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1 Introduction 

As well-known 1.2 verbal and diagram (graph-diagram) techniques available for 
describing computative algorithms are the most wide-spread at present. For instance, 
Euclidean algorithm, allowing to fmd the greatest common divisor (GCD) of the 
positive integers a and b (a > b) has the following verbal description 3 

1. Assign m = a, n = b; 
2. Find r = m mod n; 
3. If r > 0, then pass to 4. Otherwise, pass to 5; 
4. Assign m = n, n = r and pass to 2; 
5. Answer: GCD(a, b) = n. 

Since all computative algorithms are realised, as the rule, on computer at present, 
the main fault of the verbal description of computative algorithms is the necessity of 
translating this description into one of special computer-oriented languages. 

The diagram form of the description of computative algorithms allows to 
simplify slightly the process of such translation. In particular, the diagram form of 
Euclidean algorithm is shown in figure 1, where squares with digits 1, 2, 4, 5 and 
the rhomb with the condition r > 0 mean respectively to points 1, 2, 4, 5 and 3 of 
the verbal description. 

Figure 1. Diagram form of the description of Eudidean algorithm. 
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The logical technique 4 available for describing computative algorithms is less 
known than verbal and diagram descriptions, but just it gives easier way to obtain a 
program code. In particular, we may present the logical description of Euclidean 
algorithm in the form 

AIJ..2A2ex.3il~~i2J,IAs, (1) 

where A.; are elements of the vector operator A = {(m = a, n = b), (r = m mod n), 
(0), (m = n, n = r), (n)}; Cl.j are elements of the vector conditional jump ex. = {(0), 
(0), (r> 0), (0), (0)}; (0) is the blank in A and a.; i i and J, i are arrows 

indicating respectively points of departures and destinations; ~ is the unconditional 
jump instruction. 

We note that, generally speaking, an one-to-one correspondence exists between 
three foregoing techniques for describing computative algorithms. In other words 
these techniques are identical in substance. 

One of modem techniques available for describing computative algorithms is 
using the built-in predicates calculus, realised, for instance, in Prolog 5. In particular, 
we may represent Prolog description of Euclidean algorithm by three statements 

GCD(O,V,V). 
GCD(NS,VS,V):-NSI is VS modNS, GCD(NSl,NS,V). 
?-GCD(b, a, V). 

(2) 

Where the second statement is the direct record of the recursive computative 
procedure, allowing to find GCD(a, b); the first one determines the condition to 
finish this procedure; the third one is constructed to introduce the concrete values of 
numbers of Euclidean algorithm; NS, NSl, V and VS are internal variables of the 
procedure and V = GCD(a, b) after calculations. The main obstacle of this technique 
spreading is necessity of preliminary good knowledge of predicates calculus theory. 

This paper is devoted to an advance of analytical approach to de~cribing some 
combinatorial and number-theoretic computative algorithms. Since at present any 
analytical description of the computative algorithms allows to automate the process 
of obtaining the program code, we suppose that the discussed theme appears to be 
interesting. 

2 Constructing analytical formulae by using logical functions 

2.1 Formulae to generate n-th prime number Pit 

In our view, the most impressive application of logical functions in elementary 
number theory is the formula 3,6 to generate n-th prime number Pit: 

(n+1)2+1 m 

PIt = L sg(n+l- 2({(k-l)!}2_k[{(k-l)!}2 / kD), (3) 
m=O k=2 

where po = 2, PI = 3, ... ; square brackets mean the integer part; sg is a logical 
function: sg(x) = I if x > 0 and sg(x) = 0 if x ~ O. Let us find another analytical 
formula for Pit without factorials. 
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As well-known 3, 7, any prime number has exactly two divisors: the unit and 
itself. Thus, any integer number a is a prime one if it has not divisors among integer 

numbers from 2 to [ ~ ] or, in the language of analytical formulae, if 

~ 
Xa = 11 {sg(a - j[i / j])}, (4) 

j=2 

then a is a prime only when Xa = 1. It appears directly from (4) and (3) that the 

desirable formula for Pit has form 

(11+1)2+1 m 

p" = L sg(n-l- LXa), (5) 
m=O a=3 

where P2 = 2,P3 = 3,P4 = 5, .... 

