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Abstract In this paper we find the number of smarandache zero divisors (S-zero divisors) and

smarandache weak zero divisors (S-weak zero divisors) for the loop rings Z2Ln(m) of the loops Ln(m)

over Z2. We obtain the exact number of S-zero divisors and S-weak zero divisors when n = p2 or p3 or

pq where p, q are odd primes. We also prove ZLn(m) has infinitely many S-zero divisors and S-weak

zero divisors, where Z is the ring of integers. For any loop L we give conditions on L so that the loop

ring Z2L has S-zero divisors and S-weak zero divisors.

§0 . Introduction

This paper has four sections. In the first section, we just recall the definitions of S-
zero divisors and S-weak zero divisors and some of the properties of the new class of loops
Ln(m). In section two, we obtain the number of S-zero divisors of the loop rings Z2Ln(m)

and show when n = p2, where p is an odd prime, Z2Ln(m) has p(1 +
p−1∑

r=2, r even

p+1Cr) S-zero

divisors. Also when n = p3, p an odd prime, Z2Ln(m) has p(1 +
p2−1∑

r=2, r even

p2+1Cr) + p2(1 +

p−1∑
r=2,reven

p+1Cr) S-zero divisors. Again when n = pq, where p, q are odd primes, Z2Ln(m) has

p+q+p(
q−1∑

r=2, r even

q+1Cr)+q(
p−1∑

r=2, r even

p+1Cr) S-zero divisors. Further we prove ZLn(m) has

infinitely many S-zero divisors. In section three, we find the number of S-weak zero divisors
for the loop ring Z2Ln(m) and prove that when n = p2, where p is an odd prime, Z2Ln(m)

has 2p(1 +
p−1∑

r=2, r even

p+1Cr) S-weak zero divisors. Also when n = p3, where p is an odd prime,

Z2Ln(m) has 2p(
p2−1∑

r=2,reven

p2+1Cr) + 2p2(
p−1∑

r=2, r even

p+1Cr) S-weak zero divisors. Again when

n = pq, where p, q are odd primes, Z2Ln(m) has 2[p(
q−1∑

r=2, r even

q+1Cr) + q(
p−1∑

r=2, r even

p+1Cr)]

S-weak zero divisors. We prove ZLn(m) has infinitely many S-weak zero divisors. The final
section gives some unsolved problems and some conclusions based on our study.
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§1. Basic Results

Here we just recollect some basic results to make this paper a self contained one.
Definition 1.1[4]. Let R be a ring. An element a ∈ R\{0} is said to be a S-zero divisor

if a.b = 0 for some b 6= 0 in R and there exists x, y ∈ R\{0, a, b} such that

i. a.x = 0 or x.a = 0

ii b.y = 0 or y.b = 0

iii. x.y 6= 0 or y.x 6= 0

Definition 1.2[4]. Let R be a ring. An element a ∈ R\{0} is a S-weak zero divisor if
there exists b ∈ R\{0, a} such that a, b = 0 satisfying the following conditions: There exists
x, y ∈ R\{0, a, b} such that

i. a.x = 0 or x.a = 0

ii. b.y = 0 or y.b = 0

iii. x.y = 0 or y.x = 0

Definition 1.3[3]. Let Ln(m) = {e, 1, 2, 3 · · · , n} be a set where n > 3, n is odd and m

is a positive integer such that (m,n) = 1 and (m− 1, n) = 1 with m < n. Define on Ln(m), a
binary operation ′.′ as follows:

i. e.i = i.e for all i ∈ Ln(m)\{e}

ii. i2. = e for all i ∈ Ln(m)

iii. i.j = t, where t ≡ (mj−(m−1)i)(mod n) for all i, j ∈ Ln(m), i 6= e and j 6= e.

Then Ln(m) is a loop. This loop is always of even order; further for varying m, we get a class
of loops of order n + 1 which we denote by Ln.

Example 1.1[3]. Consider L5(2) = {e, 1, 2, 3, 4, 5}. The composition table for L5(2) is
given below:

. e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e

This loop is non-commutative and non-associative and of order 6.
Theorem 1.1[3]. Let Ln(m) ∈ Ln. For every t|n there exists t subloops of order k + 1,

where k = n/t.
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Theorem 1.2[3]. Let Ln(m) ∈ Ln. If H is a subloop of Ln(m) of order t + 1, then t|n.

