SOME PROPERTIES OF SMARANDACHE FUNCTIONS OF THE TYPE I

Þу

Balacenoiu Ion and Seleacu Vasile
Department of mathematics
University of Craiova

We consider the construction of Smarandache functions of the type I S_p (peN*, p prim) which are defined in [1] and [2] as follows:

$$S_n: \mathbb{N}^* \longrightarrow \mathbb{N}^*$$
 ; $S_i(k) = 1$; $S_i(k) = \max_{1 \le j \le r} (S_j(i_j, k))$
for $\bigcap = p_1^{i_1} p_2^{i_2} \dots p_r^{i_r}$

In this paper there are presented some properties of these functions. We shall study the monotonicity of each function S_n and also the monotonicity of some subsequences of the sequence $(S_n)_n \in \mathbb{N}^+$.

1.Proposition. The function $S_{\hat{n}}$ is monotonous increasing for every positiv integer \hat{n} .

Proof. The function S_i is abviously monotonous increasing. Let $k_i < k_j$ where k_i , $k_i \in \mathbb{N}^*$. Supposing that n is a prime number and taking accont that $(S(k_j))! = \text{multiple } n^{k_j} = \text{multiple } n^{k_j}$,

it results that $S_n(k) \le S_n(k)$, therefore S_n is monotonous increa-

sing. Let
$$S_n(k_1) = \max_{1 \le j \le k} \{S_p(i_j, k_j)\} = S_p(i_m, k_j)$$

$$S_n(k_2) = \max_{1 \le j \le r} \{S_p(i_j, k_j)\} = S_p(i_j, k_j)$$

Because
$$S_{p_m}(i_m, k_1) \le S_{p_m}(i_m, k_2) \le S_{p_t}(i_t, k_2)$$

it results that $S(k) \leq S(k)$ so S(k) so S(k) is monotonous increasing.

2. Proposition. The sequence of functions (Si) iel monotonous increasing, for every prime number p.

Proof. For any two numbers $i_1, i_2 \in \mathbb{N}^{\frac{n}{2}}$, $i_1 < i_2$ and for any $n \in \mathbb{N}^{\frac{n}{2}}$ we have:

$$S_{p_1}(n) = S_{p_2}(i,n) \le S_{p_2}(i,n) = S_{p_2}(n)$$
 therefore $S_{p_2} \le S_{p_2}(n)$

Hence the sequence $\{S_i\}_{i\in\mathbb{N}}^*$ is monotonous increasing for every prime number p.

3. Proposition. Let p and q two given prime numbers. If p(q then

$$S_{p}(k) < S_{q}(k)$$
 , $k \in \mathbb{N}^{*}$

Proof. Let the sequence of coefficients (see [2]) $a_1^{(p)}, a_2^{(p)}, \ldots, a_e^{(p)}, \ldots$

Every $k \in \mathbb{N}^*$ can be uniquely written as

$$k = t_{i}a_{g}^{(p)} + t_{2}a_{g-i}^{(p)} + \dots + t_{g}a_{i}^{(p)}$$
 (1)

where $0 \le t_i \le p+1$, for i=1,s-1 , and $0 \le t_s \le p$. The procedure of passing from k to k+1 in formule (1) is:

- CD t is increasing with a unity.
- (ii) if t_e can not increase with a unity, then t_{e-1} is increasing with a unity and $t_e = 0$
- (iii) if neithe t_s , nor t_{s-i} are not increasing with a unity then t_{s-z} is increasing with a unity and $t_s=t_{s-i}=0$. The procedure is continued in the same way until we obtain the expression of k+1.

Denoting $\Delta_k(S_p) = S_p(k+1) - S_p(k)$ the leap of the function S_p when we pass from k to k+1 corresponding to the procedure described above. We find that

- in the case (i)
$$\Delta(S) = p$$

- in the case (iii)
$$\Delta_k(S_p) = 0$$

It is abviously seen that:
$$S_p(n) = \sum_{k=1}^n \Delta_k(n) + S_p(1)$$
.

Analogously we write
$$S_q(n) = \sum_{k=1}^n \Delta_k(n_q) + S_q(1)$$

Taking into account that $S_q(1) = p < q = S_q(1)$ and using the procedure of passing from k to k+1 we deduce that the number of leaps with zero value of S_p is greater then the number of leaps with zero value of S_q , respectively the number of leaps with value p of S_p is less then the number of leaps of S_q with value

q it result that

$$\sum_{k=1}^{n} \Delta_{k}(S_{p}) + S_{p}(1) < \sum_{k=1}^{n} \Delta_{k}(S_{q}) + S_{q}(1)$$
 (2)

Hence S(n) < S(n), $n \in \mathbb{N}^*$.

4.Remark. For any monotonous increasing sequence of prime numbers $p_{1} < p_{2} < \dots < p_{n} < \dots$ it results that

$$s_1 < s_{p_1} < s_{p_2} < \dots < s_{p_n} < \dots$$

If
$$n = p_1^i p_2^i \dots p_t^i$$
 and $p_1 < p_2 < \dots < p_t$ then
$$S_n(k) = \max_{1 \le j \le t} (S_{p_j}(k)) = S_{p_t}(k) = S_{p_t}(ik)$$

5. Proposition. If p and q are prime numbers and p.i < q then $S_p i < S_q$.

Proof. Because p.i < q it results

$$S_{p}(1) \le p.i < q = S(1)$$
 (3)

and $S_p(k) = S_p(ik) \le i S_p(k)$.

From (3) passing from k to k+1, we deduce

$$\Delta_{k}(S_{p}) \leq i \Delta_{k}(S_{p})$$
 (4)

Taking into account the proposition 3. from (4) it results that when we pass from k to k+1 we obtain

 $\Delta_{k}(S_{p}) \le i \Delta_{k}(S_{p}) \le i.p < q \text{ and } i\sum_{k=1}^{n} \Delta_{k}(S_{p}) \le \sum_{k=1}^{n} \Delta_{k}(S_{q})$ (5)

Because we have

$$S_{p}(n) = S_{p}(1) + \sum_{k=1}^{n} \Delta_{k}(S_{p}) \le S_{p}(1) + i \sum_{k=1}^{n} \Delta_{k}(S_{p})$$

and

$$S_q(n) = S_q(1) + \sum_{k=1}^{n} \Delta_k(S_q)$$

from (3) and (5) it results $S_i(n) \le S_i(n)$, $n \in \mathbb{N}^*$

6.Proposition. If p is a prime number then $S_n \leq S_p$ for every $n \leq p$.

Proof.If n is a prime number from n < p, using the proposition 3 it results $S_n(k) < S_n(k)$ for $k \in \mathbb{N}^m$. If n is a composed, that

is
$$n = p_i^{i_1} \dots p_i^{i_k}$$
 then $S(k) = \max_{1 \le j \le k} (S(k)) = S(k)$.

Because n p_r^{\tau} < p and using the proposition 5

and knowing that $i_F \le p_F^{i_F} < p$ it results that $S_i(k) \le S_p(k)$ therefore for $k \in \mathbb{N}^+$ $S_p(k) < S_p(k)$.

References

- [1] Balacenoiu I , Smarandache Numerical Functions in Smarandache

 Function Journal nr. 4 / 1994.
- [2] Smarandache F., A function in the number theory. "An. Univ.

 Timisoara" vol XVIII, fasc 1, pp. 79-88.