2.2 The analytical description of the permutations generator 

As well-known 2, 3 

a) the permutation of order m is called any arrangement of m various objects in a 
senes; 

b) the verbal description of the simple algorithm available for constructing all the 
permutations from m objects, if all the permutations from m - 1 objects have been 
already constructed, has form 

Enumerate m - 1 various objects by the numbers 1, 2, ... , m - 1. For each 
permutation of 01, 02, ••• , 0_1' containing the numbers 1, 2, ... , m - 1, form mother 

permutations by putting the number m in all the possible places. As a result 
obtain the permutations: 

m, 01, 02, ••• , 0_1; 

01, m, 02, ••• , 0_1; 

.............. . -, 

(6) 

It is evident that one can obtain all the permutations of order m by this algorithm 
and none of the permutations of (6) may be obtained more than once. If this verbal 
description we translate into one of special computer-oriented languages, for 
instance, into Pascal, then we obtain the program code, shown in table 1. This 
program works correctly at initial conditions m4 = I; nl = m and the array nb3 
contains such numbers in the first m cells, which should be rearranged, and has 
following advantages over the verbal description 

a) the knowledge of all permutations from m - 1 objects is not required for 
generating the permutations of order m; 

b) permutations are realised with any set of numbers, contained in the first m 

cells of the array nb3. 
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Table 1. The representation of the pennutations generator as Pascal program. 

Procedure Perm(Var m4,n1,n:lnteger; 
Var nb3,nb4,nb5:Ten); 
Label A28,A29.A30; 
Var nt,k,m2:lnteger; 
Begin 

If m4=1 Then 
Begin 

m4:=O;n:=n1 ; 
For k:=2 to n do 
Begin 

nb4[k1:=O; 
nb5[k1:=1; 

End; 
Exit; 

End; 
k:=O; n:=n1; 

A28: 
m2:=nb4[n1+nb5[n1;nb4[n1:=m2; 

Ifm2=n Then 
Begin 

nb5[n]:=-1 ;Goto A29; 
End; 
If Abs(m2»O Then Gota A30; 
nb5[n1:=1 ;Inc(k); 

A29: 
If n>2 Then 
Begin 

Oec(n);Gota A28; 
End; 
1nc(m2);m4:=1 ; 

A30: 
m2:=m2+k; 
nt=nb3[m21; 
nb3[m2]:=nb3[m2+11; 
nb3[m2+11:=nt 

End; 

It should be noted that the main fault of both the verbal description and the 
program code is the fact that the knowledge of the previous permutation of order m 
is required for constructing the next permutation from m objects. To eliminate this 
fault one may use a set of analytical formulae 6 

rj = pj - Zl +1, pj = j - 1 + J(1 - Cj) + Cj (m - j - /), 

J = t j _1 - (m - j + l)[t j _t /(m - j + 1)], 

tj = [ k / IT (m - q + 1) ]. 
q=l 

Zl= sg(l+ Pj-t-pj -Z2) +z2, Z2 = sg(l+ Pj-2-pj -Z3) + Z3, 

(7) 

... , 

where k is a number of permutation, generated of (7); rj is a number, which j-th 
element of the initial sequence nb3 has in k-th permutation; the all another 
parameters in (7) are auxiliary. 

2.3 The formula for counting the value ofGCD(a, b) 

We may present one of possible formulae available for counting the value of 
GCD(a, b) {see Sect. I} as 

GCD(a, b) = b{l- signer)} + k signer), r = a - b[a/ b], (8) 

[..Jb] 
k= MAX {i(l-d)}, d=sign{a-i[a/i]} xsign{b-i[b/i]}, 

i=2 
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where the function MAX(aI, a2, ... , a I) gives the greatest from numbers aI, a2 • ... , 

a;; sign(x) = I x II x if x;eO and sign(O) = o. 