Remark 1.2[3]. Lagrange’s theorem is not satisfied by all subloops of the loop Ln(m),i.e
there always exists a subloop H of Ln(m) which does not satisfy the Lagrange’s theorem, i.e
o(H) † o(Ln(m)).

§2. Definition of the number of S-zero divisors in Z2Ln(m)

and ZLn(m)

In this section, we give the number of S-zero divisors in Z2Ln(m). We prove ZLn(m)
(where n = p2 or pq, p and q are odd primes), has infinitely many S-zero divisors. Further we
show any loop L of odd (or even) order if it has a proper subloop of even (or odd) order then
the loop ring Z2Ln(m) over the field Z2 has S-zero divisors. We first show if L is a loop of odd
order and L has a proper subloop of even order, then Z2Ln(m) has S-zero divisors.

Theorem 2.1. Let L be a finite loop of odd order. Z2 = {0, 1}, the prime field of
characteristic 2. Suppose H is a subloop of L of even order, then Z2L has S-zero divisors.

Proof. Let |L| = n; where n is odd. Z2L be the loop ring of L over Z2. H be the subloop

of L of order m, where m is even. Let X =
n∑

i=1

gi and Y =
m∑

i=1

hi, then

X.Y = 0.

Now
(1 + gt)X = 0, gt ∈ l\H.

also
(1 + hi + hj + hk)Y = 0, hi, hj , hk ∈ H.

so that
(1 + gt)(1 + hi + hj + hk) 6= 0.

Hence the claim.
Corollary 2.1. If L is a finite loop of even order n and H is a subloop of odd order m,

then the loop ring Z2L has S-zero divisors.
It is important here to mention that Z2L may have other types of S-zero divisors. This

theorem only gives one of the basic conditions for Z2L to have S-zero divisors.
Example 2.1. Let Z2L25(m) be the loop ring of the loop L25(m) over Z2, where

(m, 25) = 1 and (m− 1, 25) = 1. As 5|25, so L25(m) has 5 proper subloops each of order 6. Let
H be one of the proper subloops of L25(m).

Now take

X =
26∑

i=1

gi, Y =
6∑

i=1

hi, gi ∈ L25(m), hi ∈ H,

then
(1 + gi)X = 0, gi ∈ L25(m)\H
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(1 + hi)Y = 0, hi ∈ H

but
(1 + gi)(1 + hi) 6= 0.

so X and Y are S-zero divisors in Z2L25(m).
Theorem 2.2. Let Ln(m) be a loop of order n+1 (n an odd number,n > 3) with n = p2,

p an odd prime. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m) has exactly

p

(
1 +

p−1∑
r=2, r even

p+1Cr

)

S-zero divisors.
Proof. Given Ln(m) is a loop of order n+1, where n = p2 (p an odd prime). Let Z2Ln(m)

be the loop ring of the loop Ln(m) over Z2. Now clearly the loop Ln(m) has exactly p subloops
of order p + 1. The number of S-zero divisors in Z2Ln(m) for n = p2 can be enumerated in the
following way: Let

X =
n+1∑

i=1

gi and Y =
p+1∑

i=1

hi

where gi ∈ Ln(m) and hi ∈ Hj . For this

X.Y = 0

choose
a = (1 + g), g ∈ Ln(m)\Hj

b = (hi + hj), hi, hj ∈ Hj

then
a.X = 0 and b.Y = 0

but
a.b 6= 0.

