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Abstract
The Tolman-Oppenheimer-Volkov (TOV) equation is solved with a new ansatz: the external
boundary condition with mass M0 and radius R1 is dual to the internal boundary condition

with density bc and inner radius ri , the two boundary conditions yield the same result.

The inner boundary condition is imposed with a density bc and an inner radius ri, which is
zero for the compact neutron stars, but non-zero for the shell-stars: stellar shell-star and
galactic (supermassive) shell-star. Parametric solutions are calculated for neutron stars,
stellar shell-stars, galactic shell-stars. From the results an M-R-relation and mass limits for
these star models can be extracted. A new method is found for solving the Einstein
equations for Kerr space-time with matter (extended Kerr space-time), i.e. rotating matter
distribution in its own gravitational field. Then numerical solutions are calculated for several
astrophysical models: white dwarf, neutron star, stellar shell-star, galactic shell-star. The
results are that shell-star star models closely resemble the behaviour of abstract black holes,
including the Bekenstein-Hawking entropy, but have finite redshifts and escape velocity v<c
and no singularity .

1. Introduction
In General Relativity, one of the most important applications is to calculate the mass
distribution and the space-time metric for a given equation-of-state of a stellar model.
Without rotation, one has spherical symmetry and in then the Tolman-Oppenheimer-Volkov
(TOV) equation in radius r, which is derived directly from the Einstein equations (see [2]) , is
being used. The TOV equation consists originally of 2 coupled non-linear ordinary differential

equations (odeq) of degree 1 in r for mass M(r) and density (r) , where )()(4 2 rMrr  ,

and can be transformed into one ordinary differential equation of degree 2 for M(r) by

eliminating (r).

The boundary condition is imposed normally at r=0 with M(0)=0 and (0)=0 , where 0 is
the maximal density. Then the TOV-equation for M(r) is solved with this boundary condition

at r=0 for M(r) and M’(r) , which gives the total mass M0(0) and the total radius R(0) , and a
mass-radius relation M0(R) .
The predominant view of the neutron stars and stellar black-holes is, that neutron stars obey
an equation-of state (eos)of an interacting-fluid model [6], which solutions of the TOV
equation up to about M=3 Msun .For larger masses, so it is assumed, only a black-hole
solution remains. This is based on the so-called Oppenheimer limit for the radius of a
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rR s  : for a smaller compact object, the density at the center

becomes infinite.
The new ansatz presented here is the extended (inner) boundary condition at r=ri with the

non-zero inner radius ri , M(ri)=0 and (ri)=0 , i.e. the star becomes a shell-star with an
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(almost) void interior. With the parameters ri and 0 this ansatz generates a 2-parametric
solution manifold, where, because of energy minimization, the stable physical solution is the

one with minimal ri for a given 0 , which determines the total mass M0(ri ,0) and the total

radius R(ri ,0) . This ansatz circumvents the Oppenheimer limit, because the mass is non-
compact , and the density at the center is zero. It yields valid solutions of the TOV-equation
with a continuous mass-radius relation M0(R, ri) .

The dual (outer) boundary condition is the one at r=R with M=M0 and =bc , where bc

depends on the equation-of-state (eos): for neutron stars with interacting nucleon fluid

bc =c >0 with the equilibrium nucleon density c , and for the eos of non-interacting

nucleon Fermi-gas (stellar shell-stars) bc =0 . The 2 parameters R and M0 in the dual outer

boundary condition correspond uniquely to the 2 parameters ri and 0 in the inner boundary
condition.
With rotation, one has an axisymmetric model in the variables r and  (azimuthal angle) ,
and has to solve the Einstein equations in these 2 coordinates. In vacuum, the corresponding

solution is the Kerr space-time in r and . With mass, a good starting point is using the
extended Kerr space-time in Boyer-Lindquist coordinates with correction-factor functions

A0,…,A4 and B0,…B4 and the mass M(r,) as variables and insert this into the Einstein
equations. Setting Bi=0 some of the 10 Einstein equations become trivial and one is left

with 6 partial-differential equations (pdeq) in r and  for the 6 variables A0,…,A4 and M.
The (outer) boundary condition here at the effective star radius R with total mass M0 is: Ai=1,
M=M0 and  rAi=0 , rM=0 , as the density becomes 0 and the space-time becomes the
normal Kerr space-time in vacuum.

Now, with rotation, we have a new model parameter, the angular velocity  , to which

corresponds a third parameter in the outer boundary condition: (outer) ellipticity R1, where

R1x=R1y-R1 and R1x and R1y are the equatorial and the polar radius. As in the TOV-case,

here to the 3 parameters R1y, M0 and R1 correspond the 3 inner parameters riy, 0 and ri .
So here we get a 3-parametric solution manifold, and as in the spherical case, for a given
total mass M0 we have to find the stable physical solution. As before, these will be the ones
with minimal riy and among them the one with minimal mean energy density: this defines

the inner ellipticity ri . In all considered cases, it can be shown numerically, that such a
(non-trivial) minimum exists.
The paper is organized as follows.
In 2 we present the mathematical setup, in 3 the equations for the extended Kerr space-time
with rotation, in 4 the solution algorithm for it. In 5 the TOV-equation is introduced, in 6 the
equation-of-state for the nucleon fluid and nucleon gas. In 7 the results for the TOV-
equation are shown: the parametric solution manifold in 7.1. and the case study for typical
stars in 7.2. In 8 the results for the extended Kerr space-time with rotation are presented for
three typical star configurations: compact neutron star, stellar shell-star, galactic shell-star.

2. The Kerr space-time, Schwarzschild space-time, Einstein equations
Using the Minkowski metric  = diag(1,-1,-1,-1), the Kerr space-time metric in original Kerr

coordinates (u, , ) has the line element [2]
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where
2

2

c

GM
rs  is the Schwarzschild radius, and

Mc

J
a  is the angular momentum

radius (amr) , a has the dimension of a distance:    ra  , and J is the angular momentum.

With this line element the Kerr metric tensor g is as follows:
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with the abbreviations )cos( 222
12  ar 

and )
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In the limit a->0 the Schwarzschild space-time in advanced Eddington-Finkelstein
coordinates emerges:
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This form of the Schwarzschild line element has the advantage in comparison with the
original line element
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that the (apparent) singularity at srr  is missing .

The same is valid for the original Kerr space-time: the denominator 12 has no zeros, there is

no singularity in abg , which makes it more well-behaved numerically.

Alternatively, in Boyer-Lindquist-coordinates:
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with the line element
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with the abbreviation 22
12 arrr s  . Here, 12 has zeros at the inner/outer horizon

222 cos)2/()2/( arrr ss  , so for numerical calculations the singularity has to be

removed by adding a small  : 2222
12 )(  arrrs s .

In the limit a->0 the Schwarzschild space-time in the standard form (4) emerges.

The Einstein field equations with the above Minkowski metric are:

 TgRgR  0
2

1
(5)

where R is the Ricci tensor, R0 the Ricci curvature,
4

8

c
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  , T is the energy-

momentum tensor,  is the cosmological constant (in the following neglected, i.e. set 0),

with the Christoffel symbols (second kind)
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and the Ricci tensor
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The crucial part of the extended Kerr solution is the expression for the energy-momentum
tensor T . As usual, one uses the formula for the perfect fluid [2,(45.3)]:
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where P and  is the pressure and density, u is the covariant velocity 4-vector.

In the Schwarzschild case, when deriving the TOV-equation, one sets the spatial

contravariant velocity components to 0: 0iu , in the Kerr case the tangential velocity

03  uu .

