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Abstract: Let G = (V, E) be a graph and let v ∈ V. Let γmin(v, G) denote the

minimum cardinality of a minimal dominating set of G containing v. Then γM,m(G) =

max{γmin(v, G) : v ∈ V (G)} is called the min-max dom-saturation number of G. In this

paper we present a dynamic programming algorithm for determining the min-max dom-

saturation number of a tree.

Key Words: Domination, Smarandachely k-dominating set, min-max dom-saturation

number.

AMS(2000):

§1. Introduction

By a graph G = (V,E) we mean a finite, undirected graph with neither loops nor multiple

edges. The order and size of G are denoted by n and m respectively. For graph theoretic

terminology we refer to Chartrand and Lesniak [6].

One of the fastest growing areas in graph theory is the study of domination and related

subset problems such as independence, irredundance, covering and matching. An excellent

treatment of fundamentals of domination in graphs is given in the book by Haynes et al.[7].

Surveys of several advanced topics in domination are given in the book edited by Haynes et

al.[8].

Let G = (V,E) be a graph. A subset S of V is said to be a Smarandachely k-dominating

set in G if every vertex in V − S is adjacent to at least k vertices in S. When k = 1, the set

S is simply called a dominating set. A dominating set S is called a minimal dominating set if

no proper subset of S is a dominating set of G. The domination number γ(G) is the minimum

cardinality taken over all minimal dominating sets in G.

Let S be a subset of vertices of a graph G and let u ∈ S. A vertex v is called a private

neighbor of u with respect to S if N [v] ∩ S = {u}. A dominating set D of G is a minimal

dominating set if and only if every vertex in D has a private neighbor with respect to D.
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In a graph G any vertex of degree 1 is called a leaf and the unique vertex which is adjacent

to a leaf is called a support vertex.

Acharya [1] introduced the concept of dom-saturation number ds(G) of a graph, which is

defined to be the least positive integer k such that every vertex of G lies in a dominating set of

cardinality k. Arumugam and Kala [2] observed that for any graph G, ds(G) = γ(G) or γ(G)+1

and obtained several results on ds(G). Motivated by this concept Arumugam and Subramanian

[3] introduced the concept of independence saturation number of a graph and Arumugam et

al. [4] introduced the concept of irredundance saturation number of a graph. In [5] we have

generalized the concept of min-max and max-min graph saturation parameters for any graph

theoretic property P which may be hereditary or super hereditary in the following.

Definition 1.1 The min-max dom-saturation number γM,m(G) is defined as follows. For any

v ∈ V (G), let γmin(v,G) = min{|S| : S is a minimal dominating set of G and v ∈ S} and let

γM,m(G) = max{γmin(v,G) : v ∈ V (G)}.

Thus γM,m(G) is the largest positive integer k, with the property that every vertex of G

lies in a minimal dominating set of cardinality at least k.

Since the decision problem corresponding to the domination number γ(G) is NP-complete,

it follows that the decision problem corresponding to γM,m(G) is also NP-complete. Hence

developing polynomial time algorithms for determining γM,m(G) for special classes of graphs

is an interesting problem.

In this paper we present a dynamic programming algorithm for determining the min-max

dom-saturation number of a tree.

§2. Main Results

Let T be a tree rooted at v. For any vertex u ∈ V (T ), let Tu be the subtree of T rooted at u.

Let u1, . . . , uk be the children of u in Tu and let Ti = Tui
. For any dominating set D of Tu, let

Di = D ∩ V (Ti). We now define the following six parameters.

(i) γ1(T, u) = min{|D| : D is a minimal dominating set of Tu, u ∈ D and u is isolated in

〈D〉}.

(ii) γ2(T, u) = min{|D| : D is a minimal dominating set of Tu, u ∈ D, u is not isolated in 〈D〉
and u has a child as its private neighbor}.

(iii) γ3(T, u) = min{|D| : D is a minimal dominating set of Tu, u /∈ D and u is a private

neighbor of its child}.

(iv) γ4(T, u) = min{|D| : D is a minimal dominating set of Tu − u and ui /∈ D, 1 ≤ i ≤ k}.

(v) γ5(T, u) = min{|D| : D is a minimal dominating set of Tu, u /∈ D and at least two of its

children are in D}.