So X and Y are S-zero divisors. There are p such S-zero divisors, as we have p subloops Hj

(j = 1, 2, · · · , p) of Ln(m).
Next consider, S-zero divisors of the form

(h1 + h2)
n+1∑

i=1

gi = 0, where h1, h2 ∈ Hj , gi ∈ Ln(m)

put

X = (h1 + h2), Y =
n+1∑

i=1

gi

we have p+1C2 such S-zero divisors. This is true for each of the subloops. Hence there exists
p+1C2 × p such S-zero divisors. Taking four elements h1, h2, h3, h4 from Hj at a time, we get

(h1 + h2 + h3 + h4)
n+1∑

i=1

gi = 0
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so we get p+1C4 × p such S-zero divisors. Continue in this way, we get

(h1 + h2 + · · ·+ hp−1)
n+1∑

i=1

gi = 0, where h1, h2, · · · , hp−1 ∈ Hj

So we get p+1Cp−1 × p such S-zero divisors. Adding all these S-zero divisors, we get

p

(
1 +

p−1∑
r=2, r even

p+1Cr

)

number of S-zero divisors in the loop ring Z2Ln(m). Hence the claim.
Example 2.2. Let Z2L49(m) be the loop ring of the loop L49(m) over Z2, where (m, 49) =

1 and (m− 1, 49) = 1. Here p = 7, so from Theorem 2.2, Z2L49(m) has

7

(
1 +

6∑
r=2, r even

7+1Cr

)

S-zero divisors i.e 7(1 +
6∑

r=2, r even

8Cr) = 889 S-zero divisors.

Theorem 2.3. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = p3, p an odd prime. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m) has
exactly

p


1 +

p2−1∑
r=2, r even

p2+1Cr


 + p2

(
1 +

p−1∑
r=2, r even

p+1Cr

)

S-zero divisors.
Proof. We enumerate all the S-zero divisors of Z2Ln(m) in the following way:
Case I: As p|p3, Ln(m) has p proper subloops Hj each of order p2 + 1. In this case I, we

have p2 − 1 types of S-zero divisors. We just index them by type I1, type I2, · · · , type Ip2−1.
Type I1: Here

n+1∑

i=1

gi

p2+1∑

i=1

hi = 0, gi ∈ Ln(m), hi ∈ Hj , (j = 1, 2, · · · , p)

So we will get p S-zero divisors of this type.
Type I2:

(h1 + h2)
n+1∑

i=1

gi = 0, h1, h2 ∈ Hj(j = 1, 2, · · · , p).

As in the Theorem 2.2, we will get p2+1C2 × p S-zero divisors of this type.
Type I3:

(h1 + h2 + h3 + h4)
n+1∑

i=1

gi = 0, h1, h2, h3, h4 ∈ Hj(j = 1, 2, · · · , p).

We will get p2+1C4 × p S-zero divisors of this type.
Continue this way,
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Type Ip2−1:

(h1 + h2 + · · ·+ hp2−1)
n+1∑

i=1

gi = 0, hi ∈ Hj

We will get p2+1Cp2−1 × p S-zero divisors of this type. Hence adding all this types of S-zero
divisors we will get

p


1 +

p2−1∑
r=2, r even

p2+1Cr




S-zero divisors for case I.
Case II: Again p2|p3, so there are p2 subloops Hj each of order p + 1. Now we can

enumerate all the S-zero divisors in this case exactly as in case I above. So there are

p2(1 +
p−1∑

r=2, r even

p+1Cr)

S-zero divisors. Hence the total number of S-zero divisors in Z2Ln(m) is

p


1 +

p2−1∑
r=2, r even

p2+1Cr


 + p2

(
1 +

p−1∑
r=2, r even

p+1Cr

)

Hence the claim.
Example 2.3. Let Z2L27(m) be the loop ring of the loop L27(m) over Z2, where

(m, 27) = 1 and (m− 1, 27) = 1. Here p = 3, so from Theorem 2.3, Z2L27(m) has

3(1 +
8∑

r=2, r even

32+1Cr) + 32(1 +
2∑

r=2, r even

4Cr)

S-zero divisors i.e 3

(
1 +

8∑
r=2, r even

10Cr

)
+ 9

(
1 +

2∑
r=2, r even

4Cr

)
= 1533 S-zero divisors.