For the velocity one has:
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If we make the obvious assumption that the star rotates as a whole, i.e. with constant
angular velocity, then the moment of inertia I becomes r-dependent, like the mass M :
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The factor 3 in the integral instead of the usual 4 comes from the dimensionless calculation
in “sun units” (see below).
The amr a also becomes r-dependent:
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In the relativistic axisymmetric case with rotation with angular velocity , u has
the form [11]:

u u 0 0  u 

Now 0u is calculated from the condition
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 uugc 2

and the covariant velocity from


 ugu 

The resulting expression for 0u is (Ai are the Kerr correction-factors, mass M1[r1], moment
of inertia I1[r1]): (9a)
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The state equation for the pressure P for the nucleon gas has the form
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For the horizon, with rotation there is the inner and the outer horizon (M=M0)
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3. The equations for the extended Kerr space-time.
The solution process starts with the metric tensor g in original Eddington-Finkelstein-

coordinates, with 6 non-zero components, corresponding correction-factor functions
A0,…,A5, and additive correction functions B0,…B3 for the zero components.
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and alternatively in Boyer-Lindquist-coordinates, corresponding correction-factor functions
A0,…,A4, and additive correction functions B0,…B4 for the zero components

(12)
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The equations are the 10 Einstein equations
eqR00,eqR11,eqR22,eqR33,eqR12,eqR23,eqR31,eqR01,eqR02,eqR03 in the (dimensionless)

variables relative radius
ssr

r
r 1 and complementary azimuth angle 


 

2
1 with energy

tensor T from (8) and the state equation  11 1kP  for the relative pressure 1P and

the relative density 1 . We are using the so called “sun units” )(sunrr sss  ,

)(sunMM s  ,
3

4 ss

s
s
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  , 2cP ss  for radius r, mass M, density , and pressure P,

respectively.

In “sun units” the original angle differential  ddrrd 2sin4 is transformed into

 ddrrd 2cos3 , as for =0.r=0..1: 1 d .

Also, all equations and variables are symmetric (even) in  : Ai(-)=Ai() .
From now on we skip the index of the dimensionless variables and use the original notation,

e.g. r instead of 1r .

Furthermore, we adopt the Boyer-Lindquist coordinates and the metric tensor (12).
In sun units, the Boyer-Lindquist metric tensor becomes: (12a)
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where M0 is the mass in sun units.
The 10 Einstein equations have a distinctive structure:
there are 6 primary variables A0, A2, A3, A4,B1,B4 with highest derivative  rr

and 4 secondary variables A1,B2,B0,B3 with highest derivative  r . Primary variables have
boundary conditions for the variable and its r-derivative, secondary variables only for the
variable itself.

This structure is dual in : again there are 6 -primary and 4 -secondary variables.



7

6 of Einstein equations contain only one 2-derivative rr of a primary variable:

eqR03( 4Arr ) , eqR22( 2Arr ) , eqR00( 0Arr ) , eqR33( 3Arr ) , eqR02( 1Brr ) ,

eqR23( 4Brr )

3 contain only 2-derivatives of a secondary variable:
eqR12, eqR01, eqR31

eqR11 contains all derivatives rr of a primary variable.

If we make the ansatz Bi=0, several of the eqRij become identically 0, and we get the 6

equations eqR00, eqR11, eqR22, eqR33, eqR03, eqR12 for the 6 variables Ai and , with the

highest derivatives resp. 0Arr , 1A , 2Arr , 3Arr , 4Arr , ( 2Arr , 1A ).

Thus, we are left with the 6 differential equations degree 2 in r, 

non-linear (quartic) in variables Ai and their 1-derivatives and linear in  ,  .

In total, we have 6 algebro-differential eqs for 6 variables Ai and  ( enters only
algebraically).

We can add 2 dependent equations eqR41== 01 
 TD and eqR42== 02 

 TD , from

the covariant continuity equations 0
 TD , where 
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 TTTTD  is

the gravitational covariant derivative.

In eqR41  enters with r , in eqR42  enters with  .

So, alternatively, we have the diff. equations eqR00, eqR11, eqR22, eqR33, eqR03, eqR41 ,

with the highest derivatives resp. 0Arr , 1A , 2Arr , 3Arr , 4Arr , r (diff. eq.

degree 1 in r for )
or
the diff. equations eqR00, eqR11, eqR22, eqR33, eqR03, eqR42 , with the highest derivatives

resp. 0Arr , 1A , 2Arr , 3Arr , 4Arr ,  (diff. eq. degree 1 in  for ) .

In the Schwarzschild spacetime =0 and a=0, we have spherical symmetry, no dependence

on  , and the TOV-equation can be derived from the non-trivial eqR00, eqR11, eqR22,
eqR41 .

We impose an r--analytic boundary condition for Ai, Air , at r=R1 (R1 is the star radius) :

Ai=1,  rA0=0 ,  rA2=0,  rA3=0,  rA4=0 . For A1, there is no differential boundary

condition, as  rA1 is the highest r-derivative, for  there is no boundary condition at all,
because r is algebraic in the equations, but there is an integral condition:
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In order to avoid the clumsy integral condition for  , we can introduce the mass M as a
variable:
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is the mass of the sphere(r) and

23),(),( rrrMr  

For M(r,) we impose the boundary condition at r= 1R :

M( 1R ,)=M0 , r M( 1R ,)=0 (i.e. density  is zero at boundary, and total mass M0).

So, if we take the diff. equations eqR00, eqR11, eqR22, eqR33, eqR03, eqR41 and replace

r by  rM(r,), we have 6 diff.equations in r of degree 2, for the variables Air
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(metric correction factors=mcf) and the mass M(r,) , with the highest derivative  rrM(r,) in
M.
According to the Cauchy-Kovalevskaya theorem there exists then a unique solution in a

region irrR 1 within the boundary. Inside the region 0 rri we can enforce the

vacuum Kerr-spacetime with the trivial solution Ai=1, = 0 , i.e. there is no matter there, ri

the inner radius.
The Cauchy-Kovalevskaya theorem guarantees the existence of a mathematical solution

outside the horizon, but for a physical solution we must have r>=0 (meaning  rM(r,)>0)

and M(r,)<=0 for r<= ir : the mass must become non-positive at the inner radius.

Therefore, for certain {M0,R1} values there will be no physical solution, even for the TOV
equation.

4. The solving process for the extended Kerr space-time.
In addition to the fundamental dual parameters {ri ,i } corresponding to
{ R1 , M0 } in the rotation-free TOV-case, in the Kerr-case there is the new fundamental

parameter ri (inner ellipticity for inner boundary condition) , resp. R1 (outer ellipticity for

outer boundary condition) , and the angular velocity  . The outer radii are

Rx1 =R1-R1 and Ry1 =R1 , the latter equality arising from the fact that centrifugal distortion
acts only in the x-direction (the y-axis being the rotation axis). The inner radii are

correspondingly rxi =ri-ri , ryi =ri .

The r--slicing algorithm with an Euler-step obeys the iterative procedure with slice step size

1h in r , and step size 2h in  , starting with the r-boundary at r= 1R (slice n=0).

The transition from slice n to n+1 proceeds as follows.
At slice n all variables and 1-derivatives are known from the previous step, 2-derivatives

Airr , Birr and  are calculated from the 6 equations.

At slice n+1 the variables and 1-derivatives are calculated by Euler-formula (or Runge-Kutta)

nrnn AihAiAi  11

nrrnrnr AihAiAi   11

The 2-derivatives Airr , Birr and  are again calculated from the 6 significant equations

with variables and 1-derivatives inserted from above.

The -slicing r-backward algorithm with an Euler-step obeys the iterative procedure with

slice step size 1h in  as above for r, starting with =0, and solves an ordinary differential

equation in r in each  -step . The boundary condition for the r-odeq is set at r=R1() (the

outer ellipse radius) with Ai=1, M=M0 My0() , bcrr RMAi 2
1)(3,0  ,

where bc is the outer boundary value for the density, bc =0 for the (non-interacting)

neutron-gas in a shell-star and bc >0 , bc =equilibrium for the (interacting) neutron fluid in a

neutron star. My0() is the mass-form-factor with the condition 1)()(0
2/

0
 



dCosMy ,

i.e. the overall mass at the outer boundary is M0 . The inner radius ri() is reached, when

My0()=0.

