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Abstract For any positive integer n and fixed integer t ≥ 1, we define function Ut(n) =

min{k : 1t + 2t + · · · + nt + k = m, n | m, k ∈ N+, t ∈ N+}, where n ∈ N+, m ∈ N+,

which is a new pseudo Smarandache function. The main purpose of this paper is using the

elementary method to study the properties of Ut(n), and obtain some interesting identities

involving function Ut(n).
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§1. Introduction and results

In reference [1], A.W.Vyawahare defined the near pseudo Smarandache function K(n) as

K(n) = m =
n(n + 1)

2
+k, where k is the small positive integer such that n divides m. Then he

studied the elementary properties of K(n), and obtained a series interesting results for K(n).

For example, he proved that K(n) =
n(n + 3)

2
, if n is odd, and K(n) =

n(n + 2)
2

, if n is even;
The equation K(n) = n has no positive integer solution. In reference [2], Zhang Yongfeng
studied the calculating problem of an infinite series involving the near pseudo Smarandache

function K(n), and proved that for any real number s >
1
2
, the series

∞∑
n=1

1
Ks(n)

is convergent,

and
∞∑

n=1

1
K(n)

=
2
3

ln 2 +
5
6
,

∞∑
n=1

1
K2(n)

=
11
108

π2 − 22 + 2 ln 2
27

.

Yang hai and Fu Ruiqin [3] studied the mean value properties of the near pseudo Smarandache
function K(n), and obtained two asymptotic formula by using the analytic method. They
proved that for any real number x ≥ 1,

∑

n≤x

d(k) =
∑

n≤x

d

(
K(n)− n(n + 1)

2

)
=

3
4
x log x + Ax + O

(
x

1
2 log2 x

)
,
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where A is a computable constant.

∑

n≤x

ϕ

(
K(n)− n(n + 1)

2

)
=

93
28π2

x2 + O
(
x

3
2+ε

)
,

where ε denotes any fixed positive number.

In this paper, we define a new near Smarandache function Ut(n) = min{k : 1t + 2t + · · ·+
nt + k = m, n | m, k ∈ N+, t ∈ N+}, where n ∈ N+, m ∈ N+. Then we study its elementary
properties. About this function, it seems that none had studied it yet, at least we have not seen
such a paper before. In this paper, we using the elementary method to study the calculating
problem of the infinite series

∞∑
n=1

1
Us

t (n)
,

and give some interesting identities. That is, we shall prove the following:

Theorem 1. For any real number s > 1, we have the identity

∞∑
n=1

1
Us

1 (n)
= ζ(s)

(
2− 1

2s

)
,

where ζ(s) is the Riemann zeta-function.

Theorem 2. For any real number s > 1, we have

∞∑
n=1

1
Us

2 (n)
= ζ(s)

[
1 +

1
5s
− 1

6s
+ 2

(
1− 1

2s

)(
1− 1

3s

)]
.

Theorem 3. For any real number s > 1, we also have

∞∑
n=1

1
Us

3 (n)
= ζ(s)

[
1 +

(
1− 1

2s

)2
]

.

Taking s = 2, 4, and note that ζ(2) =
π2

6
, ζ(4) =

π4

90
, from our theorems we may

immediately deduce the following:

Corollary. Let Ut(n) defined as the above, then we have the identities

∞∑
n=1

1
U2

1 (n)
=

7
24

π2;
∞∑

n=1

1
U2

2 (n)
=

2111
5400

π2;

∞∑
n=1

1
U2

3 (n)
=

25
96

π2;
∞∑

n=1

1
U4

1 (n)
=

31
1440

π4;

t
∞∑

n=1

1
U4

2 (n)
=

2310671
72900000

π4;
∞∑

n=1

1
U4

3 (n)
=

481
23040

π4.
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§2. Some lemmas

To complete the proof of the theorems, we need the following several lemmas.
Lemma 1. For any positive integer n, we have

U1(n) =





n

2
, if 2 | n,

n, if 2†n.

