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Abstract 

 The conditions of arising and some effects of physical phenomenon that may be found in the 

process of observing high energy particles are considered in this work. This phenomenon is  

consequence of time discreteness. When the repetition frequency of a particle discrete state 

proves to be commensurable with its own frequency (energy), the aliasing effect of its wave 

function may take place. The wave function aliasing limits the particle energy spectrum giving 

rise to the uninvestigated abnormal modes of movement.  In view of the fact the discreteness of 

particle states at a time is a prerequisite for aliasing, the effect under consideration, in case of its 

experimental verification, may serve a proof of this discreteness. 
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1. Introduction 

The ideas of space and time discreteness, as well as the problems of existence of a fundamental 

length and a fundamental time [1, 2, 3] are becoming more and more popular subjects of 

discussions in recent years.  However, a question being raised as to whether the time is 

continuous or discrete can’t be finally solved on the basis of mere theoretical arguments. There is 

a need for certain proof-of-concept experiment that should cross the T’s. A physical 

phenomenon that may serve a base for such experiment is investigated and forecasted in this 

work on the grounds of hypothesis as to the discreteness of time.  The states of unbound particle 

discretely (intermittently) moving in space are construed as a stream of events divided by 

random time intervals different from zero. These intervals characterizing the repetition frequency 

of particle states due to certain objective relativistic laws on the average prove to be functionally 

related to its movement speed. Upon gaining the speed wherein the average repetition frequency 

of particle instantaneous states becomes less than a double frequency of its wave function, the 

aliasing effect occurs according to the well known Kotelnikov – Shannon sampling theorem. It is 

worth saying, that the aliasing effect is well known in the application tasks connected with the 

digital signal processing. Nevertheless it wasn’t studied as regards fundamental physica l 

problems. It may be assumed that this has happened at least for two reasons. First, nothing of this 

kind has been observed at present with the energy levels attainable on the basis of experiments 

conducted with elementary particles; secondly, the Time Continuity Concept dominating in 

physics excludes this phenomenon as a natural one. However, the energy levels attainable on the 

basis of experiments conducted with elementary particles increase, and if the level ensuring 

identification of wave function aliasing is attained, this will be a sign of the need for revision of 

the Time and Movement Concept.  
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2. Principle of Relativity for the streams of events 

A random succession of instantaneous events is identified as a stream in the theory of  

random processes. We shall consider the instantaneous states of elementary particle representing 

an object under observation as these events. The concept “state of particle” may convey different 

meaning depending on a perspective from which this object is considered. The state may be 

characterized by the coordinates of a point in space (phase, Hilbert, Minkowsky, etc.), speed, 

energy, impulse and other dynamic parameters. We designate as an event any parameter set 

determining particle instantaneous state supplemented with its occurrence time. Space-time point 

in the relativity theory is a common example of the event. A certain set of the events of this 

nature represents the fact referred to as a particle. The elementary character of a particle as a 

stream of events means that it is considered as an integer i.e. a system wherein a single state 

strictly corresponds to the instant of time.  We shall consider the state of elementary particle in 

the stream of events as a certain generalized characteristic of the instant of time.  

The assumption that continuous time possesses infinitely large time density along with  

a certain a priori property being characterized as duration is inherent in the conventional 

approaches. The states arranging between the events of particle in the cha in of its own events 

will be always found in the continuous time for any two states of a particle. Therefore, there are 

no any related events (i.e. the events following directly one after another) in the continuous time.  

This work studies the alternate (event-driven) concept according to which the time doesn’t 

possess a priori duration being measured by the final number of events. Suppose there is  

a certain elementary particle relative to which the movements of other observable particles are 

being studied.  Instantaneous states of this particle correspond to the instants of its own time in  

a one-to-one manner. The stream of its states is a referent criterion of its own time. Therefore, in 

the frame of reference connected with a particle a discrete time is measured by the number of its 

states.  If an observer transforms a certain chain of events into the chain being the time for him, 

this observer indentifies the observable sequence of events as a stream of events of observed 
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object. The time interval between any two events in this stream is measured by a number of the 

instants of time (states of frame of reference) contained between them. 