The alternative (dual) -slicing r-forward algorithm starts with the boundary condition at

r= ri()

Ai=1, M=0, bcirr rMAi 2)(3,0  ,

where bc =i is the inner boundary value for the density, i is approximately the inner

(maximum) density ri) from the corresponding TOV-equation, the value must be adapted,
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so that the resulting total mass is M0. For the compact neutron star the inner radius ri() is
zero.

In the -slicing r-backward algorithm one starts with the outer boundary being the ellipsoid

r=R(R1) , where R1 is the outer ellipticity of the star . In the -slicing r-forward

algorithm one starts with the inner boundary being the ellipsoid r= ri(ri ) , where ri is
the inner ellipticity of the star .
At the inner boundary the tangential pressure is uniform, so the density is also uniform and

equal to the maximum density, () =i .

In the actual calculation we were using the -slicing r-backward algorithm , because here the

boundary condition M=M0 is achieved automatically, when one starts with My0()=M0 .

The odeqs in r consist of the 6 significant Einstein equations eqR00, eqR11, eqR22, eqR33,

eqR03, eqR41 for the six variables A0(r,), A1(r,), A2(r,), A3(r,) , A4(r,), M(r,) with =i

and -derivatives calculated by Euler-step from the preceding q-slice. For i=0 i.e. =0 the -
derivatives are taken from start values for all variables, which normally represent the
corresponding TOV-solution (here only A0(r), A1(r), M(r) are non-trivial and do not depend

on  ). The odeqs are highly non-linear algebraic differential equations and hard to solve
numerically with classical methods for linear odeqs extended by an algebraic equation
solver. In the case of an nonlinear odeq-system one uses an Euler or Runge-Kutta method
and calculates in each step the highest derivatives with a numerical algebraic equation
solver. As an alternative one can use minimization of the least-squares-error in the highest
derivatives instead of a numerical algebraic equation solver. Minimization has also the
advantage that one can minimize the complete set of Einstein equations plus the 2
additional continuity equations eqR41, eqR42 in the error goal function instead of the 6
significant equations, which improves the stability of the solution (e.g. in case of
degeneracy).
The numerical error of the algorithm is calculated from Σi{(eqi)

2 ,i=1...n} i.e. the Euclidean
norm of the equation values (the right side of the Einstein equations being 0) from 0. The

error is calculated over the lattice {ri, j} as median, mean or maximum. In the internal loop

of the algorithm over ri at fixed j , the solution of the algebraic discretised Einstein-
equation is achieved by square-root error minimization, so it is essential to avoid

singularities, e.g. at the horizon and the pseudo-singularity at  This is achieved by
selecting appropriate analytic convergence factors for the (left side of) the Einstein
equations . As the equations are to be zeroed for the solution, the convergence factors do
not change the solution of course, but they cancel the numerical singularities, which could
otherwise jeopardize the numerical convergence of the algorithm.
The actual calculation was carried out in Mathematica using its symbolic and numerical

procedures. In the first stage, the Einstein equations were derived from the ansatz for g
from section 2 and simplified automatically. The arising complexity of the equations is such,
that it is practically impossible to handle them manually: the Mathematica function
LeafCount, which returns the number of terms in the equation, gives the complexity of
LeafCount[eqR00]=17408 , LeafCount[eqR11]=27528 , LeafCount[eqR22]=134929
for the first 3 equations. To verify the equations, the TOV equation was derived by symbolic

manipulation for =0 a=0 from eqR00, eqR11, eqR22, eqR41 .
The power of Mathematica is sufficient to solve the TOV equation with the single procedure
NDSolve . For the full Einstein equations it fails even for the ordinary differential equations

(odeq) in r arising for fixed  . It took us a long time to find an algorithm, which could
handle the complexity of the equations and solve them in an acceptable time (3-5 minutes
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on a 16x8 lattice) on a PC-desktop and converge in the required region with an acceptable
error of around 0.01.
For the second numerical stage we tried several slicing algorithms, and the best alternative

proved to be the -slicing r-forward algorithm implemented by hand in Mathematica. The
solution of the resulting odeq in each r-step was calculated using NDSolve.

Also, for every star model and parameter set, the TOV solution with =0 a=0 was calculated
first with the algorithm and compared with the exact TOV solution.

5. The TOV equation as the limit ->0 for the extended Kerr space-time.
In the Schwarzschild spacetime =0 and a=0, we have spherical symmetry, no dependence

on  , then the TOV-equation can be derived from the remaining non-trivial Einstein
equations eqR00, eqR11, eqR22, eqR41 .

The TOV-equation is in the standard form:

1

22

3

22
)

)(2
1()

)(

)(4
1)(

)(

)(
1()

)()(
()(' 

rc

rGM

crM

rPr

cr

rP

r

rrGM
rP






(13)

and using sr

1

2

3

22

2

)
)(

1()
)(

)(4
1)(

)(

)(
1()

2

)(
()(' 

t

ss

rM

rMr

crM

rPr

cr

rP

r

rrc
rP






, where

tM is the total mass, furthermore

)()(4 2 rMrr  ,  )()( 1 rkrP 

In order to make the variables dimensionless, one introduces ‘sun units’

2

3

16

32
,1076.1

3/4
,3

2
)( cP

cm

g

r

M
km

c

GM
sunrr ss

ss

sun
s

sun
sss 


 

where ssr Schwarzschild-radius of the sun, s the corresponding Schwarzschild-density and

sP the corresponding Schwarzschild-pressure.

In ‘sun units’ TOV-equation transforms into

))(3)()()(
3

)('
(

2

1
))(()('

3

111011

2

111
011

0111

3

111 rrPMrMrrP
MrM

MrMrrrP  (14)

with the normalized mass M1(r1) , and 1)( 11 RM ,
or

))(3)()()(
3

)('
(

2

1
)(()('

3

1111

2

111
1

11

3

111 rrPrMrrP
rM

rMrrrP 

where
sun

t

M

M
M 0 , )( 1rM is the mass within the radius r, M(r1)= M0 M1(r1)

in dimensionless variables  )(,,
3

)('
)(, 1112

1

1
11 rkPM

r

rM
rr 

and 1R is the dimensionless radius of the star.

With the replacement 1kP  for the pressure from the equation of state and

2

0

3

'

r

MM
 we obtain a diff. equation for M degree 2 in r and we impose the boundary

condition in r=R1:
M(R1)=M0 , M’(R1)=0 for non-interacting Fermi-gas
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and

for an interacting Fermi-gas : M(R1)=M0 , eRRRRM   )(,3)()(' 1

2

111 , where e is the

equilibrium density in the minimum of Vnn and P1’(e)=0 (here an equivalent boundary

condition is )(' 1R ).

6. The equation of state and rotation parameters

6.1. The equation of state for an (non-interacting) nucleon gas
Here, 1kP  is the equation of state of the star, derived from the thermodynamic Fermi

gas equation at T=0 ([2], chap. 48).

))(1
3

(8
2

3

0 FF
F xfx

x
P

V

E
P 




  (15)

3

54

3

2

0
h

cmmc
P

c




, where c is the de-Broglie wavelength of the Fermi gas with particle

mass m,
mc

h
c 

3/13/1)3(
2

n
mc

p
x cF

F 


 , where xF is the Fermi-angular-momentum, n the particle density

 
Fx

F xxdxxf
0

22 1)(

The resulting approximate equations of state for P are
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valid for the density  and the critical density c

3

8
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


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c
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m


The full expression for P, including temperature T, is as follows ([4],chap.15).

