up the total relativistic energy (29). 

We will denote by f gE , f eE , f pE  and f aE  the energy components of the electromagnetic and 

gravitational fields, the pressure field and the acceleration field, respectively. As the measurement 

unit of energy we will use the sum f g eE  of the energy components of the electromagnetic and 

gravitational fields from (17) and (18). Taking into account (24), (19), (20) and (22) we find: 
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According to (32), the energy components of the pressure field and acceleration field are twice less 

than the sum f g eE  of the energy components of the gravitational and electromagnetic fields, and have 

a different sign. As a result, the sum of field energy components in (21) is equal to zero. 

We will now consider the energy components of the matter particles which are under the influence 

of fields. We will denote these components by p gE , p eE , p pE  and p aE , as the energy components 

of the particle in the electromagnetic and gravitational fields, the pressure field and the acceleration 

field, respectively. According to (9), (10), (11), (26), (5) and (27) we have the following: 
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Now we will sum up the energy components in (32) and (33) separately for each field: 
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The quantity g eE  denotes the sum of the energy components of the gravitational and 

electromagnetic fields, including the energy components of the fields themselves and of particles in 

these fields, the definition of f g eE  is given in (32). The sum of all the energy components in (34) 

equals the relativistic energy of the system (29): 
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If in (35) we neglect the product b sm   due to the small pressure on the body surface and 

disregard the rest energy 
2

b sm c  , then the energy value remains, which is equal to: 

2 2

0

3 31

2 10 40

b b
f ge

Gm q
W E

a a
     . In classical mechanics, in which the rest energy is not 

considered, the total energy of the gravitational and electromagnetic fields for a sphere with uniform 

distribution of mass and charge is equal to: 

 

2 2

0

3 3

5 20

b b
ge

Gm q
W

a a
   . 

 

According to the virial theorem, it is considered that the internal kinetic energy should equal half 

the absolute value of the energy of fields: 
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This shows that the total energy W  in classical mechanics coincide with the relativistic energy 

(35), if we exclude from the latter the rest energy and the energy of the surface pressure. Thus the 

transition is performed of the covariant theory of gravitation into the classical mechanics. However, in 

classical mechanics it is not determined how the internal pressure makes contribution to the mass and 

energy of the system. 

We will now specify, how in our model the virial theorem is realized, particularly for field 

energies and particle energies. We have the energy f pE  of the pressure field and the energy f aE  of 

the acceleration field, and the sum of these energies, according to (32), is equal to the absolute value 

of the sum of energies f g eE  of the gravitational and electromagnetic fields. As a result, the sum of 

fields’ energies is equal to zero.  

The situation for the energies of particles in fields is different. The energy of a particle in the field 

in the absence of the vector potential is defined by the product of the mass (charge) by the scalar 

potential. The sum of the energies of particles in the gravitational and electromagnetic fields 
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according to (33) is equal to 
5

2
f g eE , the energy of particles in the pressure field is b s f g em E  , 

and the energy of particles in the acceleration field is 
2

b s f gem c E  . From the energy of particles in 

the pressure field we can distinguish the energy f g eE  and the energy f g eE  – from the energy of 

particles in the acceleration field. But the sum of these energies is 5 4  times less than the absolute 

value 
5 5

2 2
f g e f g eE E   of the sum of energies of particles in the gravitational and electromagnetic 

fields. At the same time, the excess energy of particles in the gravitational and electromagnetic field, 

which is equal to 
1

2
f g eE , is compensated by the fact, that the gravitational mass energy of the 

system increases from 
2M c  to 

2

b sm c  . 