2.4 Formulae for the calculation of n-th numbers in Smarandache sequences of 
1 st and 2nd kinds 

As we found earlier 7, the terms of six Smarandache sequences of 1st kind 8 may be 
computed by means of one general recurrent expression 

a ()=cr(a 10'l'(all )+a +1) (9) q>n n n, 

where cp(n) and 'V(all) are some functions; cr is an operator. For instance, 
a) if <pC n) = n + 1, cr = 1 and '1'( all) = [lg( n + 1)] + 1 then the following sequence 

of the numbers, denoted as Srsequence, is generated by (9) 

1, 12, 123, 1234, 12345, 123456, ... 

Let each number X k, determined as 

[lg(k+O,5)] 

Xk = -1 + L(k+l-l0j
), 

j=O 

(10) 

(11) 

correspond to each number at of sequences (10), where the notation "[lg(y)]" means 
integer part from decimal logarithm of y . Using (11) we may construct the following 
analytical formula for the calculation of n-th number in the Sl-sequence: 

n 

all = lOXII L(i I 10Xi); (12) 
i=l 

b) if cp( n) = n+ 1; cr = Y is the operator of mirror-symmetric extending the number 
a [(n+l)I2] of Sl-sequence from the right with I-truncating the reflected number from 

the left, if n is the odd number, and without truncating the reflected number, if n is 
the even number; 'V(all) = [lg([(n+l)12] + 1)] + 1, then the following sequence of 
the numbers, denoted as S2-sequence, is generated by (9) 

1, 11, 121, 1221, 12321, 123321, 1234321, ... (13) 

The analytical formula for the calculation of n-th number in the S2-sequence has the 
form 

[nl2] [(n+1)I2] 
an = Li lOXi -[lg i) + Li 10d , (14) 

i=l i=l 

where d= 1 + X[(n+l)I2] + X[nl2] -Xi; and so on. 

We fmd recently that the terms of Smarandache sequences of 2nd kind 8 may be 
computed also by the universal analytical formula {compare with formulae (12) and 
(5)} 
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U" m 

a,,= L sg(n+2-b- LXi), (15) 
m=l i=b 

where X i are the characteristic numbers for Smarandache sequences of the 2nd 

kind; U" is an up-estimation for the value a,,; b is a constant. For instance, if 

g! [~] 
U" = n2

, b = 2, Xi = sg (L I1 sg (c-q[c / q])}, g = [lg z1 + 1, (16) 
k=l q=l 

g 

c = 109 L { [i / 109-P]-10 [i / 109-p+lJ } / 10rp 
, 

p=l 

the following sequence ofSmarandache numbers of 2nd kind is generated by (15) 

1,2,3,5, 7, 11, 13, 14, 16, 17, 19,20,23,29,30,31,32,34, ... (17) 

We note that 
a) in formula (16): k is a number of the permutation, which is generated from 

digits of the number i; rj is a number, which j-th digit of the number i has in k-th 
permutation {see (7)}; 

b) only such integer numbers belong to the sequence (17), which are prime 
numbers or can be derived to prime numbers by a permutation of digits in the initial 
natural numbers {the number 1 is related to prime numbers in this sequence}. 

2.5 Formulae for analytical description of Magic squares constructing methods 

As we discovered earlier 3, 11, logical functions may be used effectively to create 
analytical formulae available for describing computative algorithms on constructing 
Magic squares of any order n. For instance, let us consider a well-known "Method of 
two squares", whose verbal description has the form 3,12: 

1. Make a drawing of two square tables of any order n = 4k + 2 (k = 1, 2, ... ). 
Divide every table in four equal squares which we shall call A, B, C and D squares 
respectively {see figure 2(1)}; 

2. Place a Magic square of order m = 2k + 1 in the A, B, C and D squares of the 
first table. It is obvious {see figure 2(2)}, the first table will have the same sum of 
numbers in its rows, columns and main diagonals; 

