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Abstract 
 
In this paper we discuss new approach to deal with k-clique problems or 
their equivalents, namely, k-independent set problems.  
 
1. Introduction: A graph is complete when every vertex of it is 

connected by an edge to every other vertex and a graph is totally 
disconnected when there are no edges joining any of its vertices. A 
clique in a graph is its subgraph which is complete. A maximal clique 
is one in which no vertices can be added. In other words, a maximal 
clique is one which is not included in a larger clique, i.e. which is not 
a proper subgraph of a larger clique. It is not difficult to see that 
finding maximal clique is that way quite straightforward. A maximum 
clique is clique with largest possible number of vertices. Clique 
number associated with a graph, G, )(Gω , is equal to number of 
vertices in a maximum clique of G. Finding maximum clique in G is 
not easy, and rather a hard problem. A brute force algorithm to check 
whether G contains a k-clique is in the worst case may require to test 
all subgraphs of G containing k vertices and see whether there is some 
subgraph with k vertices among these subgraphs which is clique. 
Solving the decision clique problem of testing whether a graph 
contains a clique larger than given size is NP complete. Input: 
Undirected graph G and a number k. Output: Boolean value true if 
contains a clique of size k, and false otherwise. The simplest nontrivial 
case of clique finding is finding triangle in a graph, or equivalently, to 
determine whether the graph is triangle free. The problem of finding 
the maximum clique in a graph is NP hard. Input: Undirected graph G. 
Output: maximum sized clique in this graph G. The complement of a 
graph is the one obtained by replacing edges by non-edges and vice 
versa. The independent set in a graph is a set of vertices which 
together forms totally disconnected subgraph of G. A maximal 
independent set is one in which no new vertex can be added keeping 
it independent. A maximum independent set is independent set with 
largest possible number of vertices. The clique problems and the 
independent set problems are equivalent as they are complementary. 
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The equivalence of these problems is straightforward: for a clique in G 
is same as independent set in the complement of G, say cG . Thus, the 
decision independent set problem is NP complete. Input: Undirected 
graph G and a number k. Output: Boolean value true if contains an 
independent set of size k, and false otherwise. The maximum 
independent set problem is NP hard. Input: Undirected graph G. 
Output: maximum independent set in the graph. 

      We will consider clique problems in this paper. 
 
2. Turan and Turan-like Graphs and their Subgraphs: In the so 

called problems of extremal graph theory one asks to find out 
),( Hpex , the count of maximum number of edges a graph on p 

vertices can contain, without containing the forbidden graph H. The 
following celebrated theorem of Turan is forerunner of the field of 
extremal graph theory. Let  r  denotes the greatest integer not 
exceeding the real number r and let  r  denotes the smallest integer 
not less than the real number r.  Turan [1] showed that the maximum 
number of edges among all graphs containing p vertices and without 

containing any triangles is 







4

2p
. We give below the standard 

definition of Turan graph [2] and define further Generalized-Turan 
graph or Turan-like graph. 

       
      Definition 2.1: The Turan graph rnT , is the complete r-partite graph          

with n vertices and has b parts of size 1+a  and br −  parts of size a , 

where 



=

r
na  and ranb −= .  

      Turan [1] proved that rnT ,  is the unique largest simple n vertex graph 

with no clique on ( 1+r ) vertices, i.e. rnT ,   doesn’t contain any (r + 1)-
clique. 

 
    Theorem 2.1(Turan): Among the n-vertex simple graphs with no      

(r + 1)-clique, rnT ,  has maximum number of edges. 
   
      Definition 2.2: The Generalized-Turan graph or Turan-like graph, 

rnL ,  is the complete r-partite graph with n vertices and has r parts of 
all possible various sizes such that the sum of cardinalities of all these 
parts is n.   
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     Thus, in order to form a Turan-like graph we take a set of n vertices. 

We form some r-partition of number n, as follows: 

rppppn ++++= L321  
      We now split the initially taken n vertices into r number of subsets of   

vertices such that the cardinalities of these subsets is rppp ,,, 21 L  
respectively, and we then form the r-partite complete graph. It is also 
clear to see that the Turan graph rnT ,  is a special type of Turan-like 

graph rnL ,  only. 
     If now we drop the condition of completeness possessed by Turan  

graph rnT , or Turan-like graph rnL , then what we will get will be 
different proper subgraphs of these graphs.  

