ON SOME CONVERGENT SERIES by Enul Burton

Notations:

 N^* set of integers 1, 2, 3, ...

d(n) the number of divisors of n.

S(n) the Smarandache function $S: N^* \to N^*$.

S(n) is the smallest integer m with the property that m! is divisible by n R set of real numbers.

In this article we consider the series $\sum_{k=1}^{\infty} f(S(k))$.

 $f: N^* \to R$ is a function which satisfies any conditions.

<u>Proposition 1.</u> Let $f: N \rightarrow R$ be a function which satisfies condition:

$$f(t) \leq \frac{c}{t^{\alpha}(d(t!)-d((t-1)!))}$$

for every $t \in N^*$, $\alpha > 1$ constant, $c > \theta$ constant.

Then the series $\sum f(S(k))$ is convergent.

<u>Proof:</u> Let us denote by m_i the number of elements of the set $M_t = \{k \in N^* : S(k) = t\} = \{k \in N^* : k \mid t! \text{ and } k \nmid (t-1)!\}.$ It follows that $m_i = d(t!) - d((t-1)!)$.

$$\sum_{k=1}^{\infty} f(S(k)) = \sum_{t=1}^{\infty} m_t f(t)$$

 $\sum_{k=1}^{\infty} f(S(k)) = \sum_{t=1}^{\infty} m_t f(t)$ We have $m_t \cdot f(t) \le m_t \cdot \frac{c}{t^{\alpha} m_t} = \frac{c}{t^{\alpha}}$.

It is well = known that $\sum \frac{1}{t^{\alpha}}$ is convergent if $\alpha > 1$.

Therefore $\sum f(S(k)) < \infty$.

It is known that $d(n) < 2\sqrt{n}$ if $n \in N^*$ (2)

and it is obvious that $m_i < d(t!)$ (3)

We can show that

$$\sum_{k=1}^{\infty} \left(S(k)^p \sqrt{S(k)!} \right)^{-1} < \infty , p > 1$$

$$(4)$$

$$\sum_{k=1}^{\infty} (S(k)!)^{-1} < \infty \tag{5}$$

$$\sum_{k=1}^{\infty} (S(1)!S(2)!\dots S(k)!)^{-\nu_k} < \infty$$
(6)

$$\sum_{k=2} (S(k) \sqrt{S(k)!} (\log S(k))^p)^{-1} \leq \infty, p > 1$$
 (7)

Write
$$f(S(k)) = (S(k)^p \cdot \sqrt{S(k)!})^{-1}$$
, $f(t) = (t^p \cdot \sqrt{t!})^{-1} = 2(t^p \cdot \sqrt{t!})^{-1} < 2(t^p \cdot d(t!))^{-1} < 2(t^p \cdot (d(t!) - d((t-1)!)))^{-1}$.

Now use the proposition 1 to get (4).

The convergence of (5) follows from inequality $t\sqrt{t!} \le t!$ if $p \in R$, p > 1, $t > t_* = [e^{2p+1}]$, $t \in N^*$. Here $[e^{2p+1}]$ means the greatest integer $\le e^{2p+1}$.

The details are left to the reader. To show (6) we can use the Carleman's Inequality: Let $(x_n)_{n\in\mathbb{N}^*}$ be a sequence of positive real numbers and $x_n\neq 0$ for some n. Then

$$\sum_{k=1}^{\infty} (x_1 x_2 \cdots x_k)^{1/k} \leq e \sum_{k=1}^{\infty} x_k \tag{8}$$

Write $x_k = (S(k)!)^{-1}$ and use (8) and (5) to get (6). It is well-known that

$$\sum_{n=1}^{\infty} (n(\log n)^p)^{-1} < \infty \quad \text{if and only if } p > 1 \,, \ p \in R. \tag{9}$$

Write $f(t) = (t\sqrt{t!} (\log t)^p)^{-1}, t \ge 2, t \in N^*$. We have

$$\sum_{k=0}^{\infty} (S(k)\sqrt{S(k)!} (\log S(k))^{p})^{-1} = \sum_{k=0}^{\infty} m_{i}f(t).$$

$$m_{t}f(t) < d(t!) f(t) < 2 \sqrt{t!} (t \sqrt{t!} (\log t)^{p})^{-1} = 2 (t (\log t)^{p})^{-1}.$$

Now use (9) to get (7).

Remark 1. Apply (5) and Cauchy's Condensation Test to see that

$$\sum_{k=0}^{\infty} 2^k \left(S(2^k)!\right)^{-1} < \infty. \text{ This implies that } \lim_{k\to\infty} 2^k \left(S(2^k)!\right)^{-1} = 0.$$

A problem : Test the convergence behaviour of the series

$$\sum_{k=1}^{\infty} (S(k)^{p} \sqrt{(S(k)-1)!})^{-1}.$$
 (10)

Remark 2. This problem is more powerful than (4).

Let p_n denote the n-th prime number $(p_1=2, p_2=3, p_3=5, p_4=7, ...)$.

It is known that
$$\sum_{n=1}^{\infty} 1/p_n = \infty$$
. (11)

We next make use of (11) to obtain the following result:

$$\sum_{n=1}^{\infty} S(n)/n^2 = \infty.$$
 (12)

We have
$$\sum_{k=1}^{\infty} S(n)/n^2 \ge \sum_{k=1}^{\infty} S(p_k)/p_k^2 = \sum_{k=1}^{\infty} p_k/p_k^2 = \sum_{k=1}^{\infty} 1/p_k$$
 (13)

Now apply (13) and (11) to get (12).

We can also show that

$$\sum_{n=1}^{\infty} S(n)/n^{1-p} < \infty \text{ if } p > 1, p \in \mathbb{R}.$$
 (14)

Indeed, $\sum_{n=1}^{\infty} S(n)/n^{1+p} \le \sum_{n=1}^{\infty} n/n^{1+p} = \sum_{n=1}^{\infty} 1/n^p < \infty.$

If $0 \le p \le 2$, we have $S(n)/n^p \ge S(n)/n^2$.

Therefore $\sum_{n=1}^{\infty} S(n)/n^p = \infty$ if $0 \le p \le 2$.

REFERENCES:

- 1. Smarandache Function Journal Number Theory Publishing, Co. R. Muller, Editor, Phoenix, New York, Lyon.
- 2. E. Burton: On some series involving the Smarandache Function (Smarandache Function J., V. 6., Nr. 1/1995, 13-15).
- 3. E. Burton, I. Cojocaru, S.Cojocaru, C. Dumitrescu:
 Some convergence problems involving the Smarandache Function
 (to appear).

Current Address: Dept. of Math. University of Craiova, Craiova (1100), Romania.