3. Fill the cells of the second table: all cells of A square are to have zeros; cells 
of D square - numbers u = m2

; cells of B square - numbers 2u and cells of C 
square - numbers 3u. The obtained table {see figure 2(3)} will have the same sum 
of numbers only in its columns; 

4. Perform such rearrangement of the numbers in the table 2(3) that the new table 
will have the same sum of numbers in its rows, columns and main diagonals. It can 
be achieved, for instance, by operations 

a) underline in the square A of the second table 
- k zeros, located in the extreme left positions of all rows, excepting the middle 

row {see figure 2(3)}; 
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- the zero, located in the central cell of the middle row, and another k-l zeros, 
located left of the central cell. 

Exchange all marked zeros against the respective numbers of the square C {see 
figure 2(4)} and otherwise; 

b) mark k - 1 numbers 2u in the extreme right positions of every row of 
square B {see figure 2(3)}, and then exchange ones against corresponding numbers 
of the square D (see figure 2(4)) and otherwise. 

5. Add (cell-wise) two auxiliary tables {the Magic square of order 10, obtained 
as a result of adding auxiliary squares 2(2) and 2(4) is shown in figure 2(5)}. 

A B 

C 0 

(1) 

15 14 6 22 3 15 14 6 22 3 Q Q 0 0 0 50 50 50 50 50 

21 2 18 10 9 21 2 18 10 9 Q Q 0 a 0 50 50 50 50 ~ 

13 5 24 1 17 13 5 24 1 17 0 Q Q 0 0 50 50 50 50 ~ 

4 16 12 8 20 4 16 12 8 20 Q Q 0 0 0 50 50 50 50 50 

7 23 0 19 11 7 23 0 19 11 0 0 0 0 0 50 50 50 50 50 

15 14 6 22 3 15 14 6 22 3 75 75 75 75 75 25 25 25 25 25 

21 2 18 10 9 21 2 18 10 9 75 75 75 75 75 25 25 25 25 25 

13 5 24 1 17 13 5 24 1 17 75 75 75 75 75 25 25 25 25 25 

4 16 12 8 20 4 16 12 8 20 75 75 75 75 75 25 25 25 25 25 

7 23 0 19 11 7 23 0 19 11 75 75 75 75 75 25 25 25 25 25 

(2) (3) 

75 75 0 0 0 50 50 50 50 25 90 89 6 22 3 65 64 56 72 28 

75 75 0 0 0 50 50 50 50 25 96 77 18 10 9 71 52 68 60 34 

0 75 75 0 0 50 50 50 50 25 13 80 99 1 17 63 55 74 51 42 

75 75 0 0 0 50 50 50 50 25 79 91 12 8 20 54 66 62 58 45 

75 75 0 0 0 50 50 50 50 25 82 98 0 19 11 57 73 50 69 36 

a 0 75 75 75 25 25 25 25 50 15 14 81 97 78 40 39 31 47 53 

0 0 75 75 75 25 25 25 25 50 21 2 93 85 84 46 27 43 35 59 

75 0 0 75 75 25 25 25 25 50 88 5 24 76 92 38 30 49 26 67 

a a 75 75 75 25 25 25 25 50 4 16 87 83 95 29 41 37 33 70 

0 0 75 75 75 25 25 25 25 50 7 23 75 94 86 32 48 25 44 61 

(4) (5) 

Figure 2. Method of two squares. 
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Table 2. The representation of computative algorithm "Method of two squares" as Pascal program. 

