On the hybrid mean value of the Smarandache kn-digital sequence and Smarandache function ¹

Chan Shi

Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China E-mail: yongyuandexizhong@163.com

Abstract The main purpose of this paper is using the elementary method to study the hybrid mean value properties of the Smarandache kn-digital sequence and Smarandache function, and give an interesting asymptotic formula for it.

Keywords Smarandache kn-digital sequence, Smarandache function, hybrid mean value, as -ymptotic formula, elementary method.

§1. Introduction

For any positive integer k, the famous Smarandache kn-digital sequence a(k,n) is defined as all positive integers which can be partitioned into two groups such that the second part is k times bigger than the first. For example, Smarandache 2n and 3n digital sequences a(2,n) and a(3,n) are defined as $\{a(2,n)\} = \{12,24,36,48,510,612,714,816,\cdots\}$ and $\{a(3,n)\} = \{13,26,39,412,515,618,721,824,\cdots\}$.

Recently, Professor Gou Su told me that she studied the hybrid mean value properties of the Smarandache kn-digital sequence and the divisor sum function $\sigma(n)$, and proved that the asymptotic formula

$$\sum_{n < x} \frac{\sigma(n)}{a(k, n)} = \frac{3\pi^2}{k \cdot 20 \cdot \ln 10} \cdot \ln x + O(1)$$

holds for all integers $1 \le k \le 9$.

When I read professor Gou Su's work, I found that the method is very new, and the results are also interesting. This paper as a note of Gou Su's work, we consider the hybrid mean value properties of the Smarandache kn-digital sequence and Smarandache function S(n), which is defined as the smallest positive integer m such that n|m!. That is, $S(n) = \min\{m : n|m!, m \in N\}$. In this paper, we will use the elementary and analytic methods to study a similar problem, and prove a new conclusion. That is, we shall prove the following:

Theorem. Let $1 \le k \le 9$, then for any real number x > 1, we have the asymptotic formula

$$\sum_{n \le x} \frac{S(n)}{a(k,n)} = \frac{3\pi^2}{k \cdot 20} \cdot \ln \ln x + O(1).$$

¹This paper is supported by the N. S. F. of P. R. China.

§2. Proof of the theorem

In this section, we shall use the elementary and combinational methods to complete the proof of our theorem. First we need following:

Lemma. For any real number x > 1, we have

$$\sum_{n \le x} \frac{S(n)}{n} = \frac{\pi^2}{6} \cdot \frac{x}{\ln x} + O\left(\frac{x}{\ln^2 x}\right).$$

Proof. For any real number x > 2, from [4] we have the asymptotic formula

$$\sum_{n \le x} S(n) = \frac{\pi^2}{12} \cdot \frac{x^2}{\ln x} + O\left(\frac{x^2}{\ln^2 x}\right). \tag{1}$$

Then from Euler summation formula (see theorem 3.1 of [3]) we can deduce that

$$\begin{split} \sum_{1 < n \leq x} \frac{S(n)}{n} &= \frac{1}{x} \left(\frac{\pi^2}{12} \cdot \frac{x^2}{\ln x} + O\left(\frac{x^2}{\ln^2 x}\right) \right) + \int_1^x \left(\frac{\pi^2}{12} \cdot \frac{t^2}{\ln t} + O\left(\frac{t^2}{\ln^2 t}\right) \frac{1}{t^2} \right) \; dt \\ &= \frac{\pi^2}{12} \cdot \frac{x}{\ln x} + O\left(\frac{x}{\ln^2 x}\right) + \frac{\pi^2}{12} \cdot \frac{x}{\ln x} + \frac{13\pi^2}{12} \int_1^x \frac{1}{\ln^2 t} \; dt \\ &= \frac{\pi^2}{6} \cdot \frac{x}{\ln x} + O\left(\frac{x}{\ln^2 x}\right). \end{split}$$

This proves our Lemma.

Now we take k=2 (or k=4), then for any real number x>1, there exists a positive integer M such that

$$5 \cdot 10^M < x < 5 \cdot 10^{M+1}$$
.

then we can deduce that

$$M = \frac{1}{\ln 10} \cdot \ln x + O(1). \tag{2}$$

So from the definition of a(2, n) we have

$$\sum_{1 \le n \le x} \frac{S(n)}{a(2,n)} = \sum_{n=1}^{4} \frac{S(n)}{a(2,n)} + \sum_{n=5}^{49} \frac{S(n)}{a(2,n)} + \sum_{n=50}^{499} \frac{S(n)}{a(2,n)} + \dots + \sum_{n=5 \cdot 10^{M-1}} \frac{S(n)}{a(2,n)} + \dots + \sum_{n=5 \cdot 10^{M-1}} \frac{S(n)}{a(2,n)} + \sum_{n=5 \cdot 10^{M-1}} \frac{S(n)}{a(2,n)} + \sum_{n=5 \cdot 10^{M-1}} \frac{S(n)}{a(2,n)} + \sum_{n=5}^{499} \frac{S(n)}{n \cdot (10^{2} + 2)} + \sum_{n=50}^{499} \frac{S(n)}{n \cdot (10^{3} + 2)} + \dots + \sum_{n=5 \cdot 10^{M-1}} \frac{S(n)}{n \cdot (10^{M+1} + 2)} + \sum_{n=5 \cdot 10^{M} \le n \le x} \frac{S(n)}{n \cdot (10^{M+2} + 2)}$$

$$(3)$$

22 Chan Shi No. 4

and

$$\sum_{1 \le n \le x} \frac{S(n)}{a(4,n)} = \sum_{n=1}^{2} \frac{S(n)}{a(4,n)} + \sum_{n=3}^{24} \frac{S(n)}{a(4,n)} + \sum_{n=25}^{249} \frac{S(n)}{a(4,n)} + \dots + \sum_{n=\frac{1}{4} \cdot 10^{M-1}} \frac{S(n)}{n \cdot (10+4)} + \sum_{n=3}^{249} \frac{S(n)}{n \cdot (10^{2}+4)} + \dots + \sum_{n=\frac{1}{4} \cdot 10^{M-1}} \frac{S(n)}{n \cdot (10^{M}+4)} + \sum_{n=\frac{1}{4} \cdot 10^{M-1}} \frac{S(n)}{n \cdot (10^{M+1}+4)}. \tag{4}$$