Theorem 2.4. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = pq, where p, q are odd primes. Z2 be the prime field of characteristic 2. The loop ring
Z2Ln(m) has exactly

p + q + p

(
1 +

q−1∑
r=2, r even

q+1Cr

)
+ q

(
1 +

p−1∑
r=2, r even

p+1Cr

)

S-zero divisors.
Proof. We will enumerate all the S-zero divisors in the following way:
Case I: As p|pq, Ln(m) has p subloops Hj each of order q + 1. Proceeding exactly in the

same way as in the Theorem 2.3, we will get p + p

(
1 +

q−1∑
r=2, r even

q+1Cr

)
S-zero divisors for

case I.
Case II: Again q|pq, so Ln(m) has q subloops Hj each of order p + 1. Now as above we

will get q + q

(
1 +

p−1∑
r=2, r even

p+1Cr

)
S-zero divisors for case II. Hence adding all the S-zero
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divisors in case I and case II, we get

p + q + p

(
1 +

q−1∑
r=2, r even

q+1Cr

)
+ q

(
1 +

p−1∑
r=2, r even

p+1Cr

)

S-zero divisors in Z2Ln(m).
Hence the claim.
Now we prove for the loop ring ZLn(m) when n = p2 or p3 or pq, where p, q are odd

primes, ZLn(m) has infinitely many S-zero divisors.
Theorem 2.5. Let ZLn(m) be the loop ring of the loop Ln(m) over Z, where n = p2 or

p3 or pq (p, q are odd primes), then ZLn(m) has infinitely many S-zero divisors.
Proof. Let Ln(m) be a loop ring such that n = p2. Ln(M) has p subloops (say Hj) each

of order p + 1.
Now the loop ring ZLn(m) has the following types of S-zero divisors:

X = a− bh1 + bh2 − ah3 and Y =
n+1∑

i=1

gi

where a, b ∈ Z and hi ∈ Hi, gi ∈ Ln(m) such that

(a− bh1 + bh2 − ah3)
n+1∑

i=1

gi = 0

Again
(1− gk)Y = 0, gk ∈ Ln(m)\Hj

also
(a− bh1 + bh2 − ah3)

∑
hi = 0, hi ∈ Hj

clearly

(1− gk)


 ∑

hi∈Hj

hi


 6= 0.

So X, Y are S-zero divisors in ZLn(m). Now we see there are infinitely many S-zero divisors
of this type for a and b can take infinite number of values in Z. For n = p2 or p3 or pq we can
prove the results in a similar way. Hence the claim.

§3. Determination of the number of S-weak zero divisors

in Z2Ln(m) and ZLn(m)

In this section, we give the number of S-weak zero divisors in the loop ring Z2Ln(m) when
n is of the form p2, p3 or pq where p and q are odd primes. Before that we prove the existence
of S-weak zero divisors in the loop ring Z2L whenever L has a proper subloop.

Theorem 3.1. Let n be a finite loop of odd order. Suppose H is a subloop of L of even
order, then Z2L has S-weak zero divisors.
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Proof. Let |L| = n; n odd. Z2L be the loop ring. H be the subloop of L of order m,

where m is even. Let X =
n∑

i=1

gi and Y = 1 + ht, gi ∈ L, ht ∈ H, then

X.Y = 0

Now

Y.
m∑

i=1

hi = 0, hi ∈ H

also
X(1 + gt) = 0, gt(6= ht) ∈ H

so that

(1 + gt)
m∑

i=1

hi = 0.

Hence the claim.
Example 3.1. Let Z2L25(m) be the loop ring of the loop L25(m) over Z2, where

(m, 25) = 1 and (m− 1, 25) = 1. As 5|25, so L25(m) has 5 proper subloops each of order 6.
Take

X =
26∑

i=1

gi, Y = 1 + ht, gi ∈ L25(m), ht ∈ H

then
X.Y = 0

again
X(1 + gt) = 0, gt(6= ht) ∈ H

Y
6∑

i=1

hi = 0, hi ∈ H

also

(1 + gt)
6∑

i=1

hi = 0,

So X and Y are S-weak zero divisors in Z2L25(m).
Example 3.2. Let Z2L21(m) be the loop ring of the loop L21(m) over Z2, where where

(m, 21) = 1 and (m− 1, 21) = 1. As 3|21, so L21(m) has 3 proper subloops each of order 8.
Take

X =
8∑

i=1

hi, Y = 1 + ht, hi, ht ∈ H

then
X.Y = 0

again
X(1 + gt) = 0, gt(6= ht) ∈ H

Y
22∑

i=1

gi = 0, gi ∈ L21(m)
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also

(1 + gt)
22∑

i=1

gi = 0,

So X and Y are S-weak zero divisors in Z2L21(m).

