Vertex-Mean Graphs

A.Lourdusamy

(St.Xavier's College (Autonomous), Palayamkottai, India)

M.Seenivasan

(Sri Paramakalyani College, Alwarkurichi-627412, India)

E-mail: lourdugnanam@hotmail.com, msvasan_22@yahoo.com

Abstract: Let $k \geq 0$ be an integer. A Smarandachely vertex-mean k-labeling of a (p,q) graph G = (V, E) is such an injection $f : E \longrightarrow \{0, 1, 2, ..., q_* + k\}, q_* = \max(p,q)$ such that the function $f^V : V \longrightarrow \mathbb{N}$ defined by the rule $f^V(v) = Round\left(\frac{\sum_{e \in E_v} f(e)}{d(v)}\right) - k$ satisfies the property that $f^V(V) = \{f^V(u) : u \in V\} = \{1, 2, ..., p\}$, where E_v denotes the set of edges in G that are incident at v, \mathbb{N} denotes the set of all natural numbers and Round is the nearest integer function. A graph that has a Smarandachely vertex-mean k-labeling is called Smarandachely k vertex-mean graph or Smarandachely k V-mean graph. Particularly, if k = 0, such a Smarandachely vertex-mean 0-labeling and Smarandachely 0 vertex-mean graph or Smarandachely 0 ver

Key Words: Smarandachely vertex-mean k-labeling, vertex-mean labeling, edge labeling, Smarandachely k vertex-mean graph, vertex-mean graph.

AMS(2010): 05C78

§1. Introduction

A vertex labeling of a graph G is an assignment f of labels to the vertices of G that induces a label for each edge xy depending on the vertex labels. An edge labeling of a graph G is an assignment f of labels to the edges of G that induces a label for each vertex v depending on the labels of the edges incident on it. Vertex labelings such as graceful labeling, harmonious labeling and mean labeling and edge labelings such as edge-magic labeling, (a,d)-anti magic labeling and vertex-graceful labeling are some of the interesting labelings found in the dynamic survey of graph labeling by Gallian [3]. In fact B. D. Acharya [2] has introduced vertex-graceful graphs, as an edge-analogue of graceful graphs. Observe that, in a variety of practical problems, the arithmetic mean, X, of a finite set of real numbers $\{x_1, x_2, ..., x_n\}$ serves as a

¹Received February 12, 2011. Accepted September 10, 2011.

better estimate for it, in the sense that $\sum (x_i - X)$ is zero and $\sum (x_i - X)^2$ is the minimum. If it is required to use a single integer in the place of X then Round(X) does this best, in the sense that $\sum (x_i - Round(X))$ and $\sum (x_i - Round(X))^2$ are minimum, where Round(Y), nearest integer function of a real number, gives the integer closest to Y; to avoid ambiguity, it is defined to be the nearest even integer in the case of half integers. This motivates us to define the edge-analogue of the mean labeling introduced by R. Ponraj [1]. A mean labeling f is an injection from V to the set $\{0,1,2,...,q\}$ such that the set of edge labels defined by the rule $Round(\frac{f(u)+f(v)}{2})$ for each edge uv is $\{1,2,...,q\}$. For all terminology and notations in graph theory, we refer the reader to the text book by D. B. West [4]. All graphs considered in the paper are finite and simple.

Fig.1 Some V -mean graphs

Fig.2

Definition 1.1 Let $k \geq 0$ be an integer. A Smarandachely vertex-mean k-labeling of a (p,q) graph G = (V, E) is such an injection $f : E \longrightarrow \{0, 1, 2, ..., q_* + k\}$, $q_* = \max(p,q)$ such that the function $f^V : V \longrightarrow \mathbb{N}$ defined by the rule $f^V(v) = Round\left(\frac{\sum_{e \in E_v} f(e)}{d(v)}\right) - k$ satisfies the property that $f^V(V) = \{f^V(u) : u \in V\} = \{1, 2, ..., p\}$, where E_v denotes the set of edges in G that are incident at v, \mathbb{N} denotes the set of all natural numbers and Round is the nearest integer function. A graph that has a Smarandachely vertex-mean k-labeling is called Smarandachely k vertex-mean graph or Smarandachely k vertex-mean k-labeling and Smarandachely k vertex-mean k-labeling and Smarandachely k vertex-mean graph or k smarandachely k vertex-mean graph or k

Henceforth we call vertex-mean as V-mean. To initiate the investigation, we obtain necessary conditions for a graph to be a V-mean graph and we present some results on this new notion in this paper. In Fig.1 we give some V-mean graphs and in Fig.2, we give some non V-mean graphs.

§2. Necessary Conditions

Following observations are obvious from Definition 1.1.