Here, we use dimensionless variables (r1 distance unit de-Broglie-wavelength c , V1 volume

unit c
3,n1 particle density unit 1/c

3, E1 energy unit
 2

2

0

mcc
E

c




, inverse thermal

energy
kT

E0
1  , chem. potential 1 in E0)., for the gas model we use the Debye model with

the state density 12/711
4

1
)( EED


 , maximum energy

3/2

1

3/13/2

1
4

3
nF


  , the resulting

particle density is
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From this relation the chem. potential 1 can be calculated, an approximation formula is

)(
12

11

1

2

1

2

11 n
F

F 



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Finally, the resulting pressure (=energy density) p1(1,n1):



12

)))((exp(13
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n
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








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 



(17)

Below a 3D-diagram of p1(1, n1) in dimensionless variables for a nucleon gas (m=mn,

density
2

0

c

nE
 in sun units, E0=149.4MeV ) is depicted:

Here kT is in E0 units, and one sees the dependence 1kP  except on the left side, when

kT reaches the magnitude of 1Gev (T=10^10K).

6.2. The equation of state for an (interacting) nucleon fluid
For the interacting nucleon gas we take into account the nucleon-nucleon-potential in the
form of a Saxon-Woods-potential modeled on the experimental data:
Vsw[r_,V0_,r0_,dr0_]=V0/(1+Exp[(r-r0)/dr0])
Vnn[r_]= Vsw[r,Va,ra,dra]+ Vsw[r,Vc,rc,drc] where Vnn is the
nucleon-nucleon-potential with an attractive part Vsw[r,Va,ra,dra] and a repulsive
core Vsw[r,Vc,rc,drc] , the distance r between the nucleons is

3/1)/( nEr  , where En= 23/12 4.149))2/(( cmMeVcmn   is the nuclear energy scale

m=pion mass = 140MeV, mn=neutron mass = 140MeV.
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Vnn(r) with energy(MeV), r(fm)[]
The pressure of the interacting nucleon fluid becomes then
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)))(/(()()( 3/1
1111111 rEVrcrP nnn  (18)

The experimental data used here are those from [7]

And the hard-core potential from the lattice calculation Reid93 from [5]

both fitted with a double Saxon-Woods-potential Vnn
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with r(fm) , V(MeV).
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From the nucleon-nucleon-potential the pressure is calculated taking into account the low-
density Fermi-pressure of the nucleons K1*rho^(5/3)
Pnn[rho]=Vnn[1/((rho))^(1/3)]*rho

0.05 0.10 0.15 0.20
rho

0.10

0.05

0.05

0.10

0.15

0.20
Pnn

Pfg[rho]=K1*rho^(5/3)+Pnn[rho]

0.02 0.04 0.06 0.08 0.10
rho

0.10

0.05

0.05

0.10

0.15
Pfgrho 

total pressure Pfg(r) , pressure P and density r shown in sun-units.

This equation-of-state has a minimum at =c=0.0417 and P’()=1 at  =m=0.0544 .

As the sound velocity




d

dP
v

)(
 , v>0 and v<1 (i.e. subluminal), the admissible density

range in the neutron-fluid model is c<=m .

6.3. Maximum omega-values in Kerr-space-time

We consider here a rotation model with constant angular velocity  . With this model the

resulting 4-velocity u has the form [11]:

u u 0 0  u 

The maximum values for  are calculated from the minimal zeros in omega of the
denominator in u0 from (9a) , minimized over r1 and th in their respective regions

ri <= r1 <= R1 and 0<= <= /2 .

The resulting value is
fR 


12

1
 , where f is the form-factor in the moment of inertia I1 .

2
11 RMI f , f =2/3 for a shell , f =2/5 for a sphere.

With non-vanishing density the actual max depends on {Ai,} , and has to be calculated

from the above expression for 0u .
A less stringent limit for omega can be deduced from the limit for the parameter a in Kerr-

spacetime (in sun-units and c=1):
22

)( 00 MMr
a s  , and

0

2

10

M

RM
a f 
 therefore

fR

M




2

1

0

2

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7. The TOV-equation: a new ansatz

Generally speaking, the parameters of the solution are :
angular momentum radius a (=alpha1, =0 for TOV), the factor in the state equation k1, the

power in the state equation  (=gam),radius R, mass M0, the relative radius uncertainty

reldr02 (=dr02rel), the moment of inertia factor If (=infac, 0 for TOV), the singularity

smoothing parameter  (=epsi, see below), and the boundary factor nrmax (=nrmax). Here the
boundary factor enters the upper boundary of the TOV differential equation as

)021( maxmax relr drnRr  .

The dimensionless TOV-equation is an differential equation in the mass M(r) of degree 2,

and is highly non-linear, the dimensionless mass-density relation is
23

'

r

M
 .

The customary way of solving the TOV equation is to impose the boundary condition at r=0

with M(0)=0, M’(0)= 0
23 r where 0 the maximum central density .

In the new ansatz for the mass M(r) we impose the outer boundary condition at r=R1:

for a pure Fermi-gas without interaction: M(R1)=M0 , 0)(,3)()(' 1

2

111  RRRRM  ;

for an interacting Fermi-gas : M(R1)=M0 , eRRRRM   )(,3)()(' 1

2

111 , where e is the

equilibrium density in the minimum of Vnn and P1’(e)=0 (here an equivalent boundary

condition is )(' 1R ).

The star parameters mass M0 and radius R1 , which enter the outer boundary condition
determine completely the solution. In general, there will be an inner radius ri >0 with the

maximum density )('3 2
0 irMr and M(ri)=0. The corresponding ‘dual’ parameters are

the inner radius ri and the maximum density 0 . One can show that for 0>>c (where c is
the critical density of the equation of state) there is no solution with a compact star ri =0,
i.e. there is a maximum mass Mc for the TOV equation, in case of compact neutron stars Mc =
3.04Msun (see below). As we will see, there is in general a solution, if we allow ri >0 and
impose an outer boundary condition at r=R1 , as long as R1 is not too close to the
Schwarzschild radius rs = M0 of the star. In the limit R1 -> rs there will be no positive zero of
M(r) ,i.e. ri <0 and the resulting (mathematical) TOV-solution will be no physical solution.
But in general, speaking naively, the gravitational collapse of the star is avoided for large
masses (M0 > Mc), if it has a shell structure with the inner radius ri and the outer radius R1 >
M0 .
As we will see, this outer boundary condition together with allowing ri >0 changes
dramatically the resulting manifold of physical solutions.

7.1. The TOV-equation: the parametric solution and resulting star types

By setting-up a parametric solution of the TOV-equation one gets a map of possible physical
solutions, i.e. possible star structures. As parameters one can use either (M0, R1) in the outer

boundary condition at r1= R1 or the dual parameter pair (ri , bc ) in the inner boundary
condition r1= ri .
The pure neutron Fermi- gas model yields for compact neutron stars a maximum mass of
Mmaxc=0.93Msun , which is in disagreement with observations. Therefore, at least for
compact neutron stars, a model of interacting neutron fluid must be used. In 6.2 above we
have described a Saxon-Wood-potential model for the nucleon-nucleon interaction, which
seems to fit the experiment and the theory in the best way. There will be a critical density
(dependent on temperature of course), where a transition from interacting fluid to Fermi-
gas takes place, it is plausible to set this density equal to the Saxon-Wood critical density
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c =0.0417 .
We made calculations with the TOV-equation using these two models for neutron-based
stars and we came to the conclusion that compact neutron stars with mass M0<=3.04 Msun

consist of interacting neutron fluid and neutron shell-stars for M0 >=5Msun obey the Fermi-
gas model. The underlying calculation is the Mathematica-notebook [18].
This approach yield results, which are described below.
Neutron stars consist of interacting neutron fluid and are compact stars with

(M0, R1)=(0.14,1.49)...(3.04,3.95) and the maximum density 0.048<= bc <=0.0544=bcmax in

sun-units, or shell-stars with bc >=bcmax and (M0, R1)= (3.04,3.95)…(4.91,4.92),
neutron star R-M-relation follows approximately a cubic-root-law: R~M1/3 .
Stellar shell-stars consist of (almost) non-interacting Fermi-gas of neutrons and are thin

shell-stars with siss rrrRrR  ,, 11 , i.e. the shell is close to the Schwarzschild-radius and

its outer edge outside the Schwarzschild-horizon with max. density 0.0025<=bc <=,
and obey an almost linear R-M-relation

(M0, R1)= (5.5,9.1)… (81.3,91.2), independent of bc for bc >=, with redshift factor
around 50 for M= 80 Msun.
Galactic (supermassive) shell-stars are very thin shell-stars, which obey the equation-of-
state of a white-dwarf (i.e. gravitation counterbalanced by Fermi-pressure of electron gas)
and have an almost linear R-M-relation with redshift factor 20…100 .

