The equations $m \cdot S(m) = n \cdot S(n)$ and $m \cdot S(n) = n \cdot S(m)$ have infinitily many solutions

Vasile Seleacu, Constantin A. Dumitrescu

University of Craiova, Department of Mathematics, A.I.Cuza street 13, (1100) Craiova, ROMANIA

Let be $S: N^* \rightarrow N^*$ the Smarandache function.

$$S(n) = \min \{ k \mid n \leq_{d} k! \}$$

where \leq_d is the order generated by:

on set N^* .

It is known that $\mathcal{N}_d = (N^*, \bigwedge_d^d, \bigvee^d)$ is a lattice where 1 is the smallest element and 0 is the biggest element. The order \leq_d is defined like in any lattice by:

$$n \leq_d m \iff n \wedge m = n \iff n \vee m = m$$

or, in other terms:

$$n \leq_d m \iff n \mid m$$
.

Next we will study two diophantine equations which contain the Smarandache function.

Reminding of two of the features of Smarandache's function which we will need further:

1. Smarandache's function satisfies:

$$S(m \lor n) = \max\{S(m), S(n)\}\$$

- 2. To calculate $S(p^{\alpha})$:
 - 2.a. we will write the exponent in the generalized base [p] definite by the sequence with general term:

$$a_i(p) = \frac{p^i - 1}{p - 1}$$

who satisfies:

$$a_{i+1}(p) = p \cdot a_i(p) + 1$$

that is:

[
$$p$$
]: $a_1(p), a_2(p), ...$

2.b. the result is read in the standard base (p) definite by the sequence:

$$b_i(p) = p^i$$

who satisfies:

$$b_{i+1}(p) = p \cdot b_i(p)$$

that is:

$$(p)$$
: $1, p, p^2, p^3, ...$

2.c. the number obtained will be multiply by p.

Proposition:

The equation

$$mS(m) = nS(n) \tag{1}$$

has infinity many solutions in the next two cases:

- 1. m = n obvious
- 2. m > n with $m = d \cdot a$, $n = d \cdot b$ satisfying $m \land n = d$, $d \land a = 1$, $d \wedge b > 1$ and the dual of this condition for m < n.

The equation

$$mS(n) = nS(m) \tag{2}$$

has infinity many solutions in the next two cases:

- 1. m = n obvious 2. m > n and $m \wedge n = 1$

Proof

Let's consider m > n. We distinguish the next cases:

1. $m \wedge n = 1$ that is (m, n) = 1.

Then from equation (1) we can deduce: $m \le_d S(n)$; then $m \le S(n)$. But $S(n) \le n$ for every n and as n < m we get the contradiction: S(n) < m.

For the equation (2) we have: $m \le_d S(m) \Rightarrow m \le S(m) \Rightarrow m = S(m) \Rightarrow m = 4$ or m = 4 the equation becomes:

$$4 \cdot S(n) = 4 \cdot n \implies n = S(n) \implies n = 4 \text{ or } n \text{ is a prime number}$$

So in this case the equation has for solutions the pairs of numbers:

(4,4), (4,p), (p,4), (p,q) with p,q prime numbers.

2. If $m \wedge n = d \neq 1$, so:

$$\begin{cases}
 m = d \cdot a \\
 n = d \cdot b
\end{cases}$$
, cu $a \wedge b = 1$
(3)

the equation (1) becomes:

$$a \cdot S(m) = b \cdot S(n) \tag{4}$$

From condition m > n we deduce:

We can distinguish the next possibilities:

a)
$$d \wedge a = 1, \ d \wedge b = 1$$

If we note:

$$\mu = S(m)$$
, $\nu = S(n)$

we have:

$$\mu = S(m) = S(d \cdot a) = S(d \stackrel{d}{\vee} a) = \max(S(d), S(a))$$

$$\nu = S(n) = S(d \cdot b) = S(d \stackrel{d}{\vee} b) = \max(S(d), S(b))$$
(5)

and the equation (1) is equivalent with:

$$\frac{m}{n} = \frac{S(n)}{S(m)} \iff \frac{a}{b} = \frac{v}{\mu} \tag{6}$$

From (5) we deduce for μ and ν the possibilities:

a1) $\mu = S(d)$, v = S(d), that is:

$$S(d) \ge S(a)$$
 and $S(d) \ge S(b)$

In this case (6) becomes:

$$\frac{a}{b} = 1$$
 - false

a2) $\mu = S(d)$, $\nu = S(b)$, that is:

$$S(d) \ge S(a)$$
 and $S(d) < S(b)$

In this case (6) becomes:

$$\frac{a}{b} = \frac{S(b)}{S(d)} \implies aS(d) = bS(b)$$

But $a \wedge b = 1$, so we must have:

$$a \le_d S(b)$$
 so $a \le S(b)$ (7)

and in the same time:

$$S(b) \le b < a$$
 - contradicts (7)

a3) $\mu = S(a)$, $\nu = S(d)$ that is:

$$S(a) > S(d)$$
 and $S(d) \ge S(b)$ (8)

In this case the equation (6) is:

$$\frac{a}{b} = \frac{S(d)}{S(a)}$$

that is:

$$aS(a) = bS(d) \tag{9}$$

Then from $a \wedge b = 1 \implies a \leq_d S(d)$ and $b \leq_d S(a)$. So:

$$S(a) \le a \le S(d)$$
 - contradicts (8)

a4)
$$\mu = S(a), v = S(b)$$

In this case the equation (6) becomes:

$$\frac{a}{b} = \frac{S(b)}{S(a)} \text{ with } a \wedge b = 1$$

and we are in the case 1.