 

 

 

 

 

 

Meanwhile, the observer’s time is identified with own time of the particle aforementioned,  

thus, constant – own time quantum 0t  is put in correspondence with a pair of related events 

(instants).  Its duration is principally unmeasured in own time, on the contrary, the observer’s 

own time is measured by a number of events – instants, i.e. the number of time quanta.  

Suppose there is the second observer. As with the first case, the observer’s own time is measured 

by a number of elementary events being identified to the instants of time. Similarly to the first 

one, this observer puts a constant - own time quantum in correspondence with a random pair of 

own related events (instants). By virtue of the aforementioned considerations, this constant is 

also immeasurable in the second observer’s own time because own time is measured by the 

number of quanta. In other words, the first observer’s time quantum, as a matter of principle, 

may be measured in the second observer’s time, but not in the own time. For example, I can 

measure averaged duration of elementary interval (one second) with the help of my watch in the 

watch of my interlocutor. This interlocutor can do the same as regards my watch by means of his 

one, but I can’t measure the duration of one second in my watch by the time shown by it in any 

way. Therefore, the own time quantum accurate to within measurement units is a universal 

constant just owing to impossibility to measure it in the own time. Each observer surely can 

assume the own time value at random, but this fact will only complicate the calculation in which 

the time is present without any changes per se due to the need to take into consideration the 

Stream of events of 

observed object 

Observer’s own 

time 

0t   
States of the reference system 

   States of observed object 

Fig. 1. Picture of event-driven time concept 
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measurement unit ratio.  For example, suppose the own time quantum of one observer is equal to 

a definite value with the own time quantum of another observer being equal to other value. So 

long as both quanta are the constants, their ratio is a constant too. Therefore, it may be assumed 

that the quanta are equal but, the measurement units are related by different observers as a 

constant. Meanwhile, the time is measured by the number of quanta in the observer’s time frame. 

 0 00 , t t t t const      ,                                                          (1) 

0t t    .                                                                           (2) 

The streams in which the events appear one by one so that a probability to find two or more 

events in the short time interval tends toward zero are known as the ordinary streams.  

The ordinariness of a stream indicates that simultaneous events are absent in it. For example, 

suppose that an object under observation is represented by a sequence of states of a certain 

system in the aggregate. So long as the system is only in any single state in every instant of time, 

the stream of its states is an ordinary one.  

Let us agree to mark the values relating to an object under observation by index k and 

the values relating to the observer leave without any index. Let us write  ,k t t   for the 

number of events having happened within  ,t t t time interval. It is supposed here and 

elsewhere that an observer presenting reality in an unbiased manner is recording every state of an 

object under observation. The distribution series of  ,k t t  random variable are as follows: 

                                    

 
   0 1

0 1 ...
, :

, , ...
k k k

t t
p t t p t t

 
 

,                                                   (3)  

 

whereon the possible values of numbers of events 2, 3, …, are shown at the top of the column 

with elision marks with the probabilities corresponding to them being shown at the bottom.  

The following normalization condition is satisfied for any  ,t t pair  
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     0 1 2, , , ... 1k k kp t t p t t p t t       .                                             (4)                                       

The mathematical expectation of  ,k t t  random value is equal to the following total: 

       0 1 2, 0 , 1 , 2 , ...k k k

kM t t p t t p t t p t t               .                      (5) 

 In case of ordinary stream with 0t   the probability for appearance of two or more events in 

t  interval tends towards zero. Therefore, the mathematical expectation of  ,k t t  random 

value in the limit tends to the value as follows: 

                            1
0

, lim , ,k

k k
t

t t M t t p t t  
 

           .                                        (6) 

Acting on the basis of the principle of relativity for the streams of events, we shall determine 

own time of an object under observation from (1) having substituted  ,k t t      

mathematical expectation of the number of events of an object under observation within 

 ,t t t time interval for a number of events τ taken by an observer as the instants of own 

time.   0 ,k kt t t t       .  Let us determine kt t  own time of an object under 

observation-to-observer’s own time ratio for an ordinary stream.  

