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Abstract: This study originates from questions posed on alternating 
iterations involving the pseudo-Smarandache function Z(n) and the Euler 
function +(n). An important part of the study is a fonnal proof of the fact 
that Z(n)<n for all n7!:i' (leO). Interesting questions have been resolved 
through the surprising involvement of Fermat numbers. 

L The behaviour of the pseudo-Smarandache function 

Definition of the Smarandache pseudo function Zen): Zen) is the smallest positive 
integer m such that 1 +2+ ... +m is divisible by n. 

Adding up the arithmetical series results in an alternative and more useful formulation: 
For a given integer n, Zen) equals the smallest positive integer m such that m(m+1)12n 
is an integer. Some properties and values of this function are given in [1], which also 
contains an effective computer algorithm for calculation of Zen). The following 
properties are evident from the definition: 

1. Z(1)=l 
2. Z(2)=3 
3. For any odd prime p, Z(pk)=pk -1 for ~1 
4. For n=2k, ~1, Z(2k)=2k+1_1 

We note that Z(n)=n for n=1 and that Z(n»n for n=2k when ~1. Are there other 
values ofn for which Z(n)~? No, there are none, but to my knowledge no proofhas 
been given. Before presenting the proof it might be useful to see some elementary 
results and calculations on Zen). Explicit calculations of Z(3.i,) and Z(5.2k) have been 
carried out by Charles Ashbacher [2]. For k>O: 

r2k+I-1 ifk=1 (mod 2) 
Z(3·i')=i 

l2k+1 ifk=O (mod 2) 

r 2k+2 ifk=O (mod 4) 
Z(5·i')=i 2k+1 ifk=l (mod 4) 

12k+2_1 ifk=2 (mod 4) 
l2k+l_l ifk=3 (mod 4) 

A specific remark is made in each case that Z(n)<n. 

Before proceeding to the theorem a study of Z(a·2k
). a odd and k>O, we will carry out 

a specific calculation for n=7·2k
• 
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· . m(m+ 1) 
We look for the smallest mteger m for which 7. 2k+l is integer. We distinguish two 

cases: 

Case I: 
m=7x 
m+1=2k+1y 
Eliminating m results in 
i~+ly-l=7x 

2k+1Y=1 (mod 7) 
Since 23=1 (mod 3) we have 
Ifk= 1 (mod 3) then 
y=1 (mod 7) ; m=2k+I-l 
Ifk=O (mod 3) then 
2y=1 (mod 7), y=4; m=2k

-
d ·4_1=2k+3_1 

Ifk=1 (mod 3) then 
4y=1 (mod 7), y=2; m=2k+I ·2_1=2k+2_1 

Case 2: 
m=2k+ly 

m+l=7x 

2k+ly+1 =7x 
2k+ly= 1 (mod 7) 

y=3 (mod 7); m=3·2k+1 

y=5 (mod 7); m=5·2k
+l 

By choosing in each case the smallest m we find: 

r2k+'-l ifk= 1 (mod 3) 
Z(7·2k)=i 3·2](+1 ifk=O (mod 3) 

lit+2_1 ifk=l (mod 3) 

Again we note that Z(n)<n. 

In a study of alternating iterations [3] it is stated that apart from when n=2k (lQ:O) Zen) 
is at most n. If it ever happened that Z(n)=n for n> 1 then the iterations of Zen) would 
arrive at an invariant, i.e. Z( ... Z(n) ... )=n. This can not happen, therefore it is 
important to prove the following theorem. 

Theorem: Z(n)<n for all n:;t:2\ lQ:O. 

Proof: Write n in the form n=a.2\ where a is odd and k>O. Consider the following four 
cases: 

1. a·2k
+

1
1 m 

2. a·2k
+

1
1 (m+l) 

3. al m and 2k+ll (m+I) 
4. 2k+1Imandal(m+l) 

If a is composite we could list more cases but this is not important as we will achieve 
our goal by finding m so that Z(n)Sn<n (where we will have Z(n)=m in case a is 
prime) 

Cases 1 and 2: 
Case 1 is excluded in favor of case 2 which would give m= a·2k+l-l>n. We will see that 
also case 2 be excluded in favor of cases 3 and 4. 

37 



Case 3 and 4. In case 3 we write m=ax. We then require 21<+11 (ax+I), which means that 
we are looking for solutions to the congruence 

(1) 

In case 4 we write m+I=ax and require 2k
+
11 (ax-I). This corresponds to the 

congruence 

(2) 

IfX=X1 is a solution to one of the congruencies in the interval it <x< 2k
+
1 then 2k

+
I
_XI 

is a solution to the other congruence which lies ill the interval 0 <x< 2k. So we have 
m=ax or m=ax-l with O<x<2k , Le. m<n exists so that m( m+ 1 )/2 is divisible by n when 
a>1 in n=a·2k

o Ifa is a prime number then we also have Z(n)=m<n. Ifa=al·a2 then Zen) 
Sn which is a fortiori less than n.. 