(vi) γ00(T, u) = min{|D| : D is a minimal dominating set of Tu − u}.
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Observation 2.1 If the subtree Tu is a star or if every child of u is a support vertex, then

γ2(T, u) is not defined. Also if the vertex u has two leaves as its children then γ3(T, u) is not

defined. If u is a support vertex of Tu, then γ4(T, u) is not defined and if the number of children

of u is less than two then γ5(T, u) is not defined.

Lemma 2.1 γ1(T, u) = 1 +
k
∑

i=1

min{γ4(Ti, ui), γ
5(Ti, ui), γ

00(Ti, ui)}.

Proof Let D be a minimal dominating set of Tu, u ∈ D,u is isolated in 〈D〉 and |D| =

γ1(T, u). Hence ui /∈ Di, 1 ≤ i ≤ k. If no children of ui is in Di, then |Di| ≥ γ00(Ti, ui). If

exactly one child of ui is in Di, then |Di| ≥ γ4(Ti, ui). Otherwise |Di| ≥ γ5(Ti, ui). Thus |Di| ≥
min{γ4(Ti, ui), γ

5(Ti, ui), γ
00(Ti, ui)}. Hence |D| ≥ 1+

k
∑

i=1

min{γ4(Ti, ui), γ
5(Ti, ui), γ

00(Ti, ui)}.
We get the equality. �

The reverse inequality follows from the observation that any minimal dominating set D

of Tu having u as an isolated vertex in 〈D〉 is of the form D =

(

k
⋃

i=1

Di

)

∪ {u} where Di is a

minimal dominating set of Ti not containing ui, 1 ≤ i ≤ k.

Lemma 2.2 Suppose the subtree Tu of T rooted at u is neither a star nor every child of

u is a support vertex. Then γ2(T, u) = 1 + min
i,j

{min{γ1(Ti, ui), γ
2(Ti, ui)} +γ4(Tj , uj) +

∑

r 6=i,j

min{γ1(Tr, ur), γ
2(Tr, ur), γ

4(Tr, ur), γ
5(Tr, ur), γ

00(Tr, ur)}} where the minimum is taken

over all i, j such that ui is not a leaf of Tu and uj is not a support vertex of Tu.

Proof Let D be a minimal dominating set of Tu, u ∈ D, u is not isolated in 〈D〉 and u

has one of its children as its private neighbor and |D| = γ2(T, u). Without loss of generality we

assume that ui ∈ D and uj is the private neighbor of u with respect to D. Since D is a minimal

dominating set it follows that ui is not a leaf of Tu and uj is not a support vertex of Tu. Since

ui ∈ D, |Di| ≥ min{γ1(Ti, ui), γ
2(Ti, ui)}. Also uj and all its children are not in Dj , we have

|Dj | ≥ γ4(Tj , uj). For r 6= i, j,

|Dr| ≥ min{γ1(Tr, ur), γ
2(Tr, ur), γ

4(Tr, ur), γ
5(Tr, ur), γ

00(Tr, ur)}.

Hence

|D| ≥ 1 + min
i,j

{min{γ1(Ti, ui), γ
2(Ti, ui)} + γ4(Tj , uj)

+
∑

r 6=i,j

min{γ1(Tr, ur), γ
2(Tr, ur), γ

4(Tr, ur), γ
5(Tr, ur), γ

00(Tr, ur)}},

where the minimum is taken over all i, j such that ui is not a leaf of Tu and uj is not a support

vertex of Tu.

The reverse inequality is obvious. �

Lemma 2.3 Let D be a minimal dominating set of Tu such that u /∈ D. If a child of u, say

u1 is a leaf, then γ3(T, u) = 1 +
k
∑

i=2

min{γ3(Ti, ui), γ
5(Ti, ui)}. If no child of u is a leaf, then

γ3(T, u) = min
1≤i≤k

{min{γ1(Ti, ui), γ
2(Ti, ui)} +

∑

j 6=i

min{γ3(Tj , uj), γ
5(Tj, uj)}}.
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Proof Let D be a minimal dominating set of Tu such that u /∈ D, u is a private neighbor

of a child and |D| = γ3(T, u).

Case 1. Exactly one child, say u1, of u is a leaf.

Then u1 ∈ D and ui /∈ D for all i > 1.

Hence γ3(T, u) ≥ 1 +
k
∑

i=2

min{γ3(Ti, ui), γ
5(Ti, ui)}.