Theorem 3.2. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = p2, p an odd prime. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m) has
exactly

2p

(
p−1∑

r=2, r even

p+1Cr

)

S-weak zero divisors.
Proof. Clearly the loop Ln(m) has p subloops Hj each of order p + 1. As in case of

Theorem 2.3, we index the p − 1 types of S-weak zero divisors by I1, I2, · · · , Ip−1. Now the
number of S-weak zero divisors in Z2Ln(m) for n = p2 can be enumerated in the following way:

Type I1. Let

X = h1 + h2, Y =
n+1∑

i=1

gi

where h1, h2 ∈ Hj and gi ∈ Ln(m) then

XY = 0

take

a =
p+1∑

i=1

hi, and b = h3 + h4 where hi ∈ Hj , (j = 1, 2, · · · , p)

then
aX = 0, bY = 0

also
ab = 0

So for each proper subloop we will get p+1C2 S-weak zero divisors and as there are p proper
subloops we will get p+1C2 × p such S-weak zero divisors.

Type I2. Again let

X = h1 + h2, Y =
p+1∑

i=1

hi, hi ∈ Hj

then
XY = 0

take

a =
n+1∑

i=1

gi, gi ∈ Ln(m), b = h1 + h2, h1, h2 ∈ Hj ,

then
aX = 0, bY = 0
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also
ab = 0

Here also we will get p+1C2 × p such S-weak zero divisors of this type.
Type I3.

(h1 + h2 + h3 + h4)
n+1∑

i=1

gi, gi ∈ Ln(m), hi ∈ Hj .

As above we can say there are p+1C4 × p such S-weak zero divisors.
Type I4.

(h1 + h2 + h3 + h4)
p+1∑

i=1

hi, hi ∈ Hj .

There are p+1C4 × p such S-weak zero divisors.
Continue this way,
Type Ip−2.

(h1 + h2 + · · ·+ hp−1)
n+1∑

i=1

gi, gi ∈ Ln(m), hi ∈ Hj .

there are p+1Cp−1 × p such S-weak zero divisors.
Type Ip−1.

(h1 + h2 + · · ·+ hp−1)
n∑

i=1

hi, hi ∈ Hj .

Again there are p+1Cp−1 × p such S-weak zero divisors of this type. Adding all these S-weak
zero divisors we will get the total number of S-weak zero divisors in Z2Ln(m) as

2p

(
p−1∑

r=2, r even

p+1Cr

)

Hence the claim.
Theorem 3.3. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with

n = p3, p an odd prime. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m) has
exactly

2p




p2−1∑
r=2, r even

p2+1Cr


 + 2p2

(
p−1∑

r=2, r even

p+1Cr

)

S-weak zero divisors.
Proof. We enumerate all the S-weak zero divisors of Z2Ln(m) in the following way:
Case I: As p|p3, Ln(m) has p proper subloops Hj each of order p2 + 1. Now as in the

Theorem 3.2.
Type I1:

(h1 + h2)
n+1∑

i=1

gi = 0, gi ∈ Ln(m), hi ∈ Hj .

So we will get p2+1C2 × p S-weak zero divisors of type I1.
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Type I2:

(h1 + h2)
p2+1∑

i=1

hi = 0, hi ∈ Hj .

So we will get p2+1C2 × p S-weak zero divisors of type I2.
Continue in this way
Type Ip2−2:

(h1 + h2 + · · ·+ hp2−1)
n+1∑

i=1

gi = 0,

So we will get p2+1Cp2−1 × p S-weak zero divisors of this type.
Type Ip2−1:

(h1 + h2 + · · ·+ hp2−1)
p2+1∑

i=1

hi = 0,

So we will get p2+1Cp2−1 × p S-weak zero divisors of type Ip2−1.
Adding all this S-weak zero divisors, we will get the total number of S-weak zero divisors

(in case I) in Z2Ln(m) as 2p




p2−1∑
r=2, r even

p2+1Cr


.