Proof. See reference [1].
Lemma 2. For any positive integer n, we also have

U2(n) =





5
6
n, if n ≡ 0(mod 6),

n, if n ≡ 1(mod 6) or n ≡ 5(mod 6),
n

2
, if n ≡ 2(mod 6) or n ≡ 4(mod 6),

n

3
, if n ≡ 3(mod 6).

Proof. It is clear that

U2(n) = min{k : 12 + 22 + · · ·+ n2 + k = m,n | m, k ∈ N+}
= min{k :

n(n + 1)(2n + 1)
6

+ k ≡ 0(mod n), k ∈ N+}.

(1) If n ≡ 0(mod 6), then we have n = 6h1( h1 = 1, 2 · · · ),
n(n + 1)(2n + 1)

6
=

6h1(6h1 + 1)(12h1 + 1)
6

= 72h3
1 + 18h2

1 + h1,

so n | n(n + 1)(2n + 1)
6

+ U2(n) if and only if 6h1 | h1 + U2(n), then U2(n) =
5n

6
.

(2) If n ≡ 1(mod 6), then we have n = 6h2 + 1( h2 = 0, 1, 2 · · · ),
n(n + 1)(2n + 1)

6
=

(6h2 + 1)(6h2 + 2)(12h2 + 3)
6

= 12h2
2(6h2 + 1) + 7h2(6h2 + 1) + 6h2 + 1,

because n | n(n + 1)(2n + 1)
6

, so n | n(n + 1)(2n + 1)
6

+ U2(n) if and only if n | U2(n), then
U2(n) = n.

If n ≡ 5(mod 6), then we have n = 6h2 + 5( h2 = 0, 1, 2 · · · ),
n(n + 1)(2n + 1)

6
=

(6h2 + 5)(6h2 + 6)(12h2 + 11)
6

= 12h2
2(6h2 + 5) + 23h2(6h2 + 5) + 11(6h2 + 5),

because n | n(n + 1)(2n + 1)
6

, so n | n(n + 1)(2n + 1)
6

+ U2(n) if and only if n | U2(n), then
U2(n) = n.

(3) If n ≡ 2(mod 6), then we have n = 6h2 + 2( h2 = 0, 1, 2 · · · ),
n(n + 1)(2n + 1)

6
=

(6h2 + 2)(6h2 + 3)(12h2 + 5)
6

= 12h2
2(6h2 + 2) + 11h2(6h2 + 2) + 2(6h2 + 2) + 3h2 + 1,
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so n | n(n + 1)(2n + 1)
6

+ U2(n) if and only if 6h2 + 2 | 3h2 + 1 + U2(n), then U2(n) =
n

2
.

If n ≡ 4(mod 6), then we have n = 6h2 + 4( h2 = 0, 1, 2 · · · ),
n(n + 1)(2n + 1)

6
=

(6h2 + 4)(6h2 + 5)(12h2 + 9)
6

= 12h2
2(6h2 + 4) + 19h2(6h2 + 4) + 7(6h2 + 4) + 3h2 + 3,

so n | n(n + 1)(2n + 1)
6

+ U2(n) if and only if 2(3h2 + 2) | 3h2 + 2 + U2(n), then U2(n) =
n

2
.

(4) If n ≡ 3(mod 6), then we have n = 6h2 + 3( h2 = 0, 1, 2 · · · ),
n(n + 1)(2n + 1)

6
=

(6h2 + 3)(6h2 + 4)(12h2 + 7)
6

= 12h2
2(6h2 + 3) + 15h2(6h2 + 3) + 4(6h2 + 3) + 4h2 + 2,

so n | n(n + 1)(2n + 1)
6

+ U2(n) if and only if 3(2h2 + 1) | 2(2h2 + 2) + U2(n), then U2(n) =
n

3
.

Combining (1), (2), (3) and (4) we may immediately deduce Lemma 2.
Lemma 3. For any positive integer n, we have

U3(n) =





n

2
, if n ≡ 2(mod 4),

n, otherwise.

Proof. From the definition of U3(n) we have

U3(n) = min{k : 13 + 23 + · · ·+ n3 + k = m,n | m, k ∈ N+}

= min{k :
n2(n + 1)2

4
+ k ≡ 0(mod n), k ∈ N+}.