Case 2. No child of u is a leaf.

Without loss of generality we assume that u is the private neighbor of ui ∈ D. Then

|Di| ≥ min{γ1(Ti, ui), γ
2(Ti, ui)}. Also since u is the private neighbor of ui, all the other

children of u are not in D and hence for all j 6= i,

|Dj | ≥ min{γ3(Tj , uj), γ
5(Tj , uj)}.

Thus |D| ≥ min
1≤i≤k

{min{γ1(Ti, ui), γ
2(Ti, ui)} +

∑

j 6=i

min{γ3(Tj, uj), γ
5(Tj , uj)}}.

The reverse inequality is obvious. �

Lemma 2.4 If u is not a support vertex of Tu, then

γ4(T, u) =

k
∑

i=1

min{γ3(Ti, ui), γ
5(Ti, ui)}.

Proof Let D be a minimal dominating set of Tu − {u}, ui /∈ D and |D| = γ4(T, u).

Let Di = D ∩ V (Ti). Since ui /∈ Di, |Di| ≥ min{γ3(Ti, ui), γ
5(Ti, ui)} and hence |D| ≥

k
∑

i=1

min{γ3(Ti, ui), γ
5(Ti, ui)}. The reverse inequality is obvious. �

Lemma 2.5 If u has more than one child, then

γ5(T, u) = min
i,j

{min{γ1(Ti, ui), γ
2(Ti, ui)} +min{γ1(Tj , uj), γ

2(Tj , uj)}

+ min
r 6=i,j

{γ1(Tr, ur), γ
2(Tr, ur), γ

3(Tr, ur), γ
5(Tr, ur)}}.

Proof Let D be a minimal dominating set of Tu such that at least two children of u, say

ui and uj are in D and |D| = γ5(T, u). Since ui, uj ∈ D, |Di| ≥ min{γ1(Ti, ui), γ
2(Ti, ui)} and

|Dj | ≥ min{γ1(Tj , uj), γ
2(Tj , uj)}. For any r 6= i, j, ur may or may not be in D. Hence

|Dr| ≥ min{γ1(Tr, ur), γ
2(Tr, ur), γ

3(Tr, ur), γ
5(Tr, ur)}.

Thus

|D| ≥ min
i,j

{min{γ1(Ti, ui), γ
2(Ti, ui)} +min{γ1(Tj , uj), γ

2(Tj , uj)}

+ min
r 6=i,j

{γ1(Tr, ur), γ
2(Tr, ur), γ

3(Tr, ur), γ
5(Tr, ur)}}.

The reverse inequality is obvious. �
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Lemma 2.6 γ00(T, u) =
k
∑

i=1

min{γ1(Ti, ui), γ
2(Ti, ui), γ

3(Ti, ui), γ
5(Ti, ui)}.

Proof Let D be a minimal dominating set of Tu − u such that |D| = γ00(T, u). Obviously

|Di| ≥ min{γ1(Ti, ui), γ
2(Ti, ui), γ

3(Ti, ui), γ
5(Ti, ui)}. Thus

|D| ≥
k
∑

i=1

min{γ1(Ti, ui), γ
2(Ti, ui), γ

3(Ti, ui), γ
5(Ti, ui)}.

The reverse inequality is obvious. �

Lemma 2.7 γmin(v, T ) = min{γ1(T, v), γ2(T, v)}.

Proof Let D be a minimal dominating set of T such that v ∈ D and

|D| = γmin(v, T ). Since v is either isolated or nonisolated in 〈D〉 , the result follows. �

Based on the above lemmas we have the following dynamic programming algorithm for

determining γmin(v, T ) for trees.

ALGORITHM TO FIND γmin(v, T )

INPUT: A tree T rooted at v1, with a BFS ordering of its vertices {v1, v2, . . . , vn}.
OUTPUT: Minimum cardinality of a minimal dominating set of T containing v1.

Step 1. INITIALIZATION

for i = 1 to n do

γ1(vi) = 1; γ2(vi) = ∞; γ3(vi) = ∞,

γ4(vi) = ∞; γ5(vi) = ∞; γ00(vi) = 0.

end for;

Step 2. COMPUTATION

for i = n to 1 do

Step 2.1: Let ui1, ui2, . . . , uil be the children of vi

Step 2.2: CALCULATE γ1(vi)

Compute γ1(vi) = 1 +
l
∑

j=1

min{γ4(uij), γ
5(uij), γ

00(uij)}.