For the equation (2) which can be also write:

$$aS(n) = bS(m) \tag{10}$$

that is: $av = b\mu$

• in the conditions a1) it becomes:

$$a = b$$
 - false

• in the conditions a2) it becomes:

$$aS(b) = bS(d)$$

and as $a \wedge b = 1$ we deduce:

$$a \leq_d S(d), b \leq_d S(b)$$
.

So $b \le S(b)$, that is b = S(b), so b = 4 or b = p - prime number and the equation becomes:

$$a = S(d)$$

and as $S(d) \wedge d > 1$ we obtain the contradiction:

$$a \wedge d > 1$$

• in the conditions a3) it becomes:

$$aS(d) = bS(a)$$

and because $a \wedge b = 1$ we must have $a \leq_d S(a)$ that is a = S(a).

So the equation is:

$$S(d) = b$$

As $d \wedge S(d) > 1$ it results $d \wedge b > 1$ - false.

• in the conditions a4) the equation becomes:

$$aS(b) = bS(a)$$

that is the equation (2) in the case 1.

b) $d \wedge a > 1$ and $d \wedge b = 1$

As (1) is equivalent with (4) from $a \wedge b = 1$ it results:

$$a \leq_d S(n)$$
 and $b \leq_d S(m)$

From the hypothesis $(d \land a > 1)$ it results:

$$S(m) = S(a \cdot d) \ge \max\{S(a), S(d)\}\tag{11}$$

If in (11) the inequality is not top, that is:

$$S(m) = \max\{S(d), S(a)\}\$$

and as

$$S(n) = \max\{S(d), S(b)\}\tag{12}$$

we are in the in the case a). Let's suppose that in (11) the inequality is top:

$$S(m) > \max\{S(a), S(d)\}\$$

It results:

$$S(m) > S(a) \tag{13}$$

$$S(m) > S(d) \tag{14}$$

Reminding of (11) we have the next cases:

b1) S(n) = S(d)

The equation(4) becomes:

$$aS(m) = bS(d)$$

and from a > b it results S(d) > S(m) - false (13).

b2) S(n) = S(b)

The equation (4) becomes:

$$aS(m) = bS(b)$$

As gcd(a, b) = 1 it results $a \le_d S(b)$ so $a \le S(b)$ - false because $S(b) \le b < a$.

c) $d \wedge a = 1$ and $d \wedge b > 1$

We get:

$$S(m) = S(d \cdot a) = S(d \stackrel{d}{\vee} a) = \max\{S(d), S(a)\}$$

$$S(n) = S(d \cdot b) \ge \max\{S(d), S(b)\}$$

If the last inequality is not top, we have the case a). So let it be:

$$S(n) > \max\{S(d), S(b)\},$$

that is:

$$S(n) > S(d) \tag{15}$$

and

$$S(n) > S(b) \tag{16}$$

c1) S(m) = S(d), that is $S(d) \ge S(a)$. The equation becomes:

$$aS(d) = bS(n)$$

We can't get a contradiction and we can see that the equation has solutions like this:

$$m = p^{\alpha} \cdot a$$
$$n = n^{\alpha + x}$$

So $b = p^x$, $d = p^\alpha$. The condition a > b becomes $a > p^x$. We must have also $a \wedge p^\alpha = 1$, that is $a \wedge p = 1$.

The equation becomes:

$$p^{\alpha}a \cdot S(p^{\alpha}) = p^{\alpha+x}S \cdot (p^{\alpha+x})$$

It results:

$$a = \frac{p^{x}S(p^{\alpha+x})}{S(p^{\alpha})} = \frac{p^{x}p((\alpha+x)_{[p]})_{(p)}}{p(\alpha_{[p]})_{(p)}} = \frac{p^{x}((\alpha+x)_{[p]})_{(p)}}{(\alpha_{[p]})_{(p)}}.$$

We can see that choosing α this way:

$$(\alpha_{[p]})_{(p)} = p^x = (\underbrace{100...0}_{x \text{ times}})_{(p)} \Rightarrow \alpha = \alpha_{[p]} = (\underbrace{100...0}_{x \text{ times}})_{[p]} = \alpha_{x+1}(p)$$

we get:

$$a=((\alpha+x)_{[p]})_{(p)}\in N$$

We must also put the condition $a \wedge p = 1$ which we can get choosing convenient values for x.

Example: For n = 3 we have:

Considering x = 2 we get (from condition $(\alpha_{[p]})_{(p)} = p^x$):

$$(\alpha_{[3]})_{(3)} = 3^x = 3^2 = 100_{(3)} \implies \alpha = 100_{[3]} = 13 \implies$$

$$a = S(p^{\alpha+x}) = S(3^{13+2}) = S(3^{15}) = (15_{[3]})_{(3)} = 102_{(3)} = 11$$
So, $(m = 3^{13} \cdot 11, n = 3^{15})$ is solution for equation (1).

Equation (2) which has the form:

$$aS(n) = bS(d)$$

has no solutions because from $a > b \Rightarrow S(d) > S(n)$ - false.

References:

- 1. C.Dumitrescu, V.Seleacu The Smarandache Function Erhus University Press 1996
- 2. Department of Mathematics, University of Craiova Smarandache Notions Journal vol.7, no. 1-2-3, august 1996