SMARANDACHE RECIPROCAL FUNCTION AND AN ELEMENTARY INEQUALITY

(Amarnath Murthy, S.E.(E&T), Well Logging Services, ONGC, Sabarmati, Ahmedabad, INDIA)

The Smarandache Function is defined as S(n) = k. Where k is the smallest integer such that n divides k!

Let us define $S_c(n)$ Smarandache Reciprocal Function as follows:

 $S_c(n) = x$ where x + 1 does not divide n! and for every $y \le x$, $y \mid n!$ THEOREM-I.

If $S_c(n) = x$, and $n \neq 3$, then x + 1 is the smallest prime greater than n.

PROOF: It is obvious that n! is divisible by $1, 2, \ldots$ up to n. We have to prove that n! is also divisible by n+1, n+2, ... n+m (= x), where n+m+1 is the smallest prime greater than n.. Let r be any of these composite numbers. Then r must be factorable into two factors each of which is ≥ 2 . Let r=p.q, where p, $q \geq 2$. If one of the factors (say q) is $\geq n$ then $r=p.q \geq 2n$. But according to the Bertrand's postulate there must be a prime between n and 2n, there is a contradiction here since all the numbers from n+1 to n+m ($n+1 \leq r < n+m$) are assumed to be composite. Hence neither of the two factors p, q can be $\geq n$. So each must be < n. Now there are two possibilities:

Case-I $p \neq q$.

In this case as each is < n so p.q = r divides n!

Case-II p = q = prime

In this case $r = p^2$ where p is a prime. There are again three possibilities:

- (a) $p \ge 5$. Then $r = p^2 > 4p \implies 4p < r < 2n \implies 2p < n$. Therefore both p and 2p are less than n so p^2 divides n!
- (b) p = 3, Then $r = p^2 = 9$ Therefore n must be 7 or 8. and 9 divides 7! and 8!.
- (c) p = 2, then $r = p^2 = 4$. Therefore n must be 3. But 4 does not divide 3!, Hence the theorem holds for all integral values of n except n = 3. This completes the proof.

Remarks: Readers can note that n! is divisible by all the composite numbers between n and 2n.

Note: We have the well known inequality $S(n) \le n$. ----(2)

From the above theorem one can deduce the following inequality.

If p_r is the r^{th} prime and $p_r \le n < p_{r+1}$ then $S(n) \le p_r$. (A slight improvement on (2)).

i.e.
$$S(p_r) = p_r$$
, $S(p_r + 1) < p_r$, $S(p_r + 2) < p_r$, ... $S(p_{r+1} - 1) < p_r$, $S(p_{r+1} - 1) < p_r$

Summing up for all the numbers $p_r \le n < p_{r+1}$ one gets

$$\sum_{t=0}^{p_{r+1}-p_r-1} S(p_r + t) \le (p_{r+1}-p_r) p_r$$

Summing up for all the numbers up to the s^{th} prime, defining $p_0=1$, we get

$$\sum_{k=1}^{p_s} S(k) \leq \sum_{r=0}^{s} (p_{r+1} - p_r) p_r -----(3)$$

More generally from Ref. [1] following inequality on the nth partial sum of the Smarandache (Inferior) Prime Part Sequence directly follows.

Smarandache (Inferior) Prime Part Sequence

For any positive real number $\,n\,$ one defines $\,p_p(n)\,$ as the largest prime number less than or equal to $\,n.\,$ In [1] Prof. Krassimir T. Atanassov proves that $\,$ the value of the $\,$ $\,$ $\,$ $\,$ $\,$ partial sum of this

sequence
$$X_n = \sum_{k=1}^n p_p(k)$$
 is given by

$$X_{n} = \sum_{k=2}^{\pi(n)} (p_{k} - p_{k-1}) \cdot p_{k-1} + (n - p_{\pi(n)} + 1) \cdot p_{\pi(n)} -----(4)$$

From (3) and (4) we get

$$\sum_{k=1}^{n} S(k) \leq X_{n}$$

REFERENCES:

- [1] "Krassimir T. Atanassov", 'ON SOME OF THE SMARANDACHE'S PROBLEMS' AMERICAN RESEARCH PRESS Lupton, AZ USA. 1999. (22-23)
- [2] "The Florentine Smarandache "Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.
- [3] 'Smarandache Notion Journal' Vol. 10 ,No. 1-2-3, Spring 1999.

 Number Theory Association of the UNIVERSITY OF CRAIOVA