Procedure BuildMS; 
{ Build Magic square of order n=4k+2 } 
Var m,i,j,n2:Byte; 

z.x,Y,nn:lnteger; 
Begin 

z:=O;n2:=n; 
n:=o2 Shr 1; 
m:=n Shr 1; 
nn:=Sqr(n); 

{ Build an auxiliary square of order n=4k+2} 
{ Place a Magic square in A square } 
For z:=1 to nn do 
Begin 

x:=(fX(z)-1+n)Mod n+1; 
y:=(gY(z)-1+n)Mod n+1; 
mk{(x-1 )*n2+y]:=z; 

End; 
n:=o2;o2:=n Shr 1; 
For i:=1 to n2 do For j:=1 to 02 do 
Begin 

{ Place the Magic square in B, C and 0 squares} 
mk{lnd(i,j+o2)]:=mk{lnd(i,j)]+nn Shl 1; 
mk{lnd(i+o2,j)]:=mk{lnd(i,j)]+nn Shl 1 +nn; 
mk{lnd(i+o2,j+n2)]:=mk{lnd(i,j)]+nn; 

End; 

{Modify the auxiliary square } 
{ Modify A and C squares} 

For i:=1 to 02 do 
If i<>n2 Shr 1 +1 Then 
Begin 

For j:=1 to m do 
Begin 

Inc(mk{lnd(i,j)],nn*3); 
Dec(mk[lnd(i+n2,m,nn*3); 

End; 
End; 
i:=o2 Shr 1+1; 
For j:=i Oownto i-m+1 do 
Begin 

Inc(mk{lnd(i,j)],nn*3); 
Oec(mk{lnd(i+n2,m,nn*3); 

End; 
{ Modify Band 0 squares} 

For j:=n Downto n-m+2 do 
For i:=1 to 02 do 
Begin 

Dec(mk{lnd(i,m,nn); 
Inc(mk{lnd(i+n2,Dl,nn); 

End; 
End; 

If the foregoing verbal description we translate into Pascal, we obtain the 
program code, shown in table 2. In this program code 

a) the Magic square of order m = 2k + 1, located in the A, B, C and D squares of 
the auxiliary square, may be built for instance, by the functions 3, 11, 13 

j{z, m) == (z - 1) + [(z- l)/m] - [m/2] , 

g(z, m) == (z - 1) - [(z - 1)/m] + [m/2], 

(18) 

where square brackets mean the integer part; a sign ''::'' is the modulo m equality; z 
is any natural number from 1 to m2

; functions f and g afford to compute the position 
of any natural number z in cells of the Magic square: x = j{z, n) and y = g(z, n). In 
particular, functions (18) may be presented as following two distinct Pascal­
procedures 

Function fX(z:lnteger):lnteger, 
Begin 

fX:=1+(z-1)+(z-1}div n - n shr 1; 
End; 

Function gY(z:lnteger):lnteger, 
Begin 

gY:=1+(z-1)-{z-1)Div n + n shr 1; 
End; 

b) two procedures "Ind" and "Sign" are auxiliary and have the fonn 

Function Ind(x,y:lnteger):lnteger, 
Begin 

Ind:=(x-1 )*n+y; 
End; 

Function Sign(n:Word):Shortlnt; 
Begin 

If Odd(n) Then Sign:= -1 Else Sign:=1; 
End; 
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The analytical description of "Method of two squares" has the form 3 

x = i + Cl m - 1; y = (1 - C3 - C6 - cs) (j + C2 m) + (C3 + C6 + cs) (1 + (19) 

+ {(j + (C2 + 1)m - 1) mod n}) - 1; 

u =m2
; z=1+{(N-I)modu}; i=f(z, m) + 1; 

j = g(z, m) + 1; Cl = [{( [ (N - 1)/ u] + 1) mod 4}/2 ]; 

C2 == [(N -1)/u] mod 2, C3 = [(sign(cl m + i - 3k- 4) + 2)/2]; 

C4 = asg(j - k- 1); C6 = C4 [ (sign(k- i - Cl m) + 2)/2 ]; 

Cs = (1 - C4)(1- CI)[ {sign(i - 1)+ 1}/2 ]x[ (sign(k- i + 1) + 2)/2], 

where n = 4k + 2 is an order of the desirable Magic square, contained natural 
numbers N from 1 to n2

; m = 2k + 1; functions f (z, m) and g(z, m) are determined 
by the expression (18); asg(x) = 1 if x * 0 and asg(O) = 0 {asg(x) = I sign(x) I 
= sign! x I = s~ x ~. 
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