Case II: Again p2|p3, so there are p2 proper subloops Hj each of order p + 1. Now we can
enumerate all the S-weak zero divisors in this case exactly as in case I above. So there are

2p2

(
p−1∑

r=2, r even

p+1Cr

)

S-weak zero divisors in case II.
Hence the total number of S-weak zero divisors in Z2Ln(m) is

2p




p2−1∑
r=2, r even

p2+1Cr


 + 2p2

(
p−1∑

r=2, r even

p+1Cr

)

Hence the claim.
Theorem 3.4. Let Ln(m) be a loop of order n + 1 (n an odd number, n > 3) with

n = pq, p, q are odd primes. Z2 be the prime field of characteristic 2. The loop ring Z2Ln(m)
has exactly

2

[
p

(
q−1∑

r=2, r even

q+1Cr

)
+ q

(
p−1∑

r=2, r even

p+1Cr

)]

S-weak zero divisors.
Proof. We will enumerate all the S-weak zero divisors in the following way:
Case I: As p|pq, Ln(m) has p proper subloops Hj each of order q + 1. Proceeding exactly

same way as in Theorem 3.3, we will get

2p

(
q−1∑

r=2, r even

q+1Cr

)
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S-weak zero divisors in case I.

Case II: Again as q|pq, Ln(m) has q proper subloops Hj each of order p + 1. So as above
we will get

2q

(
p−1∑

r=2, r even

p+1Cr

)

S-weak zero divisors in case II.

Hence adding all the S-weak zero divisors in case I and case II, we get

2

[
p

(
q−1∑

r=2, r even

q+1Cr

)
+ q

(
p−1∑

r=2, r4 even

p+1Cr

)]

S-weak zero divisors in Z2Ln(m).

Hence the claim.

Now we prove for the loop ring ZLn(m) where n = p2 or p3 or pq, (p, q are odd primes),
ZLn(m) has infinitely many S-weak zero divisors.

Theorem 3.5. Let ZLn(m) be the loop ring of the loop Ln(m) over Z, where n = p2 or
p3 or pq (p, q are odd primes), then ZLn(m) has infinitely many S-weak zero divisors.

Proof. Let Ln(m) be a loop ring such that n = p2. Ln(M) has p subloops (say Hj) each
of order p + 1. Now the loop ring ZLn(m) has the following types of S-weak zero divisors:

X = a− bh1 + bh2 − ah3 and Y =
n+1∑

i=1

gi

where a, b ∈ Z, gi ∈ Ln(m) and h1, h2, h3 ∈ Hj are such that

XY = 0.

Again

X

p+1∑

i=1

hi = 0, hi ∈ Hj

also

(1− gt)Y = 0, gt(6= ht) ∈ Hj

clearly

(1− gt)

(
p+1∑

i=1

hi

)
= 0.

So X, Y are S-weak zero divisors in ZLn(m). Now we see there are infinitely many S-weak zero
divisors of this type for a and b can take infinite number of values in Z.

For n = p2 or p3 or pq we can prove the results in a similar way.

Hence the claim.
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§4. Conclusions:

In this paper we find the exact number of S-zero divisors and S-weak zero divisors for the
loop rings Z2Ln(m) in case of the special type of loops Ln(m) ∈ Ln over Z2, when n = p2 or
p3 or pq (p, q are odd primes). We also prove for the loop ring ZLn(m) has infinite number of
S-zero divisors and S-weak zero divisors. We obtain conditions for any loop L to have S-zero
divisors and S-weak zero divisors. We suggest it would be possible to enumerate in the similar
way the number of S-zero divisors and S-weak zero divisors for the loop ring Z2Ln(m) when
n = ps, s > 3; p a prime or when p = p1p2 · · · pt where p1, p2, · · · , pt are odd primes. However
we find it difficult when we take Zp instead of Z2, where p can be odd prime or a composite
number such that (p, n+1 = 1) or (p, n+1 = p) and n is of the form n = pt1

1 pt2
2 · · · ptr

r , ti > 1, n

is odd and p1, p2, · · · pr are odd primes.
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