Then from (2), (3) and Lemma we may immediately deduce

$$\sum_{n=5\cdot 10^{k-1}}^{5\cdot 10^{k}-1} \frac{S(n)}{n\cdot (10^{k+1}+2)} = \sum_{n\le 5\cdot 10^{k}-1} \frac{S(n)}{n\cdot (10^{k+1}+2)} - \sum_{n\le 5\cdot 10^{k}-1} \frac{S(n)}{n\cdot (10^{k+1}+2)}$$

$$= \frac{\pi^{2}}{6} \cdot \frac{5\cdot 10^{k} - 5\cdot 10^{k-1}}{10^{k+1}+2} \cdot \frac{1}{\ln(5\cdot 10^{k})} + O\left(\frac{1}{k^{2}}\right)$$

$$= \frac{3\pi^{2}}{40} \cdot \frac{1}{k} + O\left(\frac{1}{k^{2}}\right)$$
(5)

Similarly,

$$\sum_{n=\frac{1}{4}\cdot 10^{k-1}}^{\frac{1}{4}\cdot 10^{k-1}} \frac{S(n)}{n\cdot (10^{k}+4)} = \sum_{n\leq \frac{1}{4}\cdot 10^{k}-1} \frac{S(n)}{n\cdot (10^{k}+4)} - \sum_{n\leq \frac{1}{4}\cdot 10^{k-1}} \frac{S(n)}{n\cdot (10^{k}+4)}$$

$$= \frac{\pi^{2}}{6} \cdot \frac{\frac{1}{4}\cdot 10^{k} - \frac{1}{4}\cdot 10^{k-1}}{10^{k}+4} \cdot \frac{1}{\ln(\frac{1}{4}\cdot 10^{k})} + O\left(\frac{1}{k^{2}}\right)$$

$$= \frac{3\pi^{2}}{80} \cdot \frac{1}{k} + O\left(\frac{1}{k^{2}}\right). \tag{6}$$

Noting that the identity $\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$ and the asymptotic formula

$$\sum_{1 \le k \le M} \frac{1}{k} = \ln M + \gamma + O\left(\frac{1}{M}\right),\,$$

where γ is the Euler constant.

From (2), (3) and (5) we have

$$\sum_{1 \le n \le x} \frac{S(n)}{a(2,n)} = \sum_{n=1}^{4} \frac{S(n)}{a(2,n)} + \sum_{n=5}^{49} \frac{S(n)}{a(2,n)} + \sum_{n=50}^{499} \frac{S(n)}{a(2,n)} + \dots + \sum_{n=5 \cdot 10^{M-1}} \frac{S(n)}{a(2,n)} + \dots + \sum_{n=5 \cdot 10^{M-1}} \frac{S(n)}{a(2,n)} = \sum_{k=1}^{M} \frac{3\pi^2}{40} \cdot \frac{1}{k} + O\left(\sum_{k=1}^{M} \frac{1}{k^2}\right) = \frac{3\pi^2}{40} \ln \ln x + O(1).$$

Similarly,

$$\sum_{1 \le n \le x} \frac{S(n)}{a(4,n)} = \sum_{n=1}^{2} \frac{S(n)}{a(4,n)} + \sum_{n=3}^{24} \frac{S(n)}{a(4,n)} + \sum_{n=25}^{249} \frac{S(n)}{a(4,n)} + \dots + \sum_{n=\frac{1}{4} \cdot 10^{M-1}} \frac{S(n)}{a(4,n)} + \dots + \sum_{n=\frac{1}{4} \cdot 10^{M-1}} \frac{S(n)}{a(4,n)} = \sum_{k=1}^{M} \frac{3\pi^{2}}{80} \cdot \frac{1}{k} + O\left(\sum_{k=1}^{M} \frac{1}{k^{2}}\right) = \frac{3\pi^{2}}{80} \ln \ln x + O(1).$$

For using the same methods, we can also prove that the theorem holds for all integers k = 1, 3, 5, 6, 7, 8, 9. This completes the proof of our theorem.

References

- [1] F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, 2006.
- [2] Gou Su, Smarandache 3*n*-digital sequence and it's asymptotic properties, Journal of Inner Mongolia Normal University (Natural Science Edition), **6**(2010), No. 39, 450-453.
- [3] Tom M. Apostol., Introduction to Analytical Number Theory, Spring-Verlag, New York, 1976.
 - [4] Chen Guohui, New Progress on Smarandache Problems, High American Press, 2007.
- [5] Kenichiro Kashihara, Comments and topics on Smarandache notions and problems, Erhus University Press, USA, 1996.
- [6] Zhang Wenpeng, The elementary number theory (in Chinese), Shaanxi Normal University Press, Xi'an, 2007.
- [7] Wu Nan, On the Smarandache 3n-digital sequence and the Zhang Wenpeng's conjecture, Scientia Magna, 4(2008), No. 4, 120-122.
- [8] Guo Xiaoyan, New Progress on Smarandache Problems Research, High American Press, Xi'an, 2010.