A NOTE ON THE SMARANDACHE DIVISOR SEQUENCES

(Amarnath Murthy, S.E. (E &T), Well Logging Services, Oil And Natural Gas Corporation Ltd., Sabarmati, Ahmedbad, India-380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION (SFP), as follows:

Let α_1 , α_2 , α_3 , ... α_r be a set of r natural numbers and p_1 , p_2 , p_3 ,... p_r be arbitrarily chosen distinct primes then $F(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r)$ called the Smarandache Factor Partition of $(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r)$ is defined as the number of ways in which the number

 $N = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_r^{\alpha_r} \quad \text{could be expressed as the}$ product of its' divisors. For simplicity , we denote $F(\alpha_1, \alpha_2, \alpha_3, \dots$

$$(\alpha_r) = F'(N)$$
, where

and p_r is the rth prime. $p_1 = 2$, $p_2 = 3$ etc.

In [2] we have defined SMARANDACHE DIVISOR SEQUENCES as follows

 $P_n = \{ x \mid d(x) = n \}$, d(x) = number of divisors of n.

$$P_1 = \{1\}$$

$$P_2 = \{ x \mid x \text{ is a prime } \}$$

$$P_3 = \{ x \mid x = p^2, p \text{ is a prime } \}$$

$$P_4 = \{ x \mid x = p^3 \text{ or } x = p_1p_2, p_1, p_2 \text{ are primes } \}$$

Let F_1 be a SFP of N. Let $\Psi_{F1} = \{y | d(y) = N \}$, generated by the SFP F_1 of N. It has been shown in Ref. [3] that each SFP generates some elements of Ψ or P_n . Here each SFP generates infinitely many elements of P_n . Similarly Ψ_{F1} , Ψ_{F2} , Ψ_{F3} , ... $\Psi_{F'(N)}$, are defined. It is evident that all these F_k 's are disjoint and also

$$P_N \; = \; \bigcup \Psi_{Fk} \quad \ 1 \leq k \leq F'(N) \; .$$

THEOREM(7.1) There are F'(N) disjoint and exhaustive subsets in which P_N can be decomposed.

PROOF: Let $\theta \in P_N$, and let it be expressed in canonical form as follows

Then
$$d(\theta) = (\alpha_1+1)(\alpha_2+1)(\alpha_3+1) \dots (\alpha_r+1)$$

Hence $\theta \in \Psi_{Fk}$ for some k where F_k is given by

$$N = (\alpha_1+1)(\alpha_2+1)(\alpha_3+1) \dots (\alpha_r+1)$$

Again if $\theta \in \Psi_{Fs}$, and $\theta \in \Psi_{Ft}$ then from unique factorisation theorem F_s and F_t are identical SFPs of N.

REFERENCES:

- [1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
- [2] "Amarnath Murthy", 'Some New Smarandache Sequences, Functions And Partitions', SNJ, Vol. 11, No. 1-2-3, 2000.
- [3] "Amarnath Murthy", 'Some more Ideas on SFPS. SNJ, Vol. 11, No. 1-2-3, 2000.
- [4] "The Florentine Smarandache "Special Collection, Archives of American Mathematics, Centre for American History, University of Texas at Austin, USA.