Neutron stars

The parametric solution of the TOV-equation has been carried out for the parameters (bc , ri

) at the boundary r= ri , in the range: density 0.02<= bc <=0.15 and inner radius 0.01<= ri

<=15. , yielding physical solutions for density 0.048<= bc <=0.0544=bcmax and inner radius

0.01<= ri <=3 . The TOV-equation is solved for M(r) and (r) , and a physical solution is a

mathematical solution with M>=0 and >=0 , '<=0 and subluminal equation-of-state within

a certain interval r={ ri , r02 }, which reaches a point, where M’(r)=0 and (r)=0 . The radius
R1 and the total mass M0 is reached at M’(R1)=0 , the physical solution ends there.

The validity interval for  is explained by the fact, that the sound velocity










)(
)(

P
vs

must be positive and below 1 (subluminal in c-units ).

The parametric mapping of the solutions results in the following dependence for M0(ri,bc) ,

R1(ri,bc) (ri,bc , M0, R1 in sun-units):
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For ri =0 the mapping describes the compact neutron stars, resulting in R1(M0) function:

0.5 1.0 1.5 2.0 2.5 3.0
MMsun

1

2

3

4

Rrssun
ri0.01

The R-M-relation follows approximately a cubic-root-law: R~M1/3 ,
with a range of (M0, R1)=(0.14,1.49)...(3.04,3.95) , i.e. the resulting maximum compact mass
is Mmaxc=3.04Msun .

For M0>= Mmaxc the function R1(ri =const,bc) is flat or slightly decreasing with bc , son one

expects the stable configuration to be the one with maximum bc =bcmax :

3.5 4.0 4.5
MMsun

4.0

4.2

4.4

4.6

4.8

Rrssun
rhobc0.0544

with a range of (M0, R1)= (3.04,3.95)…(4.91,4.92) .The admissible mass range ends, where
the thickness of the shell above the Schwarzschild-radius becomes very small (minimum
0.01).
So in total the R-M-relation for neutron stars becomes



18

1 2 3 4 5
MMsun

1

2

3

4

5
Rrssun

ri0.01

The maximum mass for a repulsive-hardcore-model for the equation-of-state DD2 [10] is
2.42Msun , from our mapping we have the maximum compact neutron star mass of
Mmaxc=3.04Msun .

The actual theoretical limit for neutron star core density is max =3.5 1015 g/cm3=0.199 in
sun-units [8,9].

The limit for bc reached in our mapping is only ¼ of this bc =bcmax =0.0544 , due to the
subluminal-sound-condition and the use of an (attractive) nucleon-nucleon-potential for the
nucleon-fluid instead of a pure repulsive-hardcore-model.

The classical argument for the collapse of a neutron star to a black-hole for bc > max,
dating back to Oppenheimer [2], is invalidated here by the simple introduction of shell-star
models, where ri >0 , and therefore there is no mass at the center, which means physically,
there is only a very diluted nucleon gas there.

Stellar shell-stars

We assume that the underlying equation-of-state state for stellar shell-stars is the Fermi-
gas of nucleons with the low-density limit of

3/5
1)(  KP  .

We make a further plausible assumption that the “edge” of the solution mapping are the
physically stable solutions, i.e. the R-M-relation for stellar shell-stars. The edge in this case

consists for fixed bc < 0.0417=oc of solutions with maximum ri (because then the average

density in the shell is lowest) and for bc =0.0417=oc it consists of the solutions (M0, ri ,R1)
at the right boundary (7<= ri <=22, M0>=4.91=Mmaxn ) , where Mmaxn is the maximum mass

for the neutron star interactive neutron fluid. We assume that at bc =oc the state
transition from the interactive neutron fluid to neutron Fermi gas takes place. This is almost
certainly an oversimplification, still we believe that the model describes the reality correctly
in principle.

The chosen parameter range of the solution mapping is : density 0.025<= bc <=0.0417=oc

and inner radius 0.01<= ri <=90 , where oc is equilibrium value of the nucleon-nucleon-

potentials with Pnf’(oc )=0, the transition point from the nucleon-fluid to the nucleon-gas
phase .
The “edge” of the mapping yields the (M0-, ri ,R1-)-range of
(M0, ri ,R1)= (5.35,7,.8.49)…(81.3, 91.2) , where the upper limit is in fact mathematically

open, but the ” thinning-out” of the solutions for small bc and large ri makes it physically
plausible (see the images below).
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The resulting R-M-relation is practically linear and has a maximum mass value of Mmax=81.3
Msun.

20 40 60 80
M Msun
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80

R rssun
R M

And the corresponding relative shell thickness dRrel=dR/M is
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dR rssun
rel shell thickness

and the relative Schwarzschild-distance dRsrel=(R-M)/M is



20

20 40 60 80
M Msun

0.1

0.2

0.3

0.4

0.5

0.6

R rs rs

The inverse of dRsrel gives roughly the light attenuation factor of {1.7,…50.}. Taken the
attenuation factor and the small relative shell thickness of around 0.02, these stellar shell-
stars have approximately the properties expected of a genuine black-hole, when measured
from a distance r>>R1 .

Entropy of a thin shell star

The celebrated Bekenstein-Hawking formula for the entropy of a black hole reads [1]:

2
4 P

B

L

Ak
S  , where A is the surface area, kB the Boltzmann-constant , and LP the Planck-

length.
The entropy of a (cold) shell-star with radius R and thickness dR in the limit R=rs , dR<<rs ,
with all particles in the lowest possible energy state, can be easily calculated from the
Boltzmann-formula

WkS B ln , where W is the number of possible micro-states.

With the elementary area πLmin
2 , where PLL min , W becomes )2

2
min/( LAW  (each of the

)/(
2

minLAN  area elements can be occupied or empty) , so 2ln
2

P

B

L

Ak
S


 , which is

identical to the Bekenstein-Hawking entropy with the factor (ln2)4/π=0.882.

Galactic (supermassive) shell-stars

The mean density of a black-hole scales with its radius R like
23 4

3

)3/4(
)(

RR

R

V

M
R


 

i.e. for supermassive black-hole with M=106Msun we have 1210 in sun units (su).

In the following we use the abbreviation M Msun =106Msun .

The density scale of a white-dwarf star is 106g/cm3=5.7 10-11su [2]. Therefore it is plausible to
try a parametric mapping with the white-dwarf equation-of-state, where the underlying
Fermi-pressure is that of an electron gas instead of a nucleon gas, i.e. equation-of-state

 )()( 11111 rkrP  for a pure Fermi gas, =5/3 if the density is below the critical density c .

