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Abstract: A Smarandache multi-spacetime is such a union spacetime
n⋃

i=1

Si of spacetimes

S1, S2, · · · , Sn for an integer n ≥ 1. In this article, we will be deduced the geodesics of

space-time, i.e., a Smarandache multi-spacetime with n = 1 by using Lagrangian equations.

The deformation retract of space-time onto itself and into a geodesics will be achieved. The

concept of retraction and folding of zero dimension space-time will be obtained.The relation

between limit of folding and retraction presented.
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§1. Introduction

The folding of a manifold was, firstly introduced by Robertson in [1977] [14]. Since then many

authers have studied the folding of manifolds such as in [4,6,12,13]. The deformation retracts of

the manifolds defined and discussed in [5,7]. In this paper, we will discuss the folding restricted

by a minimal retract and geodesic. We may also mention that folding has many important

technical applications, for instance, in the engineering problems of buckling and post-buckling

of elastic and elastoplastic shells [1]. More studies and applications are discussed in [4], [8], [9],

[10], [13].

§2. Definitions

1. A subset A of a topological space X is called a retract of X , if there exists a continuous map

r : X → A such that ([2]):

(i) X is open;

(ii)r(a) = a, ∀a ∈ A.

2. A subset A of atopological space X is said to be a deformation retract if there exists a

retraction r : X → A, and a homotopy f : X × I → X such that([2]):

f(x, 0) = x,∀, x ∈ X ;
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f(x, 1) = r(x), ∀x ∈ X ;

f(a, t) = a,∀a ∈ A, t ∈ [0, 1].

3. Let M and N be two smooth manifolds of dimensions m and n respectively. A map

f : M → N is said to be an isometric folding of M into N if and only if for every piecewise

geodesic path γ : J → M ,the induced path f ◦ γ : J → N is a piecewise geodesic and of the

same length as γ ([14]). If fdoes not preserve the lengths, it is called topological folding.

4. Let M be an m-dimensional manifold. M is said to be minimal m-dimensional manifold if

the mean curvature vanishes everywhere, i.e., H(σ.p) = 0 for all p ∈M ([3]).

5. A subset A of a minimal manifold M is a minimal retraction of M , if there exists a continuous

map r : M → Asuch that ([12]):

(i)M is open;

(ii)r(M) = A;

(iii)r(a) = a,∀a ∈ A;

(iv)r(M)is minimal manifold.

§3. Main Results

Using the Neugebaure-Bcklund transformation, the space-time T take the form [11]

ds2 = d t2 − d p2 − d z2 − p2dφ2 (1)

Using the relationship between the cylindrical and spherical coordinates, the metric be-

comes

ds
2

= r2(sin2 θ2 − cos2 θ2) dθ
2

2 − r2 sin2 θ2 dθ
2

1 + (cos2 θ2 − sin2 θ2) dr
2

−r2 sin2 θ1 sin2 θ2 dϕ
2 − 4r sin θ2 cos θ2dθ2dr.

The coordinates of space-time T are:

y1 =
√

c1(r, θ2)− r2 sin2 θ2θ2
1

y2 =
√

4r2 cos 2θ2 + k1

y3 =
√

r2 cos 2θ2 + c3(θ2)

y4 =
√

c4(r, θ1, θ2)− r2 sin2 θ1 sin2 θ2φ2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2)

where c1, k1, c3, c4 are the constant of integrations. Applying the transformation

x2
1 = y2

1 − c1(r, θ2),

x2
2 = y2

2 − k1,

x2
3 = y2

3 − c3(θ2),

x2
4 = y2

4 − c4(r, θ1, θ2)

Then, the coordinates of space-time T becomes:
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x1 = ir sin θ2θ1

x2 = 2r
√

cos 2θ2

x3 = r
√

cos 2θ2

x4 = ir sin θ1 sin θ2φ.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3)

Now, we apply Lagrangian equations

d

ds
(

∂T

∂Gi

)− ∂T

∂Gi
= 0, i = 1, 2, 3, 4.