 
0

,kk
t tt

t
t t

      
 

.                                                                      (7) 

Value  
 ,k t t

t
t

 


  


 is known as the average density (intensity) of ordinary stream of 

events in the theory of random processes. It represents the mathematical expectation of a number 

of events falling on the unit of time in segment t  adjacent to the current instant of time t. 

Therefore, the expression (7) may be presented in the following form:  

 0
kt t t
t




 


.                                                                         (8) 

 Let us evaluate own time intervals of an object under observation-to-observer’s own time 

intervals ratio. To do so, let us make use of 0t  time interval determination as the least possible 
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one between two adjoint states of any system. In view of the fact that value 
0t in (7) according 

to determination (1) is less than any value given in the denominator and with due regard for (6) 

we shall derive  1 , 1kkt p t t
t


  


. This inequality means that own time of an object under 

observation isn’t passing more quickly than the observer’s time.  If an observer finds 

instantaneous state of an object under observation with the probability 1 in every 0t  time 

interval, this means that their time is passing equally. If   1 , 1kp t t  , the time of an object 

under observation is passing slower than the observer’s time.  

From the stationary observer’s point of view the adjoint states of moving particle are divided in 

the stream of events by random time intervals 1 2, ,..., ,...it t t    .These time intervals are 

measured by the number of instantaneous states of a particle stationary relative to the observer. 

The discrete space positions of a particle correspond to the discrete instants of time. And at the 

same time, the particle being at the instant of time 0t in the point 0R passes intermediate states 

and at the instant of time  0 it t  finds itself in the point  0 i R R , herein iR designates 

random increments of radius vector indicating the space position of a particle.  When a particle is 

regarded as a discrete stream of events, we must assume that this particle actually exists only at 

the fixed random instants of time and only at the fixed random points in space. The concept of 

particle speed of movement in space is non-applicable to the process of single-shot change of its 

state 

However, one may speak about the average speed 1

1

N

i

i

N

i

i

t













ΔR

V  of the particle state drift in case 

of multiple changes of its state. The less time interval t  is in relation to the time interval 

T on which the process of movement is examined, the more precisely this value corresponds to 
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the ordinary concept of speed. In other words, the particle speed of movement represents a limit 

to which the average drift speed of its state 
0

lim
t T  

V V is converging. 

Suppose a particle moving at a speed of V  relative to the inertial reference system represents an 

object under observation. If this is the case, own time of an object under observation-to-

observer’s own time ratio, as is well known, is equal to:                                        

       

2

2
1 1kt

t c


  



V
.                                                          (9) 

The special relativity theory establishes a functional connection (9) between the time intervals 

and speed of movement.  In consideration of time filling with the events, the principle of 

relativity for the streams of events establishes a functional connection (8) b etween the time 

intervals and the density. Having compared (8) and (9), we shall derive a formula connecting the 

density of a stream of events of the particle with its speed of movement in the inertial reference 

system.  

 
2

2

0

1
1

t c
  



V
V .                                                     (10) 

This formula implies that the average number of events of a moving particle falling on  

the unit of time is reducing with increase of its speed. When the particle under observation is 

immovable in respect to an observer, the density of its stream of events is equal to the density of 

observer’s time. This means that an observer is snapping instantaneous state of the particle under 

observation in every elementary time interval. With increase of the speed of movement of  

a particle its instantaneous states fail getting in every elementary time interval of an observer. 

