ON SOME SERIES INVOLVING

SMARANDACHE FUNCTION

by

Emil Burton

The study of infinite series involving Smarandache function is one of the most interesting aspects of analysis.

In this brief article me give only a bare introduction to it.

First we prove that the series $\sum_{K=2}^{\infty} \frac{S(k)}{(kH)!}$ converges and has the sum $\sigma \in \left| e^{-\frac{5}{2}}, \frac{1}{2} \right|$.

S(m) is the Smarandache function: $S(m) = \min \{k \in \mathbb{N}; m \mid k!\}$.

Let us denote $1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}$ by E_n . We show that

 $E_{n+1} - \frac{5}{2} < \sum_{k=2}^{n} \frac{S(k)}{(k+1)!} < \frac{1}{2}$ as follows:

$$\sum_{k=2}^{n} \frac{k}{(k+1)!} = \sum_{k=2}^{n} \left(\frac{1}{k!} - \frac{1}{(k+1)!} \right) = \sum_{k=2}^{n} \frac{1}{k!} - \sum_{k=2}^{n} \frac{1}{(k+1)!} = \frac{1}{2!} - \frac{1}{(n+1)!}$$

$$S(k) \le k$$
 implies that $\sum_{k=2}^{n} \frac{S(k)}{(k+1)!} \le \sum_{k=2}^{n} \frac{k}{(k+1)!} = \frac{1}{2} - \frac{1}{(k+1)!} \le \frac{1}{2}$.

On the other hand $k \ge 2$ implies that S(k) > 1 and consequently:

$$\sum_{k=2}^{n} \frac{S(k)}{(k+1)!} > \sum_{k=2}^{n} \frac{1}{(k+1)!} = \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n+1}! = E_{n+1} - \frac{5}{2}.$$

It follows that $E_{n+1} - \frac{5}{2} < \sum_{k=2}^{n} \frac{S(k)}{(k+1)!} < \frac{1}{2}$ and therefore $\sum_{k=2}^{n} \frac{S(k)}{(k+1)!}$ is a convergent series with sum $\sigma \in \left[e - \frac{5}{2}, \frac{1}{2}\right]$.

REMARK: Some of inequalities $S(k) \le k$ are strictly and $k \ge S(k) + 1$, $S(k) \ge 2$. Hence $\sigma \in \left[e - \frac{5}{2}, \frac{1}{2}\right]$.

We can also check that $\sum_{k=1}^{n} \frac{S(k)}{(k-r)!}$, $r \in \mathbb{N}^{*}$ and $\sum_{k=2}^{n} \frac{S(k)}{(k+r)!}$, $r \in \mathbb{N}$,

are both convergent as follows:

$$\sum_{k=r}^{n} \frac{S(k)}{(k-r)!} \le \sum_{k=r}^{n} \frac{k}{(k-r)!} = \frac{r}{0!} + \frac{r+1}{1!} + \frac{r+2}{2!} + \dots + \frac{r+(n-r)}{(n-r)!} =$$

$$= r \left(\frac{1}{0!} + \frac{1}{1!} + \dots + \frac{1}{(n-r)!} \right) + \left(\frac{1}{1!} + \frac{2}{2!} + \dots + \frac{n-r}{(n-r)!} \right) = r E_{n-r} + E_{n-r-1}$$

We get $\sum_{k=r}^{n} \frac{S(k)}{(k-r)!} < rE_{n-r} + E_{n-r-1}$ which that $\sum_{k=r}^{n} \frac{S({}^{\nu})}{(k+{}^{\nu})!}$

converges.

Also we have $\sum_{k=2}^{\infty} \frac{S(k)}{(k+r)!} < \infty$, $r \in \mathbb{N}$.

Let us define the set $M_2 = \left\{ m \in \mathbb{N} : m = \frac{n!}{2}, n \in \mathbb{N}, n \geq 3 \right\}$.

If $m \in M_2$ it is obvious that

$$S(m) = n, \quad m = \frac{n!}{2}. \quad m \in M_2 \to \frac{m}{S(m)!} = \frac{\frac{n!}{2}}{n!}.$$

So,
$$\sum_{\substack{m=3\\m\in M_2}}^{\infty} \frac{m}{S(m)!} = \infty$$
 and therefore $\sum_{\substack{k=2\\k\in \mathbb{N}}}^{\infty} \frac{k}{S(k)!} = \infty$

A problem: test the convergence behaviour of the series $\sum_{k=2}^{\infty} \frac{1}{S(k)!}$

REFERENCES

Smarandache Function Journal, Vol.1 1990, Vol. 2-3, 1993,
 Vol.4-5 1994, Number Theory Publishing, Co., R. Muller Editor,
 Phoenix, New York, Lyon.

Curent Address: Dept. of Math. University of Craiova,

Craiova (1100) - Romania