Observation 2.1 If G is a V-mean graph then no V-mean labeling assigns 0 to a pendant edge.

Observation 2.2 The graph K_2 and disjoint union of K_2 are not V-mean graphs, as any number assigned to an edge uv leads to assignment of same number to each of u and v. Thus every component of a V-mean graph has at least two edges.

Observation 2.3 The minimum degree of any V-mean graph is less than or equal to three ie, $\delta \leq 3$ as Round(0+1+2+3) is 2. Thus graphs that contain a r-regular graph, where $r \geq 4$ as spanning sub graph are not V-mean graphs and any 3-edge-connected V-mean graph has a vertex of degree three.

Observation 2.4 If f is a V-mean labeling of a graph G then either (1) or (2) of the following is satisfied according as the induced vertex label $f^V(v)$ is obtained by rounding up or rounding down.

$$f^{V}(v)d(v) \le \sum_{e \in E_{v}} f(e) + \frac{1}{2}d(v),$$
 (1)

$$f^{V}(v)d(v) \ge \sum_{e \in E_{v}} f(e) - \frac{1}{2}d(v).$$
 (2)

Theorem 2.5 If G is a V-mean graph then the vertices of G can be arranged as $v_1, v_2, ..., v_p$ such that $q^2 - 2q \leq \sum_{1}^{p} kd(v_k) \leq 2qq_* - q^2 + 2q$.

Proof Let f be a V-mean labeling of a graph G. Let us denote the vertex that has the induced vertex label k, $1 \le k \le p$ as v_k . Observe that, $\sum_{v \in V} f^V(v) d(v)$ attains it maximum/minimum when each induced vertex label is obtained by rounding up/down and the first

q largest/smallest values of the set $\{0, 1, 2, \dots, q_*\}$ are assigned as edge labels by f. This with Observation 2.4 completes the proof.

Corollary 2.6 Any 3-regular graph of order 2m, $m \ge 4$ is not a V-mean graph.

Corollary 2.7 The ladder $L_n = P_n \times P_2$, $n \ge 7$ is not a V-mean graph.

A V-mean labeling of ladders L_3 and L_4 are shown in Figure 1.

§3. Classes of V-Mean Graphs

Theorem 3.1 If $n \geq 3$ then the path P_n is V-mean graph.

Proof Let $\{e_1, e_2, ..., e_{n-1}\}$ be the edge set of P_n such that $e_i = v_i v_{i+1}$. We define $f: E \longrightarrow \{0, 1, 2, ..., q_* = p\}$ as follows:

$$f(e_i) = \begin{cases} i, & \text{if } 1 \le i \le p - 2, \\ i + 1, & \text{if } i = p - 1. \end{cases}$$

It can be easily verified that f is a V-mean labeling.

A V-mean labeling of P_{10} is shown in Fig.3.

Fig.3

Theorem 3.2 If $n \geq 3$ then the cycle C_n is V-mean graph.

Proof Let $\{e_1, e_2, ..., e_n\}$ be the edge set of C_n such that $e_i = v_i v_{i+1}, \ 1 \leq i \leq n-1,$ $e_n = v_n v_1$. Let $\zeta = \lceil \frac{n}{2} \rceil - 1$. The edges of C_n are labeled as follows: The numbers $0, 1, 2, \cdots, n$ except ζ are arranged in an increasing sequence $\alpha_1, \alpha_2, \cdots, \alpha_n$ and α_k is assigned to e_k . Clearly the edges of C_n receive distinct labels and the vertex labels induced are $1, 2, \cdots, n$. Thus C_n is V-mean graph.

The corona $G_1 \odot G_2$ of two graphs $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ is defined as the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and then joining the i^{th} vertex of G_1 to all the vertices in the i^{th} copy of G_2 . The graph $C_n \odot K_1$ is called a crown.

Theorem 3.3 The corona $P_n \odot K_m^C$, where $n \geq 2$ and $m \geq 1$ is V-mean graph.

Proof Let the vertex set and the edge set of $G = P_n \odot K_m^C$ be as follows:

$$V(G) = \{u_i : 1 \le i \le n\} \cup \{u_{ij} : 1 \le i \le n \text{ and } 1 \le j \le m\},\$$

 $E(G) = A \cup B,$

where $A = \{e_i = u_i u_{i+1} : 1 \le i \le n-1\}$ and $B = \{e_{ij} = u_i u_{ij} : 1 \le i \le n \text{ and } 1 \le j \le m\}$. We observe that G has order (m+1)n and size (m+1)n-1. The edges of G are labeled in three steps as follows:

Step 1. The edges e_1 and e_{1j} , $1 \le j \le m$ are assigned distinct integers from 1 to (m+1) in such a way that e_1 receives the number $Round(\frac{\sum_{j=1}^{m+1} j}{m+1})$.