 

4. Relation with the cosmological constant 

In [1] we obtained a relation that connects the cosmological constant   with the 4-potentials of 

fields, which are included in the Lagrangian: 

 

2 2 2 2 2ck u J D J A j J   

         .                                   (37) 

 

Let us expand the products of 4- vectors: 

 

0
ˆ ( )u J 

     v U ,            
0

ˆ ( )D J 

     v D ,     

 

0
ˆ ( )qA j     v A ,            0

ˆ ( )J 

    v Π , 

 

here 0J u   is the mass 4-current; 
0qj u   is the charge (electromagnetic) 4-current; U , 

D , A  and Π  denote the vector potentials of the acceleration field, gravitational and electromagnetic 

fields and pressure field, respectively; and we use the approximation of the special theory of relativity, 

in which  ˆ ˆ,u c   v , where 
2 2

1
ˆ

1 v c
 


, v  is the velocity of motion of the body’s arbitrary 

particle. 
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Let us consider the situation in the reference frame K , which is stationary relative to the body in 

question. In K  the particle velocities are equal to v  and the Lorentz factor 
2 2

1

1 v c
  


 should 

be used instead of ̂ . As a result, (37) can be rewritten as follows: 

 

0 0 0 0( ) ( ) ( ) ( )qck                               v U v D v A v Π .        (38) 

 

In relation (38) the cosmological constant   has its own value for each particle of the body. We 

intend to integrate (38) over the volume of the body in the form of a fixed sphere, which is filled with 

moving particles as tightly as possible, and which has uniform density of mass  and charge in the 

entire volume of the sphere. In the absence of general rotation or directed matter flows the particles’ 

velocities v  are directed randomly in different directions. Then, after integrating (38) the 

contribution of vector products containing v  will be zero, and the total vector potentials U , D , A  

and Π  inside the sphere will be zero as well. Therefore, the integral of (38) over the volume is as 

follows: 

 

1 2 3 2 1 2 3

0 0 0 0( )qck dx dx dx m c dx dx dx                       . 

 

The quantity ck   in our opinion is the energy density of each particle, and the integral of this 

density over the volume gives a certain energy constant 
2m c , which is associated with all the 

particles of the system. In the right side of the equation there is the integral that we have already 

calculated in (12). With this in mind, we can write: 

 

2 2 2 2 2 2 2 2
2 2 2

0

3 3 3 3

5 2 8 10

c c c c
c c c

m Gm q m
m c mc m

a a a a

     
 


        .                (39) 

 

If we compare (39) with (21), we see that the quantity 
2m c  is part of the relativistic energy bE  of 

the system, and denotes the sum of energy components of the particles under the influence of fields. 

The energy bE  also includes the energy components, associated with the fields themselves, but 

according to (23) in case of a spherical body all these components cancel each other. Therefore, we 

can assume that for a sphere 
2 2

bE M c m c  , and M m . 

In (39) the mass m  is some constant mass, which denotes the total mass of body particles, 

excluding the contribution from the mass-energy of macroscopic fields, associated with this body. If 
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we divide the total body matter by particles and scatter from each other to infinity, then for the matter 

at rest there will be no electromagnetic and gravitational fields, associated with the interaction of 

these particles with each other. There will be no internal pressure from the particles’ influence on each 

other. In this case, with regard to (38) written for a single particle, the mass m  will consist of the 

total mass of all the particles in view of the energy of particles’ proper fields, the energy of their 

internal pressure and the internal kinetic energy. We considered such mass in [4] as the total mass of 

the body parts, scattered from each other and located at infinity at zero absolute temperature. At 

infinity 1   ,  
2c  , and then the system’s mass M  turns into the mass m . 

From (29-30) it follows that the system mass is less than the body mass: bM m , and the body 

mass bm  is equal to the gravitational mass gm . Since the mass m  is constant and is associated with 

the cosmological constant, and M m ,  it turns out that the gravitational mass g bm m  of the 

system in (29) can change, when in the system there is a change in the energy of the pressure field or 

the energy of the electromagnetic and gravitational fields. From (28) we find that bm m , and M  is 

in the middle between m  and bm . As a result, the ratio of the masses is as follows: 

 

b gm m M m m    .                                                      (40) 

 

5. Discussion of results 

5.1. The masses 

According to (40) in the weak field the inertial mass M  of the system in the form of a sphere with 

particles, taking into account the field energies, the internal pressure and the internal kinetic energy 

can be described either by the formula (29) or by the system mass m  from (39). The equality 

