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Abstract For any fixed positive integer n, the Smarandache ceil function of order k is

denoted by N∗ → N and has the following definition:

Sk(n) = min{x ∈ N : n | xk}, ∀n ∈ N∗.

In this paper, we study the mean value properties of the Smarandache ceil function, and give

a sharp asymptotic formula for it.
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§1. Introduction

For any fixed positive integer n, the Smarandache ceil function of order k is denoted by
N∗ → N and has the following definition:

Sk(n) = min{x ∈ N : n | xk}, ∀n ∈ N∗.

For example, S2(1) = 1, S2(2) = 2, S2(3) = 3, S2(4) = 2, S2(5) = 5, S2(6) = 6, S2(7) = 7,
S2(8) = 4, S2(9) = 3, · · · . This was introduced by Smarandache who proposed many problems
in [1]. There are many papers on the Smarandache ceil function. For example, Ibstedt [2] [3]
studied this function both theoretically and computationally, and got the following conclusions:

(a, b) = 1 ⇒ Sk(ab) = Sk(a)Sk(b), a, b ∈ N∗.

Sk(pα1
1 pα2

2 · · · pαr
r ) = Sk (pα1

1 ) · · ·Sk (pαr
r ) .

In this paper, we study the mean value properties of the Smarandache ceil function, and
give a sharp asymptotic formula for it. That is, we shall prove the following:

Theorem. For any real number x ≥ 2, we have the asymptotic formula

∑

n≤x

1
S2(n)

=
3

2π2
ln2 x + A1 lnx + A2 + O(x−

1
4+ε),

where A1 and A2 are two computable constants, ε is any fixed positive integer.
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§2. Proof of the theorem

To complete the proof of the theorem, we need the following Lemma, which is called the
Perron’s formula (See reference [4]):

Lemma. Suppose that the Dirichlet series f(s) =
∞∑

n=1

a(n)n−s, s = σ + it, convergent

absolutely for σ > σa, and that there exist a positive increasing function H(u) and a function
B(u) such that

a(n) ≤ H(n), n = 1, 2, · · · ,

and
∞∑

n=1

|a(n)|n−σ ≤ B(σ), σ > σa.

Then for any s0 = σ0 + it0, b0 > σa, b0 ≥ b > 0 , b0 ≥ σ0 + b > σa, T ≥ 1 and x ≥ 1, x not to
be an integer, we have

∑

n≤x

a(n)n−s0 =
1

2πi

∫ b+iT

b−iT

f(s0 + s)
xs

s
ds + O

(
xbB(b + σ0)

T

)

+ O

(
x1−σ0H(2x)min

(
1,

log x

T

))
+ O

(
x−σ0H(N)min

(
1,

x

T || x ||
))

,

where N is the nearest integer to x, || x ||= |N − x|.
Now we complete the proof of the theorem. Let s = σ + it be a complex number and

f(s) =
∞∑

n=1

1
S2(n)ns

.

Note that | 1
S2(n) | ≤ 1√

n
, so it is clear that f(s) is a Dirichlet series absolutely convergent for

Re(s) > 1
2 , by Euler product formula [5] and the definition of S2(n) we have

f(s) =
∏
p

(
1 +

1
S2(p)ps

+
1

S2(p2)p2s
+

1
S2(p3)p3s

+
1

S2(p4)p4s
+ · · ·+ 1

S2(p2k)p2ks
+

1
S2(p2k+1)p(2k+1)s

+ · · ·
)

=
∏
p

(
1 +

1
ps+1

+
1

p2s+1
+

1
p3s+2

+
1

p4s+2
+ · · ·+ 1

p2ks+k
+

1
p(2k+1)s+k+1

+
1

p2(k+1)s+k+1
+

1
p(2(k+2)+1)s+k+2

+ · · ·
)

=
∏
p

1
1− 1

p2s+1

(
1 +

1
ps+1

)

=
ζ(2s + 1)ζ(s + 1)

ζ(2s + 2)
,

where ζ(s) is the Riemann zeta-function and
∏
p

denotes the product over all primes.
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Taking

H(x) = 1; B(σ) =
2

2σ − 1
, σ >

1
2
;

s0 = 0; b = 1; T = x
5
4 in the above Lemma we may get

∑

n≤x

1
S2(n)

=
1

2iπ

∫ 1+ix
5
4

1−ix
5
4

f(s)
xs

s
ds + O(x−

1
4+ε).

To estimate the main term, we move the integral line in the above formula from s = 1±ix
5
4

to s = − 1
4 ± ix

5
4 . This time, the function f(s)xs

s have a third order pole point at s = 0 with
residue

3
2π2

ln2 x + A1 lnx + A2,

where A1 and A2 are two computable constants.
Hence, we have

1
2πi




∫ 1+ix
5
4

1−ix
5
4

+
∫ − 1

4+ix
5
4

1+ix
5
4

+
∫ − 1

4−ix
5
4

− 1
4+ix

5
4

+
∫ 1−ix

5
4

− 1
4−ix

5
4


 ζ(2s + 1)ζ(s + 1)xs

ζ(2s + 2)s
ds

=
3

2π2
ln2 x + A1 lnx + A2.

We can easily get the estimate

∣∣∣∣∣∣
1

2πi




∫ − 1
4+ix

5
4

1+ix
5
4

+
∫ − 1

4−i 5
4

− 1
4+i 5

4

+
∫ 1−ix

5
4

− 1
4−ix

5
4


 ζ(2s + 1)ζ(s + 1)xs

ζ(2s + 2)s
ds

∣∣∣∣∣∣
¿ x−

1
4+ε.

From above we may immediately get the asymptotic formula:

∑

n≤x

1
S2(n)

=
3

2π2
ln2 x + A1 lnx + A2 + O(x−

1
4+ε).

This completes the proof of the theorem.
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