Having attained the limit speed of movement, the instantaneous states of particle don’t get in any 

elementary time interval of an observer. Actually, maybe this is the phenomenon explaining  

the fact that the speed of light is unattainable for the particles being observed in space as  

the objects in movement.  
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3. Substitute (aliasing) of Particle Frequency 

The state of moving particle is described in quantum mechanics by a wave function as follows:  

       
,

j t j t
t Ce A e

 



 

kr
r r ,                                      (11) 

whereon 2  wave frequency, r is radius vector of random point in space, t is time,  

k  is wave vector. The frequency and wave vector are connected with the energy and momentum 

of a particle by well known de Broglie relations ,   E  p k , whereon  (reduced) 

Planckian constant. The conventional concept determines a wave function simultaneously in all 

points of continuous space and in any moment of continuous time.  

However, the approaches substantiating time-space discreteness are well known at present. 

When a particle is regarded as a discrete stream of events, it is necessary to interpret its wave 

function in an appropriate manner. The results obtained by Shan Gao [4] are interesting from this 

point of view. Analyzing the results of interpretation of wave function of the quantum system, he 

obtains the following: the wave function should be regarded not as a field, but as a stream of 

particle states in discrete time-space. It is represented by the aggregate of sampled values 

 , r  corresponding to the discrete instants of time  0,1,2,... ,...   

     , ,t t t dt    




  r r , 

whereon  ,t r  is the wave function in which a particle in the continuous time-space is 

described. This function may be recovered according to sampled values on the basis of 

Kotelnikov – Shannon sampling theorem. Analyzing a particle in the discrete time-space in 

interaction with its environment, we have to perform a procedure for restoration of continuity in 

connection with integro-differential nature of the laws applied to describe this interaction.  

The condition for reasonable restoration of the wave function continuity in time according to 

sampling theorem is of the form as follows:  
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 
2 2

F



 

V
,                                                           (12) 

whereon F is the Nyquist frequency.  If the time is considered to be continuous (
0 0t  ),  

the density of a stream of particles according to (10) is infinitely large. And at the same time  

the inequality (12) is performed for any frequency of the wave function. If the time is discrete 

(
0 0t  ), namely being a basis for the event concept, then (11) is adequately describing  

the wave function only with the frequencies being not higher than the Nyquist frequency. 

Substituting value  from (10), we shall obtain the inequality as follows:  

2

2

0

1
1

t c




 



V
,                                                        (13) 

whence it follows that                                                                                                                       

2
2

02
1 t

c




  

V
.                                                       (14) 

The result obtained may be interpreted as stated below. So far as the speed of a particle doesn’t 

exceed the value: 

  

2
2

02
1Fc c t




    ,                                                        (15) 

the wave function characterized by frequency  may be unambiguously restored by  

a discrete sequence of its instantaneous values following one after another with the intensity 

2

2

0

1
1

V

t c
  


. Let us see what will happen if a particle exceeds speed Fc . Having used the 

method cited by R. Otnes and L. Enochson [5], let us express the time of observation  t  through 

the average period of instantaneous states of a particle in the stream of events 

,  0,1,2,...t





     
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.  
j

A e



  r  ,                                                                (16) 

we shall also present ratio  



   in the form of integral z  and fractional 

q
 parts of  character   

z q


 

  .                                                                (17) 

as this takes place, the wave function will be transformed to the form as follows:   

     jz jqA e e   r .  .                                                  (18)      

Now we have two opportunities depending upon parity and imparity of value z   

1)  If z is even number, 1jze    for all   in correspondence with the rotation of vector   in 

the plane of complex numbers to the angle multiple of 2 . 

2)  If z is odd number,   1jze
    for all   in correspondence with the rotation of vector 

 in the plane of complex numbers to the angle multiple of  .   

 Taking into account that t



 , let us rewrite angle q  for the first example as follows: 

  ,   z 0,2,4,...q z t


   


    ,                                               (19) 

whence it’s seen that 2   is substituted for the frequency: 

2

2

0

1 ,   z 0,2,4,...
V

z z
t c


         


.                           (20) 

In the second example let us take into account the following:    1 cos ,


    sin 0   

Let us present complex number
jz jqe e 

 in the trigonometric representation having 

supplemented it with intentionally zero summands:  
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       

       

     

cos cos cos sin

sin sin sin cos

cos 1 sin 1 .

jz jqe e q j q

q j q

q j q

       

     

 

  

  

   

 

Therefore, for odd numbers z     we have:                

                            
 1j qjz jqe e e

   
 . 