to find a geodesic which is a subset of the space-time T . Since

T =
1

2
{−r2 cos 2θ2θ

′2
2 − r2 sin2 θ2θ

′2
1 + cos 2θ2r

′2 − r2 sin2 θ1 sin2 θ2φ
′2

−2r sin 2θ2θ
′
2r
′}

then, the Lagrangian equations for space-time T are:

d

ds
(r2 sin2 θ2θ

′
1) + (r2 sin θ1 cos θ1 sin2 θ2φ

′2) = 0 (4)

d
ds(r2 cos 2θ2θ

′
2 + r sin θ2r

′) + (r2 sin 2θ2θ
′2
2 + r2 sin θ2 cos θ2θ

′1
1

+ sin 2θ2r
′2 + r2 sin2 θ1 sin θ2 cos θ2φ

′2 + 2r cos 2θ2θ
′
2r′) = 0

(5)

d
ds(cos 2θ2r

′ − r sin 2θ2θ
′
2) + (r cos 2θ2θ

′2
2 + r sin2 θ2θ

′2
1 +

r sin2 θ1 sin2 θ2φ
′2 + sin 2θ2θ

′
2r′) = 0

(6)

d

ds
(r2 sin2 θ1 sin2 θ2φ

′) = 0. (7)

From equation (7) we obtain r2 sin2 θ1 sin2 θ2φ
1 = constant μ. If μ = 0, we obtain the following

cases:

(i) If r = 0, hence we get the coordinates of space-time T1, which are defined as

x1 = 0, x2 = 0, x3 = 0, x4 = 0,

which is a hypersphere T1, x2
1 − x2

2 − x2
3 − x2

4 = 0 on the null cone since the distance between

any two different points equal zero, it is a minimal retraction and geodesic.

(ii) If sin2θ1 = 0, we get

x1 = 0, x2 = 2r
√

cos 2θ2, x3 = r
√

cos 2θ2, x4 = 0.

Thus, x2
1+x2

2+x2
3+x2

4=5r2 cos 2θ2, which is a hypersphere S1 in space-time T with x1 = x4 = 0.

It is a geodesic and retraction.

(iii) If sin2 θ2 = 0 , then θ2 = 0 we obtain the following geodesic retraction
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x1 = 0, x2 = 2r, x3 = r, x4 = 0, x2
1 + x2

2 + x2
3 − x2

1 = 5r2,

which is the hypersphere S2 ⊂ T with x1 = x4 = 0.

(iv) If φ′ = 0 this yields the coordinate of T2 ⊂ T given by

x1 = ir sin θ2θ1, x2 = 2r
√

cos 2θ2, x3 = r
√

cos 2θ2, x4 = 0.

It is worth nothing that x4 = 0 is a hypersurface T2 ⊂ T . Hence, we can formulate the following

theorem.

Theorem 1 The retractions of space-time is null geodesic, geodesic hyperspher and hypersur-

face.

Lemma 1 In space-time the minimal retraction induces null-geodesic.

Lemma 2 A minimal geodesic in space-time is a necessary condition for minimal retration.

The deformation retract of the space-time T is defined as

ρ : T × I → T

where T is the space-time and I is the closed interval [0,1]. The retraction of the space-time T

is defined as

R : T → T1, T2, S1 and S2.

The deformation retract of space-time T into a geodesic T1 ⊂ T is defined by

ρ(m, t) = (1− t){ir sin θ2 θ1, 2r
√

cos 2θ2, r
√

cos 2θ2,

ir sin θ1 sin θ2φ}+ t{0, 0, 0, 0}.

where ρ(m, 0) = {ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}, ρ(m, 1) = {0, 0, 0, 0}.

The deformation retract of space-time T into a geodesic T2 ⊂ T is defined as

ρ(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}
+ t{ir sin θ2θ1, 2r

√
cos 2θ2, r

√
cos 2θ2, 0}.

The deformation retract of space-time T into a geodesic S1 ⊂ T is defined by

ρ(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}
+ t{0, 2r

√
cos 2θ2, r

√
cos 2θ2, 0}.
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The deformation retract of space-time T into a geodesic S2 ⊂ T is defined as

ρ(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}+ t{0, 2r, r, 0}.