Step 2. For each $i, 2 \le i \le n-1$, the edges e_i and $e_{ij}, 1 \le j \le m$ are assigned distinct integers from (m+1)(i-1)+1 to (m+1)i in such a way that e_i receives the number

Round(
$$\frac{f(e_{i-1}) + \sum_{j=1}^{m+1} (m+1)(i-1) + j}{m+2}$$
).

Step 3. The edges e_{nj} , $1 \le j \le m$ are assigned distinct integers from (m+1)(n-1)+1 to (m+1)n in such a way that non of these edges receive the number

Round(
$$\frac{f(e_{n-1}) + \sum_{j=1}^{m+1} (m+1)(n-1) + j}{m+2}$$
).

Then the edges of G receive distinct labels and the vertex labels induced are 1, 2, ..., (m+1)n. Thus G is V-mean graph.

Fig.4 displays a V-mean labeling of $P_5 \odot K_4^C$.

Fig.4 A V -mean labeling of $P_5 \odot K_4^C$

Theorem 3.4 The star graph $K_{1,n}$ is V-mean graph if and only if $n \cong 0 \pmod{2}$.

Proof Necessity: Suppose $G = K_{1,n}$, n = 2m + 1 for some $m \ge 1$ is V-mean and let f be a V-mean labeling of G. As no V-mean labeling assigns zero to a pendant edge, f assigns 2m + 1 distinct numbers from the set $\{1, 2, ..., 2m + 2\}$ to the edges of G. Observe that, whatever be the labels assigned to the edges of G, label induced on the central vertex of G will be either m+1 or m+2. In both cases two vertex labels induced on G will be identical. This contradiction proves necessity.

Sufficiency: Let $G = K_{1,n}$, n = 2m for some $m \ge 1$. Then assignment of 2m distinct numbers except m + 1 from the set $\{1, 2, ..., 2m + 1\}$ gives the desired V-mean labeling of $G.\square$

Theorem 3.5 The crown $C_n \odot K_1$ is V-mean graph.

Proof Let the vertex set and the edge set of $G = C_n \odot K_1$ be as follows: $V(G) = \{u_i, v_i : 1 \le i \le n\}$, $E(G) = A \cup B$ where $A = \{e_i = u_i u_{i+1} : 1 \le i \le n-1\} \cup \{e_n = u_n u_1\}$ and $B = \{e'_i = u_i v_i : 1 \le i \le n\}$. Observe that G has order and size both equal to 2n. For $3 \le n \le 5$, V-mean labeling of G are shown in Fig.5. For $n \ge 6$, define $f : E(G) \longrightarrow \{0, 1, 2, ..., 2n\}$ as follows:

Case 1 $n \equiv 0 \pmod{3}$.

$$f(e_i) = \begin{cases} 2i - 2 & \text{if } 1 \le i \le \frac{n}{3} - 1, \\ 2i & \text{if } i = \frac{n}{3}, \\ 2i - 1 & \text{if } \frac{n}{3} + 1 \le i \le n, \end{cases}$$

$$f(e'_i) = \begin{cases} 2i - 1 & \text{if } 1 \le i \le \frac{n}{3}, \\ 2i & \text{if } \frac{n}{3} + 1 \le i \le n. \end{cases}$$

Case 2 $n \not\equiv 0 \pmod{3}$.

$$f(e_i) = \begin{cases} 2i - 2 & \text{if } 1 \le i \le \left\lfloor \frac{n}{3} \right\rfloor, \\ 2i - 1 & \text{if } \left\lfloor \frac{n}{3} \right\rfloor + 1 \le i \le n, \end{cases}$$

$$f(e_i') = \begin{cases} 2i - 1 & \text{if } 1 \le i \le \left\lfloor \frac{n}{3} \right\rfloor, \\ 2i & \text{if } \left\lfloor \frac{n}{3} \right\rfloor + 1 \le i \le n. \end{cases}$$

It can be easily verified that f is a V-mean labeling of G.

A V-mean labeling of some crowns are shown in Fig.5.

Fig. 5 V -mean labeling of crowns for n = 3, 4, 5

Problem 3.6 Determine new classes of trees and unicyclic graphs which are V-mean graphs.

References

- [1] R. Ponraj, Studies in Labelings of Graphs, Ph.D thesis, Manonmaniam Sundaranar University, India (2004).
- [2] B. D. Acharya and K. A. Germina, Vertex-graceful graphs, Journal of Discrete Mathemat-

- ical Science & Cryptography, Vol. 13(2010), No. 5, pp. 453-463.
- [3] J. A. Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 16 (2009), #DS6.
- [4] D. B. west, *Introduction to Graph Theory*, Prentice-Hall of India Private Limited, New Delhi, 1996.