Let us rewrite angle   1 q    in the following form: 

                        1 2 ,   z 1,3,...q z F t


     


       . 

In this case the wave frequency is substituted for the following frequency: 

2

2

0

2 2 1
V

F F z
t c


          


 ,                                                   (21) 

if 1z  , we shall obtain: 

2

2

0

2
1 .

V

t c


    


.                                                                          (22) 

Thus it’s seen, that if the density of stream of events of a particle under observation is being 

reduced due to increase of its speed up to critical value, 2F





  ,   the frequency (energy) 

is being substituted. The frequency line shown in the diagram of frequency dependence on speed 

(Fig. 2) doesn’t monotonically go into infinity, but “is folded”.  This has stipulated  the 

conventional designation of the Nyquist frequency by letter F (from English Fold). Due to this 

phenomenon the frequencies differing from the ones that may be observed if the density of  

a stream of events would be infinitely large may appear the frequency spectrum under 

observation.  

Let us consider a dependence of frequency (energy) of an unbound particle on the speed of 

movement with the account taken of limited density of its instantaneous state stream.  
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The energy and frequency of an unbound particle with mass m  in the inertial reference system, 

as is well known, are equal to: 

2

2

2
1

mc
E

V

c




, 

2

2

2
1

mc

V

c




.    Suppose the speed of  

a particle is increasing and attains value Fc . Further increase of the speed will lead to the 

frequency substitution according to (15).   

 

 

 

 

 

 

 

 

 

 

 

Reference frequency

2

2

1 F

mc

c

c

 
  
 

 and substitution frequency

2

0

1 Fc

t c

  
  

  
 with a speed 

FcV  equal to:  

22

2
0

1

1

F

F

mc c

t cc

c

  
   
   

  
 

.                                                                      (23) 

From this equation we shall find: 

E  

  2 pl

F

mm
E c c


    

c  

2E mc  

V  

  2 3F plE c c mm      

  2 5F plE c c mm      

0 Fc   1Fc   1Fc   

 E V   
 E V   

Fig. 2. Specificities of energy spectrum of ultrarelativistic particle due to 

frequency substitution 



 14 

2

01Fc mc
t

c 
   .                                                                                       (24) 

Let us express ratio 

2mc


 through Planckian time 

5Pl

G
t

c
  and Planckian mass

Pl

c
m

G
 .  

Having multiplied these two values we shall obtain: 

2 1

Pl Pl

c

t m
 , whence  

2

0

Pl Pl

mc m t

m t 


   follows. 

  Let us denote dimensionless constant   

 0

Pl

t

t





  ,                                                          (25) 

indicating elementary reduced time interval 
0t




 to Planckian time Plt ratio.  

In view of (25) the expression (24) is simplified for the critical speed of a particle wherein  

the aliasing arises 

1F

Pl

c m

c m
  .                                                 (26) 

If the speed of a particle increases over value Fc , its frequency (energy) is reduced from the 

stationary observer’s point of view due to frequency substitution as may be inferred from (21) 

contrary to expected increase.  

Using continuous numbering 0,1,2,3,...z   we shall obtain the following value of substituted 

frequency for even 2z z  folds:  

2

2

0

2 1 ,   z 0,1,2,3,...
V

z
t c


     


.                                      (27) 

The value of substituted frequency for odd 2 1z z   values is equal to: 
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 
2

2

0

2 2 1 1 ,   z 0,1,2,3,...
V

F z
t c


        


.                         (28) 

Let us determine the speed of a particle movement at the conjunction points of the folds. Let us 

write zFc for the critical speed in the transition point of even fold into the odd one and zFc for the 

critical speed in the transition point of odd fold into the even one.   