     An important point to be noted is as follows: No graph having 
representation as complete or incomplete r-partite graph, i.e. having 
representation as rnT ,  or rnL , or some proper subgraph of these 
graphs has (r+1)-clique as subgraph because each partite set can 
contribute at most one vertex to a clique. 

      Let G be a (p, q) graph, i.e. a graph on p points (vertices) and q lines 
(edges) with the following vertex set )(GV  and edge set )(GE  
respectively: 

                              )(GV  = { pvvv ,,, 21 L } and  
                              )(GE  = { qeee ,,, 21 L } 
     Definition 2.3: The vertex adjacency bitableau associated with every 

labeled copy of graph G, VAB(G), is the following bitableau:  
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     where left tableau represents the suffixes of the vertex labels and stand 

for the vertices while the right tableau represents the rows of the 
suffixes of the vertex labels and represent the vertices that are adjacent 
to vertex whose suffix is written in the same row in the left tableau, 
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i.e. the appearance of entry j
kα  in the jth row of the right tableau 

implies that vertex jv  is adjacent to vertex  j
k

v
α

. 

      Definition 2.4: The increasing vertex adjacency bitableau 
associated with every labeled copy of graph G, IVAB(G), is the 
following bitableau:  

 

               

























−

++
=

L

M

L

M

L

L

p

pjjj

p
p

GIVAB
)2(*)1(

**432
*321

)(  

     
     where left tableau represents the suffixes of the vertex labels and stand 

for the vertices while the right tableau represents the rows of the 
suffixes of the vertex labels and represent the vertices that are adjacent 
(nonadjacent) to the vertex whose suffix is written in the same row in 
the left tableau, i.e. the appearance of entry k ( *k ) in the jth row of 
the right tableau implies that kj < and vertex jv  is adjacent 

(nonadjacent) to vertex  kv .  
     Thus, for example, from the above given )(GIVAB  vertex 1v  is 

adjacent to vertex pv , but vertex jv  is not adjacent to vertex )1( +jv , 

etc.  It is clear to see that for a complete graph, pK , on p  points 
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      Similarly, for an independent set, pI , on p  points  
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     As an illustration consider the )(GIVAB  constructed for a graph on 

7=p  points:  
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      Clearly, this graph is 3,7T , a complete 3-partite graph with 

independent sets {1, 4, 7}, {2, 5}, {3, 6} and so it can’t contain a 
clique on 4=n points. 

      We are going to state now an obvious but important result: 
 
     Theorem 2.2: Every simple graph on n vertices can be shown to be 

equivalent to (isomorphic to) either some rnT ,  or rnL , or some proper 
subgraph of these graphs, for some r. This representation for the graph 
under consideration is not unique and many different representations 
in terms of rnT ,  or rnL , or some proper subgraph of these graphs are 
possible for the graph under consideration. 

 
     Proof: This result follows if we see that we can break the vertex set of 

given graph into subsets which are independent sets. Thus, we need to 
see that the vertex set of any graph can be expressed as disjoint union 
of independent sets. Let {1, 2, …., n} be the labels associated with the 
vertices of the graph under consideration. To form first independent 
set we take vertex with label 1 as first element of first independent set. 
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We then find and add vertex with smallest label, say 11j , which is 
nonadjacent to vertex with label 1 to this set. We then find and add 
vertex with smallest label, say 12j  which is nonadjacent to vertex with 
label 1 and 11j  to this set. We then find and add vertex with smallest 
label, say 13j  which is nonadjacent to vertex with label 1, 11j  and 12j  
to this set. In this way we go on adding vertices till possible and form 
first independent set { }L,,,,1 131211 jjj such that all the vertices in this 
set are mutually nonadjacent. We then choose vertex with smallest 
label which is not present in just formed first independent set and 
taking this vertex as first vertex in the second independent set to be 
formed we proceed on similar lines and form second independent set. 
We continue this procedure of forming independent sets till every 
vertex among the vertices with labels {1, 2, …., n} belonging to graph 
under consideration will belong to some independent set. The result is 
now clear. 

   
      
     It is easy to see that an efficient algorithm to express given graph G as 

an r-partite graph with minimum r provides efficient solution to the k-
clique problem. In this representation of G as an r-partite graph, with r 
minimum, this graph may or may not be complete r-partite graph. 
Thus, in brief the given graph G is expressed in terms of either some 

rnT ,  or rnL , or some proper subgraph of these graphs with minimum 
value for r. Such graph will certainly not contain a clique of size 
(r+1), i.e. )1( +rK , and may or may not contain clique of size r , i.e. rK , 
because the r-partite graph thus formed is not necessarily complete 
and may be proper subgraph of complete r-partite graph. When this 
graph will be the complete r-partite graph then it will certainly contain 
a clique of size r, i.e. a rK . We now proceed to give one algorithm to 
manage the task of expressing given graph G as an r-partite graph with 
r minimum. 

