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Abstract The main purpose of this paper is using the elementary method to study the
asymptotic properties of the m-power complement numbers, and give an inter-
esting asymptotic formula for it.

§1. Introduction and results
Let n ≥ 2 is any integer, am(n) is called a m-power complement about n if

am(n) is the smallest integer such that n × am(n) is a perfect m-power. For
example am(2) = 2m−1, am(3) = 3m−1, am(4) = 2m−2, am(2m) = 1, · · ·.
The famous Smarandache function S(n) is defined as following:

S(n) = min{m : m ∈ N, n | m!}.
For example, S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5,
S(6) = 3, · · ·. In reference [1], Professor F.Smarandache asked us to study
the properties of m-power complement number sequence. About this prob-
lem, some authors have studied it before. See [4]. In this paper, we use the
elementary method to study the mean value properties of m-power comple-
ment number sequence, and give an interesting asymptotic formula for it. That
is, we shall prove the following:
Theorem. Let x ≥ 1 be any real number and m ≥ 2, then we have the
asymptotic formula

∑

n≤x

am(S(n)) =
xmζ(m)
m lnx

+ O

(
xm

ln2 x

)
.

§2. Proof of the theorem
To complete the proof of the theorem, we need some lemmas.
Lemma 1. If p(n) >

√
n, then S(n) = p(n).

Proof. Let n = pα1
1 pα2

2 pα3
3 · · · pαr

r p(n); so we have

n = pα1
1 pα2

2 pα3
3 · · · pαr

r <
√

n
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then
pαi

i | p(n)!, i = 1, 2, · · · , r.
So n | p(n)!, but p(n) † (p(n)− 1)!, so S(n) = p(n).

This completes the proof of the lemma 1.

Lemma 2. If x ≥ 1 be any real number and m ≥ 2, then we have the two
asymptotic formulae:

∑

n≤x

p(n)≤√n

Sm−1(n) = O
(
x

m+1
2 lnm−1 x

)
;

∑

n≤x

p(n)>
√

n

Sm−1(n) =
xmζ(m)
m lnx

+ O

(
xm

ln2 x

)
.

Proof. First, from the Euler summation formula [2] we can easily get
∑

n≤x

p(n)≤√n

Sm−1(n) ¿
∑

n≤x

(
√

n lnn)m−1

=
∫ x

1
(
√

t ln t)m−1dt +
∫ x

1
(t− [t])

(
(
√

t ln t)m−1
)′

dt + (
√

x lnx)m−1(x− [x])

=
m + 3
m + 1

x
m+1

2 lnm−1 x + O
(
x

m
2 lnm−1 x

)
.

And then, we have
∑

n≤x

p(n)>
√

n

Sm−1(n) =
∑

np≤x
p>
√

np

Sm−1(np) =
∑

n≤√x√
n<p≤ x

n

pm−1

=
∑

n≤√x

∑
√

n<p≤ x
n

pm−1.

Let π(x) denote the number of the primes up to x. From [3], we have

π(x) =
x

lnx
+ O

(
x

ln2 x

)
.

Using Abel’s identity [2], we can write

∑
√

x<p≤ x
n

pm−1 = π(
x

n
)(

x

n
)m−1 − π(

√
x)(
√

x)m−1 −
∫ x

n

√
x
π(t)(tm−1)′dt

=
(

xm

nm(lnx− lnn)
+ O

(
xm

nm(lnx− lnn)2

))
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−
(

2x
m
2

lnx
+ O

(
4x

m
2

ln2 x

))
− (m− 1)

∫ x
n

√
x

(
tm−1

ln t
+ O

(
tm−1

ln2 x

))
dt

=
xm

mnm lnx
+ O

(
xm

nm ln2 x

)
.

According to [2], we know that

∑

n≤x

1
ns

=
x1−s

1− s
+ ζ(s) + O(x−s) if s > 0, s 6= 1.

so we have

∑

n≤√x

∑
√

n<p≤ x
n

pm−1 =
xmζ(m)
m lnx

+ O

(
xm

ln2 x

)
.

This completes the proof of the lemma 2.

3 Proof of the Theorem
In this section, we complete the proof of the Theorem. Combining Lemma

1, Lemma 2 and the definition of am(n) it is clear that

∑

n≤x

am(S(n)) =
∑

n≤x

p(n)>
√

n

pm−1 + O




∑

n≤x

p(n)≤√n

(
√

n lnn)m−1




=
xmζ(m)
m lnx

+ O

(
xm

ln2 x

)
.

This completes the proof of the Theorem.

Acknowledgments
The author express his gratitude to his supervisor Professor Zhang Wenpeng

for his very helpful and detailed instructions.

References

[1] F.Smarandache, Only Problems, Not Solutions, Xiquan Publ. House,
Chicago, 1993.



174 SCIENTIA MAGNA VOL.1, NO.1

[2] Tom M.Apostol, Introduction to Analytic Number Theory, New York,
Springer-Verlag, 1976.

[3] M.Ram Murty, Problems in Analytic Number Theory, Springer-Verlag,
New York, 2001.

[4] Zhang Tianping, On the Cubic Residues Numbers and k-Power Comple-
ment Numbers, Smarandache Notions Journal, 14 (2004), 147-152.