The results for M0(ri,bc) , R1(ri,bc) are shown below:
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From this result one can draw several consequences: first, the actual density is around 10-12,

that is well below the critical density for a white-dwarf of c =0.91 106g/cm3=5.17 10-11su :

=5/3 in the equation-of-state is justified. Second, the viable solutions lie to the left of a
”ridge” reaching up to masses around 30 MMsun. Third, a stable solution for a fixed mass will

have the highest possible maximum density bc and that will lie on the ”ridge” . So one can
calculate the R-M-relation following the ”ridge”.
The resulting R-M-relation is as follows:
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The R-M-relation is almost linear, as expected, and goes up to 50MMsun. dRrel=(R1-ri)/M0 is
the relative thickness, and shows, that the shells are very thin indeed, with a minimum of
0.001 . The fourth diagram shows the relative Schwarzschild-distance dRsrel= (R1-M0)/M0,
which has a minimum at
{ M0, dRsrel }={7.,0.00142857}, so that its reciprocal value (approximate light attenuation
factor) is around 700. So the overall result is, that the supermassive shell-stars become ever
thinner shells, while the distance from the Schwarzschild-horizon is increasing.

7.2. The TOV-equation: a case study for typical star types

In the nearly-rotation-free case the solution of the TOV-equation was calculated for 4

models (sun units with sr = Schwarzschild radius

2

32
,

3/4
,

2
)( cP

r

M

c

GM
sunrr ss

sun
s

sun
sss 


  ):

rss = 3km , s = 1.76 1016 g/cm3 , Msun = 3 1030 kg ,

- average compact neutron star with mass M0= 0.932 sunM , radius R1= 2.767 ssr

- maximum mass neutron shell-star M0=4.91, R=4.926

- white dwarf with M0= 0.6 sunM , radius R1= 3000 ssr

- stellar black hole with M0= 15.69 sunM , radius R1= 17.89 ssr , inner radius ri== 17. ssr

- galactic black hole with M0= 4.367*106
sunM , R1= 4.380*106

ssr , ri= 4.356*106
ssr

Compact neutron star

parameters= { k1=0.40,gam=5/3,M0=0.932,R1=2.76,rhobc=0.0456,ri=0.01};
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The mean density is here
3

1

0

R

M
mean  = 0.04447 .

The critical density of the neutron Fermi gas with neutron mass mn is
32

34

3 


cmn
cn  = 0.35

(see [2]) , so the low-density approximation with =5/3 can be used.
Results TOV:
rho, M:

0.5 1.0 1.5 2.0 2.5
r1
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0.5

M M0 ,R1 ,K1,gamact 0.932 ,2.767 ,0.4 ,53
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r1
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rho M0 ,R1 ,K1,gamact 0.932 ,2.767 ,0.4 ,53

As can be seen in the -diagram, the derivative )(' 1R , because there the equilibrium

density c with P’(c)=0 in the pressure is reached.

Maximum mass neutron shell-star

parameters= { k1=0.40,gam=5/3,M0=4.91,R1=4.926,rhobc=0.0544,ri=3.};

The mean density is here mean = 0.0530 .
Results TOV:
rho, M:
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Stellar shell-star

parameters= { k1=0.40,gam=5/3,M0=15.69,R1=17.89,rhobc=0.0359,ri=17.};

The mean density is here mean = 0.0194 .
The resulting rho and M are:

17.2 17.4 17.6 17.8
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M M0 ,R1 ,K1,gamact 15.69 ,17.89 ,0.4 ,53
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rho M0 ,R1 ,K1,gamact 15.69 ,17.89 ,0.4 ,53

Here the radius R1 is reached, when M’(r1= R1)=0 , i.e. (R1)=0 .

White-dwarf star

parameters= { k1=
1.43*106,gam=5/3,M0=0.6,R1=3000,rhobc=2.02*10-11,ri=0.};
The underlying state equation is that of a small-momentum electron Fermi-gas with the

critical density [2]
32

33

3 


cmm ne
cw  = 0.517*10^-10su .

The mean density is here mean = 2.22*10-11 , the maximum deviation of  is

max0.21*10-11 , so the density is practically constant, as expected.
The solution of the TOV-equation becomes
rho, M:
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r1
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M K1,gamact ,bfunc ,drmax ,nrmaxact 1.43*̂ 6 ,53,0.032 ,2
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2.3  1011
rho K1,gamact ,bfunc ,drmax ,nrmaxact 1.43*̂ 6 ,53,0.032 ,2
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Galactic shell-star

parameters= { k11(=5/3)=0.0243*106, k12(=4/3)=0.067*104 ,M0=4.367*106,R1=4.380*106,
rhobc=4.934*10-12,ri=4.356*106};
TOV equation was solved with an exterior boundary condition r02=R1 (M(r02)=M0,

M’(r02)=0), which is equivalent to the interior boundary condition r01=ri (M(r01)=0, 
(r01)=bc) , and with the full Fermi-gas equation-of-state instead of the simple power law

 1)( KP  .

The mean density is here mean = 3.16*10-12 .

The “naive” mean density is here
3

1

0

R

M
mean  =3.16*10-12 ,i.e. by a factor 10 lower than the

mean density of white dwarf. Therefore, despite its huge mass, the galactic black hole can
be described by the state equation of a small-momentum (undercritical) Fermi electron gas

with the relative density xF= 0612.0
cn


much smaller than that for the white dwarf.

TOV-solution for rho (in 10^-12 units), M (in 10^6 units) in r (in 10^6 units), is:
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r1
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M M0 ,R1 ,K1,gamact 4.36731477304323 ,4.38 ,0.024300000000000002 ,53
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Here there is an internal ”hole” with a radius ri= 4.356*106, maximum =4.934*10-12 at ri .
The inner radius ri lies a little below the Schwarzschild-radius rs=M0. The relative shell
thickness
dRrel=(R1- ri)/M0 =0.00551 , the relative Schwarzschild-distance dRsrel=(R1- M0)/M0 =0.00290 ,
the light attenuation factor is roughly 1/ dRsrel =344 .
Furthermore, ri is little sensitive to the temperature up to T=10^7K.
As for a stellar black hole, when R converges to rs=M0, so does the inner radius ri , and there

is no physical solution (with positive  and M) for a boundary within the horizon.

8. The three star models for Kerr-space-time with mass and rotation

The calculation of Kerr-space-time with mass and rotation was carried out for 3 star models:
-a typical compact neutron star with mass around 1 solar mass
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-a presumably typical stellar shell-star with a mass around 15 solar masses
-a comparatively small galactic shell-star modelled on the central black-hole in the Milky
Way with a mass of around 4 million solar masses

The angular velocity  was chosen at 0.36max , i.e. about 1/3 of the maximum value.

We are using the so called “sun units”sun Schwarzschild-radius )(sunrr sss  =3km, sun

mass )(sunMM s  =3. 1030kg, sun Schwarzschild-density
3

4 ss

s
s

r

M


  =1.76 1016g/cm3,

sun Schwarzschild-pressure 2cP ss  =1.58 1035J/m3 for radius r, mass M, density , and

pressure P, respectively.

The mass element here is M1(r,) dr d and the ring mass M1() is the differential mass of

the -beam )),(()( 111  RMdMd  , the density  is

),(),()(4 1   rMddrrCos r  .

As for the result values, dthrel is the maximum relative angular deviation (in ) , and error
(relative to the test function error) : wavefront error is the median (on lattice) algorithm
error, the interpolation and the Fourier fit error is the error of the respective fit of the
discrete solution on the lattice.

We are using here the -slicing r-backward algorithm for the shell-stars . For each of the star

models a verification step is run first with the angular velocity =0, the result must be the
same as in the corresponding TOV-equation. Then a parameter case-study is made for

different outer boundary ellipticities R1 at the outer boundary condition in order to find

R1 with a minimal mean energy density: this is the stable solution of the Kerr-Einstein
equations.
The algorithm yields as the result a pointwise array of values and first and second derivatives
of the variables. The variables for the 6 Einstein equations are the 5 Kerr correction-factor

functions A0(r,)… A4(r,), and (r,) .

We are using the -slicing r-forward algorithm for the compact neutron star. The variables

for the 6 Einstein equations are the 5 Kerr correction-factor functions A0(r,)… A4(r,), and

(r,) .