The equality    zF zFc c      is a condition of conjunction when transition from the even 

fold  0,2,4,...z   to the odd fold 1,3,5,...z   The equality    zF zFc c     is  

a condition of conjunction when transition from the odd fold 1,3,5,...z   to even 

fold 0,2,4,...z    

Corresponding equations take the form as follows: 

   
2 2 2 2

2 22 2
0 0

2 1 2 2 1 1 ,

1 1

zF zF
zF

zF zF

mc c mc c
z F c z

t c t cc c

c c

 


 
       

     
    
   

0,1,2,3,...z                                                                                                    

   
2 2 2 2

2 22 2
0 0

2 1 2 2 1 1 ,

1 1

zF zF
zF

zF zF

mc c mc c
z F c z

t c t cc c

c c

 


 
       

     
    
   

1,2,3,4...z   

In view of (10) and (12) we have  
2

0

2 1 zF
zF

c
F c

t c




 
   
  

.  
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With due consideration of this equality the initial equations are reduced to the form as follows: 

                     
2 2

22
0

2
4 2 1 0,

1

zF

zF

mc c
z

t cc

c

 
   

 
  
 

 0,1,2,3,...z  ,   

                 

2 2

22
0

2
4 1 0

1

zF

zF

mc c
z

t cc

c

 
  

 
  
 

,  1,2,3,4...z  . 

Having substituted here 0 2Pl

Pl

t t
c m


    from (25), we shall obtain: 

1 ,    0,1,2,...
2 1

zF

Pl

c m
z

c z m


  


,                                      (29) 

1 ,    1,2,3,...
2

zF

pl

c m
z

c z m


   .                                     (30) 

Let us determine the values of frequency (energy) at the conjunction points of the folds: 

   

 

2

0

2

2
2 1

2 1

,     0,1,2,...,
2 1

zF zF

Pl

Pl

Pl

mc m
c c z

t z mm

z m

c mm
z

z

 
 





      
 



 


                       (31) 

   
2

0

2 0,   1,2,3,...
2

2

zF zF

Pl

Pl

mc m
c c z z

t z mm

z m

 
 


       


.          (32) 

The frequency (energy) of a particle becomes zero in every point where the odd fold transfers 

into the even one. The largest value of particle energy with m  is at the conjunction point of 

zero and first folds that is with 0z  .  

2

sup
Plmm

E c


 .                                                                            (33) 
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The value of dimensionless physical constant   may be obtained immediately from the formula 

(33) upon instrumental detection of aliasing.  Let us make preliminary estimation of this value. 

The observations of the ultra-high energy cosmic rays give reason to suppose that the order 

2010 eV is inherent in the ultimate proton energy. Having inserted 
20

sup 10E   eV, the mass 

of proton 938 MeV and Planckian mass 
191,22 10 GeV in (33) we shall obtain: 

4
30

2

sup

1,144 10~Pl

Pl

mm c t

E t





   .                                               (34) 

This fundamental in its physics dimensionless constant is of the same order as a reduced fine 

structure constant 
31,161409732 10

2





  .  In view of the proximity of two constants under 

examination (the difference amounts to 2 % at most) as well as the fact that (34) is only the 

estimation of an order of magnitude, it may be assumed that in reality
2





 , and the ultimate 

particle energy with the mass of the proton is equal to 
200,985 10 eV. 

E  

V  

Absolute limit of particle energy 2

plm c


  

2

2m c   
2

1mc   c   

Fig. 3. Energy including wave function aliasing for the particles with different mass 
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At the same time, three physical constants: time quantum
0t , fine structure constant  and 

Planckian time 
Plt  prove to be interconnected by a simple ratio: 

44
3 47

0

5,39056 10
7,297352 10 19,668407 10

2 2

Plt
t 


 

      s. 

In other words, a fine structure constant presents double-time quantum-to-Planckian time ratio. 