M m  means conservation of the system’s energy, regardless of whether the system’s parts are at 

infinity and do not interact with each other, or these parts come into close contact and form a coupled 

system. This is possible in case of ideal spherical collapse, when there are no emission and matter 

ejections from the system at any stage of the collapse or the matter accumulation. We discussed this 

question in [2] in connection with the problem of energy in spherical supernova collapse. There we 

explained the possibility of low energy emission by neutrinos based on the fact that almost all the 

work of the gravitational forces during the matter compression can come on increasing the kinetic 

energy of the stellar matter motion and the pressure energy, as well as on creating the internal 

pressure gradients and particle’s velocities.  

Earlier in [5] we found the expression for the masses, which differs from (40): 

b gm M m m m     . We can explain this by a different accepted gauge of the cosmological 

constant – in this paper we use the formulas obtained with the gauge according to [1], which differs 
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from the gauge in [5]. Also, we are currently using for analysis another physical system in the form of 

a sphere, consisting of a set of particles moving inside the sphere, which are held together by 

gravitation. In such a system inevitably there is difference between the masses m  and bm , as a 

consequence of the radial gradient of the Lorentz factor    inside the sphere and as a consequence of 

the difference between the density 0  of the particles in the reference frame pK  and the density b  

of particles from the standpoint of the reference frame K , associated with the system’s center of 

mass. The mass m  in (40) in its meaning has technical nature, since it is determined only 

mathematically by multiplying the density 0  by the sphere’s volume. We will note that the density 

0  is included in the system’s Lagrangian with the 4-vector of the gravitational (mass) current 

density in the form 0J u  . The density 0  is also included in the equation of motion of a point 

particle and in the field equations in [1]. 

According to (29) and (40), the mass gm  is greater than the mass M . This means that the 

gravitational mass of the system is always greater than the inertial mass of the system, by the half the 

absolute value of the gravitational and electromagnetic field energy minus the mass-energy of the 

surface pressure. 

According to (40) the gravitational mass gm  is also greater than the mass m  of the system’s 

parts, scattered to infinity. We can explain this in the following way. As we know, for a ball the 

absolute value of the potential energy of the gravitational field is equal to the total work on the matter 

transfer from infinity to the surface and inside the ball. It is assumed that the ball is formed by gradual 

growth due to layering of spherical shells as the matter is transferred. But beside the fact that the 

matter is transferred from infinity inside the body, which results in increase of the absolute value of 

the potential energy of the body’s gravitational field, the force of gravitation performs other actions – 

it increases the kinetic energy of the particles inside the body, the energy of the particles’ pressure on 

each other, and creates the gradients of pressure and kinetic energy of the particles inside the body. 

All these types of work of the gravitation force on the body formation increase the body mass from 

m  to gm . The main contribution to the gravitational mass increase is made by the emerging motion 

– at infinity the particles were stationary, but inside the body the particles move at velocities v . 

If we consider the virial theorem, connecting half the absolute value of gravitational and 

electromagnetic energies with the internal energy of the body, then it turns out that half of the work of 

the gravitational and electromagnetic fields on the body formation is transformed into the internal 

energy of the body. The total energy W  of the body, according to (36), is negative and with the help 

of it (35), (39) and (29) can be written as follows:  
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2 2 2

b b s b sE M c m c W m m c       .                                      (41) 

 

Since W  is equal to half the sum of the gravitational and electrical energies, then we can see that 

half of the work of the gravitational and electromagnetic fields on the body formation is transformed 

into the mass increase from M m  to the value b gm m . 

From the virial theorem the approximate equality follows between the absolute value of the total 

system’s energy W  (36), the internal body energy iW  and the binding energy, if we define it in (41) 

as the difference between the rest energy 
2

b s b sm c m    for the mass bm  and the rest energy of the 

initial state at infinity 
2m c . However, in usual interpretation of the binding energy it is not so, since 

the binding energy is defined as the difference between the total energy of the individual parts of the 

system and the energy of the system made up of these parts into a whole. This definition of the 

binding energy in this case gives us the relation: 
2 2 0m c M c   , i.e. in case of ideal spherical 

collapse the system’s energy at the beginning and the end of the process is the same and the binding 

energy is equal to zero. Despite the equality of the binding energy to zero, the system does not fall 

apart because the masses are always attracted. And the total energy W  (36) of the system remains 

negative. 

