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The study of infinite series involving Smarandache function is

one of the most interesting aspects of analysis.

In this brief article me give only a bare introduction to it.

First we prove that the series Sk converges and has
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S(m) is the Smarandache function: S(m) = min {keN;m|k!)
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Let us denote 1+—+-" ...+ = by E,. We

TREY Y show that
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S(k) < k implies that Z_(_Sj_k)_ < Z——k— -
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On the other hand k22 implies that S(k) > = and
consequently:

S (k) 3 1,1 * =g -3
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It follows that En,l—é < 2 (k)

= 1 and therefore
2 £ (k+1) ! 2

E Sk i5a convergent series with sum aei— e-é, 1
<=2 {k+1)! ¢ 2 2

REMARK: Some of inequalities S(k) s k are strictly and

x2S5(k)+1 , S(k) »2 . Hence oe]e-%,%
S(k) ; =~ S(k) :
We can also check that —_—, * and -, reN,
;, (k-r)! reN & (k+I)!
are both convergent as follows:
i S(k) 52 -z, rri r+2, o r+(n-r)
£ (k-I)! (k-1) ! r)' or 1r 2t (n-r)!
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converges.
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Also we have _2A\R o, reN .
" ,Z; (k+1)!

t
Let us define the set M, = {meN:m = %,neN,n 2 3} .

If meM, it is obvious that

n!
a! m 2
S(m) =n, m= Z—. MEM, = =
(m) 2 ¥ S{m) ! n!
= m - k
——— = XD b) ————— = OO
So, a; S(m ! and therefore IZ:Z Sk !
neEM, keN
A problem: test the convergence behaviour of the series
Y
= S(k)!
keN
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