Under the Markov [6] hypothesis the maximum possible mass of a particle at rest is equal to the 

Planckian mass. However, as it follows from (29), a theoretical mass limit may be set  

to Plm


.  With this particle mass the frequency is substituted almost at its zero speed, the 

dynamics of a particle is abnormal at all speeds of its movement. Therefore, with a discrete time, 

no matter how close is the speed of movement of any particle to the speed of light, the quantity 

of its energy is limited to 
PlE

E


  due to the phenomenon of frequency substitution.  

The time may be considered continuous in the frequency (energy) domain where the aliasing 

doesn’t come out.  However, the nature of particle movement beyond the confines of this domain 

wherein its energy reduces with increase of the speed becomes paradoxical from the point of 

view of the hypothesis of continuous time.  

With discrete time ( 0  ) the particle energy of discrete mass doesn’t monotonically increase 

to infinity with increase of the speed of its movement due to substitution of its frequency. The 

energy line shown in the diagram of frequency (energy) dependence on speed is folded. And at 

the same time, the particle energy proves to be equal to zero at the bottom conjunction points. In 

view of the positive value of rest energy of unbound charged particle with mass m , we shall 

obtain that if it is accelerated up to speed 1Fc , for example, in the accelerating device, 

energy
2E mc is released.  The particle is giving this energy to accelerating electromagnetic 

field. This technique of direct particle mass conversion into the electromagnetic field energy 
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fundamentally differs from the techniques based on the reaction of fission, synthesis or 

annihilation of elementary particles.  

Generally speaking, the aliasing phenomenon implies a possibility in principle for the existence 

of massive particles with a disproportionately low kinetic energy. If the wave function aliasing is 

ignored, a false inference as regards the mass of these particles may be drawn as judged by the 

energy measurements. This leads to an illusory contradiction emerging as a result of observation 

where the mass of a particle comes out as the inertial and gravitational one.  

For example, a massive ultra relativistic particle moving at a speed 
1

1
1

4
F

Pl

m
c c

m
      

in the magnetic field with a component of strength perpendicular to the direction of its 

movement does not radiate because the intensity of synchrotron radiation is proportional to  

the square of a particle energy being equal to zero in the present case.  Not manifesting itself by 

the electromagnetic wave radiation this particle nevertheless is interacting with the medium 

surrounding it through the gravitational field possibly being the essence of the dark matter 

problem. 

Due to aliasing a particle whose energy initially exceeds the Greisen-Zatsepin-Kuzmin threshold 

(GZK limit) to a considerable extent may move in space over all distances non-reacting with the 

microwave background radiation. This will take place if its speed exceeds the critical  one 

(wherein the frequency is being substituted) to the extent that a particle energy will reduce lower 

than the GZK threshold limit being estimated by value
195 10 eV. If a particle movement 

subsequently slows prior to its detection, the energy will gain anew. This may lead to  

the changes in spectrum of high-energy particles referred to as a paradox of the GZK threshold 

limit.  

Conclusions 

 

 1.  In continuous time, the frequency (energy) of a particle grows unlimitedly when its speed 

approaches the speed of light in vacuum. In discrete time, on the contrary, due to aliasing, the 
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frequency (energy) of a particle is limited and decreases when the speed grows above some 

crucial value and the first substitution of frequency takes place. If this phenomenon were found 

in an experiment, it would corroborate the hypothesis of time discreteness empirically.  

 2. Time discreteness causes an anomalous dynamics of particles, which has not been 

investigated before. 

 3. If time is discrete, then, in ultrarelativistic field, such particles speeds, different from zero, 

should exist, by which the frequency (energy) of wave function turns into zero.  

 4. The fact of energy decreasing under the value of immobility energy due to aliasing by its 

momentum, shows that there exists a possibility of creating some principally new energy 

sources; it can also explain some cosmological paradoxes, such as, for example, the ones of GZK 

paradox  and dark matter.  
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