Step 2.3: CALCULATE γ2(vi)

If there exists a child of vi which is not a leaf and there exists a child of vi

which is not a support then compute

γ2(vi) = 1 + min
j,k

{min{γ1(uij), γ
2(uij)}+

γ4(uik) +
∑

r 6=j,k

{γ1(uir), γ
2(uir), γ

4(uir), γ
5(uir), γ

00(uir)}.

where the minimum is taken over all j, k, j 6= k such that uik is not a support

vertex and uij is not a leaf.
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Step 2.4: CALCULATE γ3(vi)

If vi has exactly one child which is a leaf, say u1, then compute γ3(vi) =

1 +
l
∑

j=2

min{γ3(uij), γ
5(uij)}

otherwise

γ3(vi) = min
1≤j≤l

{min{γ1(uij), γ
2(uij)} +

∑

k 6=j

{γ3(uik), γ
5(uik)}}.

Step 2.5: CALCULATE γ4(vi)

If vi is not a support vertex then compute

γ4(vi) =
l
∑

j=1

min{γ3(uij), γ
5(uij)}

Step 2.6: CALCULATE γ5(vi)

If vi has more than one child then compute

γ5(vi) = min
j 6=k

{γ1(uij), γ
2(uij)} +min{γ1(uik), γ

2(uik)}+
min
r 6=j,k

{γ1(uir), γ
2(uir), γ

3(uir), γ
5(uir)}

Step 2.7: CALCULATE γ00(vi)

Compute γ00(vi) =
l
∑

j=1

{γ1(uij), γ
2(uij), γ

3(uij), γ
5(uij)}

end for;

Step 3. Compute γmin(v1, T ) = min{γ1(v1), γ
2(v1)}.

Observation 2.2 Using the above algorithm for any given vertex v of T the parameter

γmin(v, T ) can be computed. Applying the above algorithm for each vertex v we compute

γmin(v, T ) for all v ∈ V and γM,m(T ) = max{γmin(v, T ) : v ∈ V (T )} can be computed.

Example 2.1 A tree rooted at the vertex 1 and the table showing the computations of the

above algorithm are given below.
1

2 3 4

5
6 7 8

9 10 11 12

Figure 1

γ1 γ2 γ3 γ4 γ5 γ00

12 1 ∞ ∞ ∞ ∞ 0

11 1 ∞ ∞ ∞ ∞ 0

10 1 ∞ ∞ ∞ ∞ 0

9 1 ∞ ∞ ∞ ∞ 0
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γ1 γ2 γ3 γ4 γ5 γ00

8 1 ∞ ∞ ∞ 2 2

7 1 ∞ 1 ∞ ∞ 1

6 1 ∞ 1 ∞ ∞ 1

5 1 ∞ ∞ 0 ∞ 0

4 3 ∞ 1 2 ∞ 1

3 2 ∞ 1 1 ∞ 1

2 2 2 2 ∞ 2 2

1 5 5 4 4 5 4

Hence γmin(1, T ) = min(γ1(T, 1), γ2(T, 1)) = 5.

Repeated application of the algorithm gives γmin(2, T ) = 4, γmin(3, T ) = 5, γmin(4, T ) = 5,

γmin(5, T ) = 5, γmin(6, T ) = 4, γmin(7, T ) = 4, γmin(8, T ) = 4, γmin(9, T ) = 4, γmin(10, T ) =

5, γmin(11, T ) = 6, γmin(12, T ) = 6. Hence γM,m(T ) = max{γmin(i, T ) : 1 ≤ i ≤ 12} = 6.

§3. Conclusion

Courcelle has proved that if a graph property can be expressed in extended monadic second

order logic (EMSO), then for every fixed w ≥ 1, there is a linear-time algorithm for testing

this property on graphs having treewidth at most w. The property of a subset S of V being

a minimal dominating set can be expressed in EMSO and hence for families of graphs with

bounded treewidth, a linear time algorithm can be developed for computing γmin(v,G) for

any given vertex v. Hence developing such algorithm for specific families of graphs of bounded

treewidth is an interesting problem for further research.
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