Let's illustrate the last statement by a numerical example. Take n=70 =5·7·2. An 
effective algorithm for calculation of Zen) [1] gives Z(70)=20. Solving our two 
congruencies results in: 

35x=-1 (mod 4) Solution x=1 for which m=35 
35x==1 (mod 4) Solution x=3 for which m=104 

From these solutions we chose m=35 which is less than n=70. However, here we arrive 
at an even smaller solution Z(70)=20 because we do not need to require both al and a2 
to divide one or the other of m and m+ 1. 

ll. Iterating the Pseudo-Smarandache Function 

The theorem proved in the previous section assures that an iteration of the pseudo­
Srnarandache function does not result in an invariant, i.e. Z(n):;t:n is true for n:;t:l. On 
iteration the function will leap to a higher value only when n=2k. It can only go into a 
loop (or cycle) ifafter one or more iterations it returns to 2k. Up to n=228 this does not 
happen and a statistical view on the results displayed in diagram 1 makes it reasonable 
to conjecture that it never happens. Each row in diagram 1 corresponds to a sequence 
of iterations starting on n=2k finishing on the final value 2. The largest number of 
iterations required for this was 24 and occurred for n=214 which also had the largest 
numbers of leaps form ~ to ~+I-l. Leaps are represented by t in the diagram. For 

2 11 and 212 h· . 1 d . n= t e lteratlons are monotonous y ecreasmg. 

ID. Iterating the Euler + function 

The function +(n) is defined for n> 1 as the number of positive integers less than and 
prime to n. The analytical expression is given by 

1 
+(n) = nIl (1--) 

Pin P 

38 



k/j 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 

2 
3 t 
4 t 
5 t t 
6 t t 
7 t 
8 t t 
9 t 

10 t t t 
11 t 
12 t 
13 t t 
14 t t t t 
15 '" I 

16 t 
17 t t 
18 t 
19 t t 
20 t t 
21 t t 
22 t 
23 t t 
24 t 
25 t 
26 t t 
27 t t 
28 t t t 

Diagram 1. 

For n expressed in the form n = p~'p~2 ..... p~' it is often useful to express ~(n) in the 

form 

It is obvious from the definition that ~(n)<n for all n> 1. Applying the ~ function to ~(n) 
we will have ~(~(n))< ~(n). After a number of such iterations the end result will of 
course be 1. It is what this chain of iterations looks like which is interesting and which 
will be studied here. For convenience we will write ~2(n) for ~(~(n)). ~k(n) stands for 
the ktb iteration. To begin with we will look at the iteration ofa few prime powers. 

~(3a)=3a-l.2, ~2(3a)=3a-2.2, 

In particular ~a(3a)=2. 

Proceeding in the same way we will write down ~k(pa), ~a(pa) and first first 
occurrence of an iteration result which consists purely of a power of 2. 
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ejlk(11j=1Ia-k·s·22k-\ ~ 

c/Ik(13j=13a-k·3·22\ L<a 

c/Ik(l7j=1 r k·23k+1
, L<a 

c/Ik(19j=19a-k·3k+I·2k, ~ 

ejla(Sj=2a+1 

Table 1. Iteration ofp6. A horizontal line marks where the rest of the iterated values consist of 
descending powers of 2 

p=2 p=3 p=5 p-7 p-11 p=13 p-17 p-19 p-23 

32 486 12500 100842 1610510 4455516 22717712 44569782 141599546 

16 162 5000 28812 585640 1370928 10690688 14074668 61565020 

8 54 2000 8232 212960 421824 5030912 4444632 21413920 

4 18 800 2352 77440 129792 2367488 1403568 7448320 

2 6 320 672 28160 39936 1114112 443232 2590720 

2 128 192 10240 12288 524288 139968 901120 

64 64 4096 4096 262144 46656 327680 

32 32 2048 2048 131072 15552 131072 
16 16 1024 1024 65536 5184 65536 

8 8 512 512 32768 1728 32768 

4 4 256 256 16384 576 16384 
2 2 128 128 8192 192 8192 

64 64 4096 64 4096 

32 32 2048 32 2048 

16 16 1024 16 1024 

8 8 512 8 512 

4 4 256 4 256 

2 2 128 2 128 
64 64 
32 32 

16 16 
8 8 
4 4 
2 2 

The characteristic tail of descending powers of 2 applies also to the iterations of 
composite integers and plays an important role in the ahernating Z-ejI iterations which 
will be subject of the next section. 
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IV. The alternating iteration of the Euler cit function followed by the 
Smarandache Z function. 

Charles Ashbacher [3] found that the alternating iteration Z( ... (cI»(Z(+(n))) ... ) ends in 
2-cycles of which he found the following four!: 

2-cycle 

2 - 3 
8 - 15 

128 - 255 
32768 - 65535 

The following questions were posed: 

First Instance 
3=22-1 

15=2 4-1 

255=2 8-1 
65535=216_1 

1) Does the Z-+ sequence always reduce to a 2-cycle of the form 22
'-1 B 22

' -1 for 
r~l? 