 
      Algorithm 2.1:  
 

1) Given the graph G with vertices labeled {1, 2, 3, … , n}. Form all 
possible maximal independent sets which contain vertex with label 
1.  

2) For each maximal independent set thus formed containing vertex 
labeled 1, say set L,, 21 AA etc. Find the smallest vertex labels 

say L,,, 312111 jjj such that vertex with label ii Aj ∉1 for all i.  
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3) Form all possible maximal independent sets containing vertex with 
label 11j , say L,,, 131211 AAA also form all possible maximal 

independent sets containing vertex with label 21j , say 
L,,, 232221 AAA and so on. Continue this way till each of the 

vertex is placed in some independent set. In this way we have 
formed different collections of independent sets such that each 
such collection of independent sets together contains all the 
vertices.  

4) Among these different collections of independent sets, each 
representing the given graph as an r-partite graph for some r, find 
those which are having smallest value for r.  

5) Collect all these representations with smallest value for r which 
represent the expressions for given graph G as an r-partite graph 
with r minimum. 

 
       
       Example: Consider following simple graph 
 

 
     It is easy to check that by following the steps of the above algorithm 

we can form the following two collections of independent set as 
representation for the graph in the above figure as 3-partite graph with 
partite sets: {1, 6}, {2, 4}, {3, 5}. Or it can be represented as 4-partite 
graph with partite sets: {1, 6}, {2, 5}, {3}, {4}. It can be checked that 
the representation as 3-partite graph is minimal, i.e. the minimum 
value for r is 3. 

     One should now note an important point at this juncture that if and 
when we get the representation for the graph under consideration as 
some r-partite graph, may be complete r-partite one or not, then this 
graph cannot contain as subgraph some (r+1)-clique, and even if by 
adding the required missing edges we convert this r-partite graph into 

1 

2 3 4 5 

6 
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complete r-partite graph still such new graph will not contain as 
subgraph the (r+1)-clique.  

 
3. Utilizing IVAB(G) for Clique Finding: We now discuss a heuristic 

algorithm in order to quickly locate a clique of certain size in a graph 
as its subgraph. We make use of IVAB(G) of given graph G. The k-th 
row (k < n) of IVAB(G) for graph G containing n vertices is  

 
k | (k+1)  (k+2)*  (k+3)  (k+4)  (k+5)*……….n 

 
     Thus, it contains all numbers from (k+1) to n, in all (n-k) numbers, and 

those numbers  which represent labels of vertices nonadjacent to k are 
marked with a * after these numbers. Now suppose we wish to check 
whether some clique of size m is present in given graph G. We follow 
the following procedure: 

      
      Algorithm for Clique Testing:  
 

1) Form IVAB(G) for given graph G. 

2) Associate number )(kα with each row k, where )(
)()(
kn

kk
−

=
βα , 

and )(kβ stands for the count of entries in k-th row which are not 
marked by a star after them.  

3) Collect those m rows which contains maximum number of entries 
not marked with star, i.e. collect those rows for which )(kα is large 

say { }miiii ,,,, 321 L . You may arrange the numbers 
)(kα associated with rows in non-increasing order and take first m 

rows with large )(kα . 

4) Check whether in row 1i  numbers { }miii ,,, 32 L are not marked 

with * after them, in row  2i  numbers { }mii ,,3 L are not marked 

with * after them, ……., in row )1( −mi if number { mi } is not 
marked with * after it.  

 
 
 
 
 
 



 9

Remark 3.1: When the check in step 4) above has positive answer  
then clique formed by vertices with labels { }miiii ,,,, 321 L  exists as 
subgraph of G. 
 
Remark 3.2: When one wish to check whether given graph contains a 
triangle, or whether it is triangle free then in the bitableau IVAB(G) 
for the given graph G one needs to check whether there exists or not a 
sub-bitableau of the form  
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Remark 3.3: When one wish to check whether given graph contains 
an independent set of size 3, or whether it is free of any 3-independent 
set then in the bitableau IVAB(G) for the given graph G one needs to 
check whether there exists or not a sub-bitableau of the form  
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