(a) If n ≡ 2(mod 4), then we have n = 4h1 + 2( h1 = 0, 1, 2 · · · ),
n2(n + 1)2

4
= (4h1 + 2)3(2h1 + 1) + (4h1 + 2)2(2h1 + 1) + (2h1 + 1)2,

so n | n2(n + 1)2

4
if and only if 2(2h1 + 1) | (2h1 + 1)2 + U3(n), then U3(n) =

n

2
.

(b) If n ≡ 0(mod 4), then we have n = 4h2( h2 = 1, 2 · · · ),
n2(n + 1)2

4
= 4h2

2(4h2 + 1)2,

so n | n2(n + 1)2

4
+ U3(n) if and only if n | U3(n), then U3(n) = n.

If n ≡ 1(mod 4), then we have n = 4h1 + 1( h1 = 0, 1, 2 · · · ),
n2(n + 1)2

4
= (4h1 + 1)2(2h1 + 1)2,

so n | n2(n + 1)2

4
+ U3(n) if and only if n | U3(n), then U3(n) = n.

If n ≡ 3(mod 4), then we have n = 4h1 + 3( h1 = 0, 1, 2 · · · ),
n2(n + 1)2

4
= 4(4h1 + 3)2(h1 + 1)2,

uso n | n2(n + 1)2

4
+ U3(n) if and only if n | U3(n), then U3(n) = n.

Now Lemma 3 follows from (a) and (b).
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§3. Proof of the theorems

In this section, we shall use the elementary methods to complete the proof of the theorems.
First we prove Theorem 1. For any real number s > 1, from Lemma 1 we have

∞∑
n=1

1
Us

1 (n)
=

∞∑

h=1
n=2h

1
(n

2 )s
+

∞∑

h=0
n=2h+1

1
ns

=
∞∑

h=1

1
hs

+
∞∑

h=0

1
(2h + 1)s

= ζ(s)
(

2− 1
2s

)
,

where ζ(s) is the Riemann zeta-function. This proves Theorem 1.
For t = 2 and real number s > 1, from Lemma 2 we have

∞∑
n=1

1
Us

2 (n)
=

∞∑

h1=1
n=6h1

1(
5n
6

)s +
∞∑

h2=0
n=6h2+1

1
ns

+
∞∑

h2=0
n=6h2+2

1(
n
3

)s +
∞∑

h2=0
n=6h2+4

1(
n
2

)s +
∞∑

h2=0
n=6h2+5

1
ns

=
∞∑

h1=1

1
(5h1)s

+
∞∑

h2=0

1
(6h2 + 1)s

+
∞∑

h2=0

1
(3h2 + 1)s

+
∞∑

h2=0

1
(2h2 + 1)s

+

∞∑

h2=0

1
(3h2 + 2)s

+
∞∑

h2=0

1
(6h2 + 5)s

= ζ(s)
[
1 +

1
5s
− 1

6s
+ 2

(
1− 1

2s

)(
1− 1

3s

)]
,

This completes the proof of Theorem 2.
If t = 3, then for any real number s > 1, from Lemma 3 we have

∞∑
n=1

1
Us

3 (n)
=

∞∑

h2=1
n=4h2

1
ns

+
∞∑

h1=0
n=4h1+1

1
ns

+
∞∑

h1=0
n=4h1+2

1(
n
2

)s +
∞∑

h1=0
n=4h1+3

1
ns

=
∞∑

h2=1

1
(4h2)s

+
∞∑

h1=0

1
(4h1 + 1)s

+
∞∑

h1=0

1
(2h1 + 1)s

+
∞∑

h1=0

1
(4h1 + 3)s

= ζ(s)

[
1 +

(
1− 1

2s

)2
]

,

This completes the proof of Theorem 3.
Open Problem. For any integer t > 3 and real number s > 1, whether there exists a

calculating formula for the Dirichlet series

∞∑
n=1

1
Us

t (n)
?

This is an open problem.
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