The invariant mass M  of the system is the measure of inertia of the system as a whole and the 

measure of the relativistic energy of the system. This means that the system’s acceleration under the 

influence of forces should depend on the mass M . The mass bm  can be calculated as the integral of 

the density b  over the volume of the sphere. The gravitational mass gm  is equal to bm  and can be 

determined by means of gravitational experiments near the body on the gravitational effect on the test 

bodies. According to (31), at an infinitely large radius of the body the mass of the spherical system 

M m  becomes equal to the gravitational mass of the body ( )b gm m  . Equation (31) can be 

regarded as the quadratic equation to determine the gravitational mass gm  depending on the body 

radius a , on its electrical charge bq  and the total mass of the fixed parts of this body m M  , when 

these parts are motionless and infinitely distant from each other: 

 

2

2

0
2

31

40

b
g

s
s

q
m M

ac

c




 
    

. 

 

5.2. Energies and masses in the general theory of relativity 
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In the general theory of relativity (GTR) the system’s mass M  is considered to be less than the 

total mass of the body’s parts m  [6-7]. In GTR, there is gravitational mass of the system from the 

standpoint of a distant observer, calculated as the volume integral of the sum NnM e , where n  is 

the concentration of matter nucleons, NM  is the mass of one nucleon, e  is the density of the body’s 

internal mass-energy [8]. The inertial mass of the system is also considered, which is calculated with 

the volume integral of the timelike component of the stress-energy tensor, which is then divided by 

the square of the speed of light and equated to the gravitational mass based on the principle of 

equivalence. Accordingly, to determine the system’s mass M  we need to know either the internal 

energy of the body which is not precisely known, or use the stress-energy tensor, which however does 

not include the gravitational field energy in principle. The latter is due to the fact that in GTR the 

gravitational field is understood as a metric field and is described by the stress-energy pseudotensor. 

As a result, calculation of the relativistic energy and the system’s mass in GTR is much more difficult 

and involves a number of conditions. For example, for calculating the energy the coordinates of the 

reference frame at infinity should transfer into the coordinates of Minkowski space. 

The mass of the system, with regard of the gravitational and electromagnetic fields, according to 

[6] and [9], in GTR in the weak field in our notation relative to the mass, density and radius of the 

body is equal to: 

 

00 2 2 2

02

2 2

2 2 2 2

0

1 1 1
( )

2 2

6 31 1
,

5 20

b b b b bq

b b
b k b

T dV M c v E dV
c

Gm q
m E dV

c ac ac c

       




        

     

 


             (42) 

 

where 
00T  is the mass tensor, turning after multiplying by the square of the speed of light into the 

stress-energy tensor of the system; the body mass 
b bm dV  ; b  and bq  are the density of mass 

and charge, respectively; 
21

2
k bE v dV   is the kinetic energy;   is the pressure energy per unit 

mass, and the case of uniform density is considered. 

 

In [6] also the invariant mass density  
 is used, which implies such mass density, which does not 

change under the influence of the pressure or gravitational field. It is assumed that such invariant 

density  
 is part of the continuity relation in the curved spacetime: ( ) 0g u

    , here g  is 

the determinant of the metric tensor, u
 is the 4-velocity. We will note in this regard, that in the 
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covariant theory of gravitation the continuity relation is written not for  
 but for 0  [1], and 0  

can vary and depend on any factors, including the pressure and gravitational field. 

In the weak field for the fixed body in GTR may be written: 

  

2

2 2

3
1

2
b

v

c c


   

   
 

.                                                    (43) 

 

We will assume that 

2 2

2 2

0

3 3

10 40

b b
k

Gm q
E

ac ac
  , as it should be expected due to virial theorem. If 

we substitute (43) into (42), we obtain the relation: 
*

bm M m  , so that the mass M  of the system 

is greater than the mass 
* *m dV  . After substituting (43) into (42), we obtain the expression for 

the mass-energy of the system, which to similar to those presented in [7] and [10] (in contrast to [6], 

in [10]   is an invariant density and  
 denotes the mass density corresponding to our density b ). 

