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ABSTRACT. The main purpose of this paper is to prove that there is only one
prime among the symmetric sequence. Thisjsolved the problem 17 of Professor
F.Smarandache in [1]. &'L m)/? /Ipa,r%z L; ZEE )

1. INTRODUCTION

For any positive integer n, we define the symmetric sequence {S(n)} as fol-
lows: S(1) =1, §(2) = 11, 5(3) = 121, S(4) = 1221, S5(5) = 12321, S(6) =
123321, 5(7) = 1234321, S(8) = 12344321, ------ . In problem 17 of [1], Profes-
sor F.Smarandache asked us to solve such a problem: How many primes are there
among these numbers? This problem is interesting, because it can help us to find
some new symmetric primes. In this paper, we shall study this problem, and give
an exact answer. That is, we shall prove the following conclusion:

Theorem. For any positive integer n > 2, we have the decomposition

fngq

n n+1
123---(n~1)an(n —-1)---321 = 11.--1x 11---1;

n n

., —— ——
123---(n—-1)n(n—-1)---321=11---1x11---1.
From this theorem we may immediately deduce the following two corollaries: ‘

Corollary 1. There is only one prime among the symmeiric sequence, That is,

A
5(2) = 11. . F 1
Corollary 2. For any positive integer n“:.S,'(2n — 1) is a perfect square number.

That 1s,

S(2n—-1)=123---(n—1)n(n ~1)--- 321

n n

——
=11---1x11---1.
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2. PROOF OF THE THEOREM

In this section, we complete the proof of the theorems. First we let

S = {11,1221,123321,--.... 123 (n=1)nn(n —1)---321,---... 3, f@, n 9
and
Sy = {1.121,12321,.-. ... 123 (n—1)n(n —1)---321,--. .. 3 3&/\, m <9,

Then it is clear that

{S$(n)} = 81| J S..
For any poéitive integer m € {S(n)}, we have m € S; orm € Sy. If m € Si, then
there exists a positive integer n such that m = 123. .- (n—=1)nn(n~-1)-.-321. So
that :
m=10""""+2x 1072 £ ... 4 n x 10"
+nx10" 1+ (n—1)x 10" 2 +...2x 10+ 1
= [10""71 +2% 10°" 2 + ... 4 n) x 107]

+[nx 10" 4 (n—) x 10" + .. 2 x 10+ 1]

(1) = S + Si2.

Now we compute S;; and Syq in (1) respectively. Note that

9511 = 10511 — S11 = 10°" +2 x 10" 1 4 ... x 107!

— 1071 2% 10272 ... _p x 10"
=10%" 4+ 10> + 102"~ 2 L ... £ 10"t _ 5, x 10
0% -1
= 10"+ x —nx 10"

and

9512 =10512 = S12 =n X 10" + (n — 1) x 10"~ 4+ ...2 % 102 + 10
—nx10" '~ (n-1)x10"%~-...2x10~1
=nx10"-10""1 102 ~...10-1

10" -1
=nx 10" - .

9

So that we have

, 1 ‘
(2) Su= Tl [10°"+1 _9n x 107 — 10"+
and
1
(3) Si12 = —8—1-[971 x 10" —10™ + 1].
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Combining (1), (2) and (3) we have

m = S11 + Si2

gli x [10°"+! — 9n x 10" ~ 10™H1] 4 81—1 [97 x 10™ — 10™ + 1]

(1021 —107*! — 10" + 1)

1
81
1
8_. 10n )(On-H )
n n+1

o — e N——
11---1x11---1.

(4)
If m € S5, then there exists a positive integer n such that

m=123---(n—-1)n(rn—-1)---321
Similarly, we also have the identity

m=10""24+2x10>"% +... + n x 10*!
+(rn=-1)x10" 24+ (n-2)x10" 3 +--.2x10+1

1 211_ _ nn-—1 l n—'l_ n
81(0 10™ — 9n x 10 )+81(9nx10 10™ + 1)

10" —112 ,._L\ ,_./L
(5) = 5 =11---1x11-.--1.

Now the theorem 1 follows from (4) and (5). (_p}d«%\gv

From theorem 1 we know that S(n) is a composite number, if n > 3, Note that
S(1) = 1 and S(2) = 11 (a prime), we may immediately deduce the theorem 2.
This completes the proof of the theorems.
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