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An identity involving the function ep(n)
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Abstract The main purpose of this paper is to study the relationship between the Riemann

zeta-function and an infinite series involving the Smarandache function ep(n) by using the

elementary method, and give an interesting identity.
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§1. Introduction and Results

Let p be any fixed prime, n be any positive integer, ep(n) denotes the largest exponent of
power p in n. That is, ep(n) = m, if pm | n and pm+1 - n. In problem 68 of [1], Professor
F.Smarandache asked us to study the properties of the sequence {ep(n)}. About the elementary
properties of this function, many scholars have studied it (see reference [2]-[7]), and got some
useful results. For examples, Liu Yanni [2] studied the mean value properties of ep(bk(n)),
where bk(n) denotes the k-th free part of n, and obtained an interesting mean value formula for
it. That is, let p be a prime, k be any fixed positive integer, then for any real number x ≥ 1,
we have the asymptotic formula

∑

n≤x

ep(bk(n)) =
(

pk − p

(pk − p)(p− 1)
− k − 1

pk − 1

)
x + O

(
x

1
2+ε

)
,

where ε denotes any fixed positive number.
Wang Xiaoying [3] studied the mean value properties of

∑

n≤x

((n + 1)m − nm)ep(n), and

proved the following conclusion:
Let p be a prime, m ≥ 1 be any integer, then for any real number x > 1, we have the

asymptotic formula

∑

n≤x

((n + 1)m − nm)ep(n) =
1

p− 1
m

m + 1
x + O

(
x1− 1

m

)
.

Gao Nan [4] and [5] also studied the mean value properties of the sequences peq(n) and
peq(b(n)), got two interesting asymptotic formulas:

∑

n≤x

peq(n) =





q−1
q−px + O

(
x

1
2+ε

)
, if q > p;

p−1
p ln px lnx +

(
p−1
p ln p (γ − 1) + p+1

2p

)
x + O

(
x

1
2+ε

)
, if q = p.
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and
∑

n≤x

peq(b(n)) =
q2 + p2q + p

q2 + q + 1
x + O

(
x

1
2+ε

)
,

where ε is any fixed positive number, γ is the Euler constant.

Lv Chuan [6] used elementary and analytic methods to study the asymptotic properties of∑

n≤x

ep(n)ϕ(n) and obtain an interesting asymptotic formula:

∑

n≤x

ep(n)ϕ(n) =
3p

(p + 1)π2
x2 + O

(
x

3
2+ε

)
.

Ren Ganglian [7] studied the properties of the sequence ep(n) and give some sharper
asymptotic formulas for the mean value

∑

n≤x

ek
p(n).

Especially in [8], Xu Zhefeng studied the elementary properties of the primitive numbers
of power p, and got an useful result. That is, for any prime p and complex number s, we have
the identity:

∞∑
n=1

1
Ss

p(n)
=

ζ(s)
ps − 1

.

In this paper, we shall use the elementary methods to study the relationship between the
Riemann zeta-function and an infinite series involving ep(n), and obtain an interesting identity.
That is, we shall prove the following conclusion:

Theorem. For any prime p and complex number s with Re(s) > 1, we have the identity

∞∑
n=1

ep(n)
ns

=
∞∑

n=1

1
Ss

p(n)
=

ζ(s)
ps − 1

,

where ζ(s) is the Riemann zeta-function.

From this theorem, we can see that
∞∑

n=1

ep(n)
ns

and
∞∑

n=1

1
Ss

p(n)
denote the same Dirichlet

series. Of course, we can also obtain some relationship between
∞∑

n=1

ep(n)
ns

and
∞∑

n=1

1
Ss

p(n)
, that

is, we have the following conclusion:

Corollary. For any prime p, we have

ep(m) =
∑

n∈N
SP (n)=m

1.

§2. Proof of the theorem

In this section, we shall use elementary methods to complete the proof of the theorem.
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Let m = ep(n), if pm || n, then we can write n = pmn1, where (n1, p) = 1. Noting that,
ep(n) is the largest exponent of power p, so we have

∞∑
n=1

ep(n)
ns

=
∞∑

m=1

∞∑
n1=1

(n1,p)=1

m

(pmn1)s
=

∞∑
m=1

m

pms

∞∑
n1=1

p-n1

1
ns

1

=
∞∑

m=1

m

pms




∞∑
n1=1

1
ns

1

−
∞∑

n1=1

p|n1

1
ns

1


 , (1)

let n1 = pn2, then

∞∑
m=1

m

pms




∞∑
n1=1

1
ns

1

−
∞∑

n1=1

p|n1

1
ns

1


 =

∞∑
m=1

m

pms

(
ζ(s)−

∞∑
n2=1

1
psns

2

)

=
∞∑

m=1

m

pms

(
ζ(s)− ζ(s)

1
ps

)

= ζ(s)
(

1− 1
ps

) ∞∑
m=1

m

pms
.

Since
∞∑

m=1

m

pms
=

1
ps

+
∞∑

m=1

m + 1
p(m+1)s

,

1
ps
·
∞∑

m=1

m

pms
=

∞∑
m=1

m

p(m+1)s
,

then

∞∑
m=1

m

pms
− 1

ps
·
∞∑

m=1

m

pms
=

1
ps

+
∞∑

m=1

m + 1
p(m+1)s

−
∞∑

m=1

m

p(m+1)s

=
1
ps

+
∞∑

m=1

1
p(m+1)s

=
∞∑

m=1

1
pms

.

That is,

(
1− 1

ps

) ∞∑
m=1

m

pms
=

∞∑
m=1

1
pms

=
1
ps

1
1− 1

ps

,

so

∞∑
m=1

m

pms
=

1

ps
(
1− 1

ps

)2 . (2)
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Now, combining (1) and (2), we have the following identity

∞∑
n=1

ep(n)
ns

=
∞∑

m=1

m

pms




∞∑
n1=1

1
ns

1

−
∞∑

n1=1

p|n1

1
ns

1




= ζ(s)
(

1− 1
ps

) ∞∑
m=1

m

pms

= ζ(s)
(

1− 1
ps

)
1

ps
(
1− 1

ps

)2 =
ζ(s)

ps − 1
.

This completes the proof of Theorem.
Then, noting the definition and properties of Sp(n), we have

∞∑
n=1

1
Ss

p(n)
=

∞∑
m=1

1
(pm)s

∑

n∈N
SP (n)=mp

1, (3)

and we also have ∞∑
n=1

ep(n)
ns

=
∞∑

m=1

ep(mp)
(mp)s

,

therefore, from the definition of ep(n), we can easily get
∞∑

m=1

ep(mp)
(mp)s

=
∞∑

m=1

1
(pm)s

∑

n∈N
SP (n)=mp

1. (4)

Combining (3) and (4), it is clear that

ep(m) =
∑

n∈N
SP (n)=m

1.

This completes the proof of Corollary.
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