We will assume that the mass of the system in (42) according to GTR is calculated precisely and is 

equal to our mass of the system in (31):  

 

2 2 2 2

2 2 2 2 2 2 2

0 0

6 3 3 31 1

5 20 10 40

b b s b b
b k b b s

Gm q Gm q
M m E dV m

c ac ac c c ac ac
 

 

 
          

 
 . 

(44) 

 

From the left side of (44) we see that in GTR the gravitational energy is included in the equation 

with the increased weight relative to the electromagnetic energy, and in the right side both energies 

have the same weight due to the similarity of equations for the fields. This is due to the fact that in 

GTR the gravitational field is replaced by the effect of the action of the metric field of the metric 

tensor. As a result, the entire metric contains gravitation and the electromagnetic field and pressure 

remain independent.  

If we neglect the contribution of 
2

s
s

c



  to (44) and consider this quantity as a unity, then with 

regard to the expression 

2 2

2 2

0

3 3

10 40

b b
k

Gm q
E

ac ac
   from (44) we can estimate the pressure energy in 

GTR: 
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b
b

Gm
dV

a
   . 
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In (42) the mass M  of the system due to the equivalence principle is considered equal to the 

gravitational mass. This means that in GTR a charged body increases its gravitational mass. Based on 

the stated above, the ratio of masses in GTR is as follows: 

 

*

g bm m M m m m     ,                                                 (45) 

 

where in the first approximation nm Nm   (here N  is the number of nucleons in the body, nm  

is the mass of a nucleon), iM m W   ( M  is the mass of the system in the form of the body and its 

fields, iW  is the internal energy in (36) ), the mass M  is equal to the gravitational mass gm , the mass 

*m  is determined by the integral over the volume of the invariant density  
 (43), the mass bm  is 

calculated by integrating over the volume of the body density b , and the mass m  is determined by 

us in (28) with the help of bm  and has technical nature. 

 

If the mass of the system decreases from the value m  to M , then there is excess energy of the 

order of iW . In GTR the collapsing system must radiate this energy, so that the ideal spherical non-

radiating collapse in GTR is impossible [8]. 

As we can see, relation (45) for the masses in GTR differs significantly from relation (40) for the 

masses in the covariant theory of gravitation. 

 

6. Conclusion 

According to (32), the total energy of the gravitational and electromagnetic fields summed up with 

the energy of the acceleration field and the energy of the pressure field inside the spherical body is 

equal to zero. During the body formation distribution of energies of the body particles takes place in 

the potentials of all the four fields. This leads to the kinetic energy of the motion of particles, to the 

internal pressure and the energy of particles in the gravitational and electromagnetic fields. 

The difference of our approach from the results of GTR is that the mass of the system in the ideal 

spherical collapse does not change, m M  . Really, if at the beginning of the ideal collapse the 

spatial component of the total 4-momentum of the particles falling on the center of mass is equal to 

zero due to the spherical symmetry, the same will take place at the end of the collapse, so that the 

mass-energy, which is part of the time component of 4-momentum, may be conserved. However, the 

gravitational mass gm  is greater than the mass M  of the system, since the state of the particles 

changes – they start moving inside the system and exert pressure on each other, besides, the particles 

acquire additional energy in the internal fields. 
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If the system contains the electromagnetic field, its influence on the mass gm  is opposite to the 

influence of the gravitational field, i.e. the electromagnetic field must reduce the gravitational mass 

gm . We can calculate, that if a body with the mass of 1 kg and the radius of 1 meter is charged up to 

the potential of about 5 megavolt, it must reduce the gravitational mass of the body (not including the 

mass of the additional charges) at weighing in the gravity field by 
1310

 mass fraction, which is close 

to the present day accuracy of mass measurement. 
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