The value denomination is:

a=alpha1 with
Mc

J
a  the angular momentum radius (amr) of the Kerr model,

=omega1 is the angular velocity, R1 = R1=r02 is the outer radius, M0=M0 is the total mass,
r1 radius variable, th angle variable,

M(r,)=M1(r1,th) is the mass function, A0(r,)… A4(r,) Kerr correction-factor functions,

(r,)=rho(r1,th) is the density function,

k1 is the parameter in the approximate Fermi-gas equation-of-state
 )()( 11111 rkrP  ,

=gam, gam1, gam2 is the exponent ,

infac is the moment of inertia factor f ,
epsi is the singularity cancellation parameter with limit(epsi)=0 introduced to improve the
numerical stability in singularities
ri=riact is the polar inner radius Ry

ri the inner ellipticity is the difference between the polar riy and the equatorial inner radius

rix , ri = riy - rix

R1 Is the outer ellipticity , with outer radii Rx1 =R1-R1 and Ry1 =R1

rilow is the minimal radius r1 reached in the solution
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bc= rhobcx is the boundary condition density

dthrel is the maximum relative difference of a value dependent on  , e.g.

dthrel(R1)=(max(R1())-min(R1())- )/mean(R1())

shell thickness dR1 = R1()-ri()

Typical compact neutron star

The underlying star model here is a compact (ri=0) neutron star of neutron liquid (i.e.
strongly interacting neutrons), mass M0=0.932 sun-masses, radius R1=2.76 sun-

Schwarzschild-radii rss (rss =3.0km), =0.108688. The underlying calculation is the
Mathematica-notebook [21], the results in [22].
The full parameters are:
{alpha1=0.331224,omega1=0.108688,k1=0.4,ܴ1=2.7602,gam=5/3,gam1=5/3,gam2=4/3,M0
=0.932,dr02rel=0.33,infac=2/5,epsi=0.1, rilow=0.001, rhobcx=0.0456}
The r-forward solution is first calculated with the lattice {nx=33, ny=17} for the rotation-free
TOV-case with a TOV-solution as the initial function.
The solution for the Kerr-case starts with this corrected TOV-solution and yields the values:

outer radius R1()={2.83912...2.83722},mean=2.83897, dthrel=0.00118
total mass M02eff=0.932
error: med(err)=0.0639 wavefront, =0.0491 interpolation, =0.0492 Fourier fit
mean energy density=0.0791

density over x=radius r1, y=angle th
The density distribution is similar to the TOV-case but with a

decrease in –direction.
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(ring) mass profile for th=0.1 (equatorial) and th=1.4708
(polar), the outer edge is reached when M1(r1)=M0

effective radius r02e over angle th

The rotation results in the very small flattening in the polar direction of dthrel=0.00118. The
neutron star behaves like a fluid because of its “viscosity”, that is, its nuclear interaction and
becomes “pumpkin-like”.

Typical stellar shell-star

The star model here is a shell-star (ri>Schwarzschild-radius) with mass M0=15.69 sun-masses,

radius R1=17.89 sun-Schwarzschild-radii rss (rss=3.0km), and angular frequency =0.0126 .
The outer Kerr-horizon is r+=15.21 . The underlying calculation is the Mathematica-notebook
[19], the results in [22].

The outer ellipticity R1 is at first a free parameter and calculated from a case-study of

minimal mean energy density to R1=0.3=0.0168 R1 .
The full parameters are
{alpha1=2.68844,omega1=0.0126,k1=0.4,ܴ1=17.89,gam=5/3,gam1=5/3,gam2=4/3,
M0=15.69,infac=2/3,epsi=0.1,rilow=15.9,rhobcx=0.036 }

The r-backward solution is first calculated with the lattice {nx=17, ny=9} for the rotation-free
TOV-case as the initial function.

Then a case study with the parameter ellipticity R1 is carried out in order to find the

minimal mean energy density, on the set of values R1 ={0,-0.3, 0.3,1.,1.6}

The case study yields a minimum at R1=0.3 (cigar-like outer boundary) , with a mean
energy density=0.017004.

This energy-minimal solution with R1=0.3 yields the values:

outer radius R1()={17.59…17.89}, mean=17.739, dthrel=0.0164
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inner radius ri()={16.704…16.982}, mean=16.823, dthrel=0.0162

total mass M02eff=15.69, inner boundary max(bc)=0.035955
shell thickness dR1 : mean=0.916, dthrel=0.0448
mean energy density=0.0170
error: med(err)=0.00238 wavefront, =0.00573 interpolation, =0.00786 Fourier fit

It is interesting to make a comparison with the spherical-outer-boundary solution

with R1=0 :

inner radius ri()={17.0033…17.0243}, mean=17.020, dthrel=0.00123

total mass M02eff=15.69, inner boundary max(bc)=0.0375
shell thickness dR1 : mean=0.870, dthrel=0.0241
mean energy density=0.017698
error: med(err)=0.00224 wavefront, =0.00545 interpolation, =0.0098 Fourier fit

The solution with the next higher ellipticity R1=1.0 has the values:

outer radius R1()={16.89…17.88}, mean=17.38, dthrel=0.055

inner radius ri()={16.01…16.955}, mean=16.438, dthrel=0.0556

total mass M02eff=15.69, inner boundary max(bc)=0.0359
shell thickness dR1 : mean=0.940, dthrel=0.0894
mean energy density=0.017249
error: med(err)=0.00309 wavefront, =0.00516 interpolation, =0.00792 Fourier fit

The two significant non-spherical features are the relative shell thickness variation
dthrel(dR1) and the relative inner ellipticity dthrel(ri) . The first depends roughly linearly on

the outer ellipticity R1 , plus the value at R1=0 (dthrel(dR1)=0.0241) , which is results
from rotation. The second, dthrel(ri) , is almost equal to the relative outer ellipticity

dthrel(ri) , plus the small amount at R1=0 (dthrel(R1)= 0.00123)

density over x=radius r1, y=angle th
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density over angle th at the inner boundary r1=16.704

The density distribution increases in –direction (=0 is equatorial, =/2 axial)

The fitted density profile for th=0.1 (equatorial)
The physical mass distribution ends at the inner boundary at ri=16.7 , where the density

jumps to =0 .

Effective inner radius ri over angle th

Fourier-fitted total mass
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A remarkable result, distinct from the case of the neutron star, is the shape with rotation.
The energy-minimal stellar shell-star behaves like a ball of neutron gas (negligible
interaction) and decreases slightly its equatorial radius, so that, speaking naively, the
increased gravitation counteracts the centrifugal force, the shell-star becomes “cigar-like”,
with the shell thickness approximately constant.
The stellar shell-star has all its mass concentrated within a thin shell
(dR1=0.916) which is situated outside its Schwarzschild-radius M0=15.69, where the

minimum distance from the horizon is

min(R1())-M0=1.01,
therefore the light energy loss is approximately (in Newtonian approximation)

M0/min(R1())=0.9395 and the attenuation factor 1/(1- M0/min(R1()))=16.53, it means that

visible green light of 0.514m is shifted to 8.50m into middle-range infrared.

Galactic shell-star
This is modelled (approximately) on the central black-hole in the Milky Way with mass
M0=4.36 mega-sun-masses (M Ms), radius R1=4.38 mega-sun-Schwarzschild-radii (13.14
106km, M rss). The underlying calculation is the Mathematica-notebook [20], the results in
[22].
The outer Kerr-horizon is r+=4.26 M rss .
In order to maintain numerical performance, we are using for mass and distance 106 (mega)

units 106 Ms and 106 rss and for density 10-12 (mega-2) unit 10-12 s.