Now we are going to discuss the folding � of the space-time T . Let � : T → T , where

�(x1, x2, x3, x4) = (x1, x2, x3, |x4|) (8)

An isometric folding of the space-time T into itself may be defined as

� : {ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}
→ {ir sin θ2θ1, 2r

√
cos 2θ2, r

√
cos 2θ2, |ir sin θ1 sin θ2φ|}.

The deformation retract of the folded space-time T into the folded geodesic T1 is

ρ	 : {ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|} × I

→ {ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}

with

ρ	(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}+ t{0, 0, 0, 0}.

The deformation retract of the folded space-time T into the folded geodesicT2 is

ρ	(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}
+ t{ir sin θ2θ1, 2r

√
cos 2θ2, r

√
cos 2θ2, 0}.

The deformation retract of the folded space-time T into the folded geodesic S1 is

ρ	(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}
+ t{0, 2r

√
cos 2θ2, r

√
cos 2θ2, 0}.

The deformation retract of the folded space-time T into the folded geodesic S2 is

ρ	(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}
+ t{0, 2r, r, 0}

Then, the following theorem has been proved.

Theorem 2 Under the defined folding, the deformation retract of the folded space-time into

the folded geodesics is the same as the deformation retract of space-time into the geodesics.
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Now, let the folding be defined as:

�∗(x1, x2, x3, x4) = (x, |x2| , x3, x4). (9)

The isometric folded space-time �(T ) is

R̄ = {ir sin θ2θ1,
∣∣∣2r

√
cos 2θ2

∣∣∣ , r√cos 2θ2, ir sin θ1 sin θ2φ}.

Hence, we can formulate the following theorem.

Theorem 3 The deformation retract of the folded space-time ,i.e., ρ�∗(T ) is different from

the deformation retract of space-time under condition (9).

Now let �1 : T n → T n,

�2 : �1(T
n) → �1(T

n),

�3 : �2(�1(T
n))→ �2(�1(T

n)), · · · ,

�n : �n−1(�n−2 ...(�1(T
n))...)) → �n−1(�n−2...(�1(T

n))...)),

lim
n→∞

�n−1(�n−2 ...(�1(T
n))...)) = n− 1 dimensional space-time T n−1.

Let h1 : T n−1 → T n−1,

h2 : h1(T
n−1)→ h1(T

n−1),

h3 : h2(h1(T
n−1)) → h2(h1(T

n−1), ...,

hm : hm−1(hm−2 ...(h1(T
n−1))...)) → hm−1(hm−2 ...(h1(T

n−1))...)),

limhm(hm : hm−1(hm−2 ...(h1(T
n−1))...)) = n− 2 dimensional space-time T n−2.

Consequently, lim
s→∞

lim
m→∞

lim
n→∞

...ks(hm(�n(T n))) = 0-dimensional space-time. Hence, we

can formulate the following theorem.

Theorem 4 The end of the limits of the folding of space-time T n is a 0-dimensional geodesic,

it is a minimal retraction.

Now let f1 be the foldings and ri be the retractions. then we have

T n f1
1−→ T n

1

f1
2−→ T n

2 −→ · · ·T n
n−1

lim f1
i−→ T n−1,

T n r1
1−→ T n

1

r1
2−→ T n

2 −→ · · ·T n
n−1

lim r1
i−→ T n−1,

T n f2
1−→ T n−1

1

f2
2−→ T n−1

2 −→ · · ·T n
n−1

lim f2
i−→ T n−2, · · · ,

T n−1 r1
1−→ T n−1

1

r2
2−→ T n−1

2 −→ · · · T n
n−1

lim r2
i−→ T n−2, · · · ,

T 1 fn
1−→ T 1

1

fn
2−→ T 1

2 −→ · · ·T 1
n−1

lim fn
i−→ T 0,

T 1 rn
1−→ T 1

1

rn
2−→ T 1

2 −→ · · ·T 1
n−1

lim fn
i−→ T 0.

Then the end of the limits of foldings = the limit of retractions = 0-dimensional space-time.

Whence, the following theorem has been proved.



Minimal Retraction of Space-time and Their Foldings 55

Theorem 5 In space-time the end of the limits of foldings of T n into itself coincides with the

minimal retraction.
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