2) Does any additional patterns always appear first for n = 22
' -I? 

Theorem: The alternating iteration Z( ... (+(Z(+(n))) ... ) ultimately leads to one of the 
following five 2-cycles: 2 -3, 8 - 15, 128 - 255, 32768 - 65535, 2147483648 -
4294967295. 

Proof: 
Since q,(n)<n for all n> 1 and Z(n)<n for all n;l!:2k (leO) any cycle must have a number 
of the form 2k at the lower end and Z(2k)=2k

+
l _l at the upper end of the cycle. In order 

to have a 2-cycle we must find a solution to the equation 

If2k+I-l were a prime +(2k+I_l) would be 2k+l_2 which solves the equation only when 
k=l. A necessary condition is therefore that 2k+!_1 is composite, 2k

+
l -l=fi·fi· ... ·fi· ... ·fr 

and that the factors are such that +( fj)= 2 u; for 1 <j<r. But this means that each factor fj 
must be a prime number of the form 2u

; + 1. This leads us to consider 

q(r)= (2-1)(2+1)(22+1)(24+1)(28+1) .... (22
'-' + 1) 

or 

q(r)= (22
' -1) 

Numbers of the form Fr=22
' + 1 are known as Fermat numbers. The first five of these 

are prime numbers 

J It should be noted that 2, 8, 128 and 32768 can be obtained as iteration results only through 
iterations of the type .p(. .. (Z(cjl(n») ... ) whereas the "complete" iterations Z( ... (cjl(Z(cjl(n») ... ) lead to 
the invariants 3, 15,255,65535. Consequently we note that for example Z(cjI(8»=7 not 15, i.e. 8 does 
not belong to its own cycle. 
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while Fs=641·6700417 as well as F6 , F7 , Fs , F9 , FlO and Fll are all known to be 
composite. 

From this we see that 

for r=1, 2, 3, 4 5 but breaks down for r=6 (because Fs is composite) and consequently 
also for r>6. 

Evaluating (3) for r=1,2,3,4,5 gives the complet~ table of expressions for the five 2-
cycles. 

Cycle It 2-cycle Equivalent expression 
1 2 ~ 3 2 ~ 22_1 
2 8 ~ 15 2 3 ~ 24_1 
3 128 ~ 255 27 

~ 2 8-1 
4 32768 ~ 65535 2 15 

~ 2 16_1 
5 2147483648 ~ 4294967295 2 31 

~ 2 32 _1 

The answers to the two questions are implicit in the above theorem 

1) The Z-~ sequence always reduces to a 2-cycle of the form 22
' -1 ~ 22

' -1 for r~l. 

2) Only five patterns exist and they always appear:first for n = 22
' -1, r=1,2,3,4,5. 

A statistical survey of the frequency of the different 2-cycles, displayed in table 2, 
indicates that the lower cycles are favored when the initiating numbers grow larger. 
Cycle #4 could have appeared in the third interval but as can be seen it is generally 
scarcely represented. ProhIbitive computer execution times made it impossible to 
systematically examine an interval were cycle #5 members can be assumed to exist. 
However, apart from the ''founding member" 2147483648 ~ 4294967295 a few 
individual members were calculated by solving the equation: 

Z( ~(n)=232_1 

The result is shown in table 3. 

Table 2. The distribution of cycles for a few intervals of length 1000. 

Interval Cycle #1 Cycle #2 Cycle #3 

3 !> n ~ 1002 572 358 70 

10001 ~ n !> 11000 651 159 190 

100001 ~ n ~ 101000 759 100 141 

1000001 ~ n ~ 1001000 822 75 86 

10000001 ~ n ~ 100001000 831 42 64 

100000001 ~ n ~1000001000 812 52 43 

42 

Cycle #4 

o 
17 
63 
93 



Table 3. A few members of the cycle #5 family. 

n +(n) Z (+(n)) +(Z(q,(n)) ) 

38655885321 25770196992 4294967295 2147483648 
107377459225 85900656640 4294967295 2147483648 
966397133025 515403939840 4294967295 2147483648 

1241283428641 1168248930304 4294967295 2147483648 
11171550857769 7009493581824 4294967295 2147483648 
31032085716025 23364978606080 4294967295 2147483648 

279288771444225 140189871636480 4294967295 2147483648 
283686952174081 282578800082944 4294967295 2147483648 

2553182569566729 1695472800497664 4294967295 2147483648 
7092173804352025 5651576001658880 4294967295 2147483648 
63829564239168225 33909456009953280 4294967295 2147483648 
81985529178309409 76861433622560768 4294967295 2147483648 

2049638229457735225 1537228672451215360 4294967295 2147483648 
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