Like in the case of the stellar shell-star, the outer ellipticity R1 is at first a free parameter

and calculated from a case-study of minimal mean energy density to R1=-2 dTOV, where
dTOV is the shell thickness of the spherical shell-star dTOV=0.057 .
The full parameters are:
{alpha1=0.670047,omega1=0.05239,k1=0.0243,k2=0.067,ܴ1=4.38,gam=5/3,
gam1=5/3,gam2=4/3,M0=4.36731,infac=2/3,epsi=0.0024, rilow=4.3,rhobcx=4.915}
The r-backward solution is first calculated with the lattice {nx=17, ny=9} for the rotation-free
TOV-case as the initial function.

Then a case study with the parameter ellipticity R1 is carried out in order to find the

minimal mean energy density, on the set of values R1 ={0,1.,-0.3,-1.,-2.}*dTOV .

The case study yields a minimum at R1=-2 dTOV=-0.114 (pancake-like outer boundary) ,
with a mean energy density=1.734 .
This energy-minimal solution yields the values:

outer radius R1()={4.494…4.38}, mean=4.43654, dthrel=0.025367

inner radius ri()={4.46456…4.34109}, mean=4.40029, dthrel=0.02765

total mass M02eff=4.3673, inner boundary max(bc)=4.96075
shell thickness dR1 : mean=0.035256, dthrel=0.2507,
mean energy density=1.73479
error: med(err)=0.0122 wavefront, =0.000404 interpolation, =0.000437 Fourier fit

In comparison, the spherical-outer-boundary solution with R1=0 yields the values :

inner radius ri()={4.34861…4.3423}, mean=4.343, dthrel=0.00145

total mass M02eff=4.36731, inner boundary max(bc)=4.68324
shell thickness dR1 : mean=0.0370, dthrel=0.1736
mean energy density=1.75914
error: med(err)=0.0101 wavefront, =0.000390 interpolation, =0.000324 Fourier fit



32

In contrast to the stellar shell-star, here the relative variation of the shell thickness for the
spherical-outer-boundary solution is smaller by a factor of 20 as compared to the minimal
solution with a high outer ellipticity, so here there is a dependence of the shell thickness on
the ellipticity.

density over x=radius r1, y=angle th

density over angle th at the inner boundary r1=4.464
The density distribution increases in –direction .

The fitted density profile for th=0.1 (equatorial)
The physical mass distribution ends at the inner boundary at ri=4.46456, where the density

jumps to =0 . The fit extrapolates it to lower r-values.
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Inner radius ri over angle th

Total mass M1(r1) over radius

The maximum distance from the horizon is max(r02e)- r+ =0.125, therefore the minimal light

energy attenuation is roughly 4.262/0.125=34 , it means that visible green light of 0.514m

is shifted to 17m into far-infrared.
The galactic shell-star has all its mass concentrated within a thin shell
(dR1= 0.0362) which has its inner radius inside and its outer radius outside its

Schwarzschild-radius M0=4.367, where the minimum distance from the horizon is

min(R1())-M0=0.0127,
therefore the light energy loss is approximately (in Newtonian approximation)

M0/min(R1())=0.9971 and the attenuation factor 1/(1- M0/min(R1()))=345, it means that
x-ray-radiation from in-falling matter from the accretion disc with an energy of 5keV and

=0.2nm is shifted to =69nm, that is into hard UV-radiation.

9. Conclusions

We introduce in chap. 6 an eos for the nucleon-fluid in the density range c<=m ,
where

c=0.0417 s and m=0.0544s ( sun units rss=3km , s=1.76 1016 g/cm3) ,which is based on
measurement data for the nucleon-nucleon-potential. This suggests, that there is a phase

transition at =c from the (interacting) nucleon fluid to the (weakly interacting) nucleon
Fermi-gas .
Based on these 2 eos’s the results for the TOV-equation in chap. 7 are as follows.
Neutron stars obey the nucleon fluid eos and there are compact neutron stars in the range

(M0, R1)=(0.14Msun,1.49 rss)...(3.04 Msun,3.95 rss) , the R-M-relation follows approximately a
cubic-root-law: R~M1/3 .
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Neutron shell-stars exist in the range (M0, R1)= (3.04 Msun,3.95 rss)…(4.91 Msun,4.92 rss) .
Stellar shell-stars exist in the range of (M0, R1)= (5.5 Msun,9.1 rss)…(81.3 Msun,91.2 rss) .
The underlying equation-of-state is the Fermi-gas of nucleons with the eos

3/5
1)(  KP  . The resulting R-M-relation is practically linear and has a maximum mass

value of Mmax=81.3Msun . The light attenuation factor (redshift) is roughly {1.7…50}. Taken
the redshift and the small relative shell thickness of around 0.02, these stellar shell-stars
have approximately the properties expected of a genuine black-hole, when measured from a
distance r>>R1 . Furthermore, the phase space volume of a thin spherical shell is
proportional to its surface A, which approximates the Bekenstein-Hawking black-hole
entropy formula S=(kB/LP

2)A/4 .
The galactic (supermassive) shell-stars have the density scale and the eos of a white-dwarf-
star, i.e. of an electron Fermi-gas. The R-M-relation is almost linear and goes from 1MMsun

up to 50MMsun (MMsun =106Msun , Mrss =106rss ). dRrel=(R1-ri)/M0 is the relative thickness, and
shows, that the shells are very thin indeed, with a minimum of 0.001 . The relative
Schwarzschild-distance dRsrel= (R1-M0)/M0 has a minimum at { M0, dRsrel }={7.
MMsun,0.00142857}, the redshift is around 700. So the overall result is, that the
supermassive shell-stars become ever thinner shells, while the distance from the
Schwarzschild-horizon is increasing.
In chap. 8 we present numerical results for rotating stars of the 3 types compact neutron
star, stellar shell-star and galactic shell-star.

The angular velocity  was chosen at =0.36max, i.e. about 1/3 of the maximum.
The compact neutron star with M0=0.932Msun, R1y=2.8372rss=8.51km , R1x=2.8391rss ,

=0.1087, has the relative ellipticity of dthrel=0.00118 . The neutron star behaves like a
fluid because of its “viscosity”, that is, its nuclear interaction, and becomes slightly
“pumpkin-like”.

The stellar shell-star with M0=15.74Msun, R1mean= 17.74 rss, =0.0126, has maximum density

bc= 0.03595s , outer radii R1y=17.89rss=53.67km , R1x=17.59rss , inner radii riy=16.98rss ,
rix=16.70 rss , inner rel. ellipticity dthrel=0.0162. The redshift is 16.53 .

The stellar shell-star behaves like a ball of neutron gas (negligible interaction) and decreases
slightly its equatorial radius, so that, speaking naively, the increased gravitation counteracts
the centrifugal force, the shell-star becomes “cigar-like”, with the shell thickness
approximately constant.
The galactic shell-star is modelled (approximately) on the central black-hole in the Milky
Way with mass M0=4.368MMsun (MMsun =106Msun , Mrss =106rss ), radius R1=4.38Mrss (=13.14

106km), =0.05239 .

It has maximum density bc= 4.961 10-12s , outer radii R1y=4.38Mrss , R1x=4.494Mrss , inner
radii riy=4.341Mrss , rix=4.464Mrss , inner rel. ellipticity dthrel=0.0276.
The redshift is roughly 345. The galactic shell-star is a shell object with a thin mass shell

(R=0.0352 M rss ) situated close above its outer Kerr horizon r+=4.26 Mrss . The polar radius
is smaller than the equatorial radius, so the outer shape and the inner shape are both
pancake-like .
The overall result is , that the introduction of numerical shell-star solutions of the TOV- and
Kerr-Einstein-equations creates shell-star star models, which mimic closely the behaviour of
abstract black holes and satisfy the Bekenstein_hawking entropy formula, but have finite
redshifts and escape velocity v<c, no singularity , no information loss paradox, and are
classical objects , which need no recourse to quantum gravity to explain their behaviour.
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