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Abstract In this paper we find the number of smarandache zero divisors (S-zero divisors) and
smarandache weak zero divisors (S-weak zero divisors) for the loop rings Z L, (m) of the loops Ly (m)
over Z>. We obtain the exact number of S-zero divisors and S-weak zero divisors when n = p? or p® or
pq where p,q are odd primes. We also prove ZL,(m) has infinitely many S-zero divisors and S-weak

zero divisors, where Z is the ring of integers. For any loop L we give conditions on L so that the loop

ring Z> L has S-zero divisors and S-weak zero divisors.

80 . Introduction

This paper has four sections. In the first section, we just recall the definitions of S-
zero divisors and S-weak zero divisors and some of the properties of the new class of loops
L, (m). In section two, we obtain the number of S-zero divisors of the loop rings ZsL,(m)

p—1
and show when n = p?, where p is an odd prime, Z5 L, (m) has p(1 + Z PHLC,) S-zero

r=2, r even
p°=1
2

divisors. Also when n = p*, p an odd prime, Z5L,,(m) has p(1 + Z PO 4+ p? (1 +

r=2, r even

p—1

Z PTLC) S-zero divisors. Again when n = pg, where p, ¢ are odd primes, Z»L,,(m) has

r=2,reven

qg—1 p—1
p+q+p( Z O +q( Z PT1C) S-zero divisors. Further we prove Z L, (m) has
r=2, r even r=2, r even

infinitely many S-zero divisors. In section three, we find the number of S-weak zero divisors

for the loop ring ZsL,(m) and prove that when n = p?, where p is an odd prime, Z5L, (m)
p—1

has 2p(1 + Z PHLC,) S-weak zero divisors. Also when n = p3, where p is an odd prime,

r=2, r even

p271 p—1
Zs L, (m) has 2p( Z pQHCT) + 2p%( Z PHLCL) S-weak zero divisors. Again when
r=2,reven r=2, r even
q—1 p—1
n = pq, where p, q are odd primes, Z5 L, (m) has 2[p( Z 1) + ¢( Z PHLC)]
r=2, r even r=2, r even

S-weak zero divisors. We prove ZL,(m) has infinitely many S-weak zero divisors. The final

section gives some unsolved problems and some conclusions based on our study.
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§1. Basic Results

Here we just recollect some basic results to make this paper a self contained one.
Definition 1.1[4]. Let R be aring. An element a € R\{0} is said to be a S-zero divisor
if a.b =0 for some b # 0 in R and there exists ,y € R\{0, a,b} such that

. ax=0 or za=0
w by=0 or yb=0
ti. z.y#0 or yx#0

Definition 1.2[4]. Let R be a ring. An element a € R\{0} is a S-weak zero divisor if
there exists b € R\{0,a} such that a,b = 0 satisfying the following conditions: There exists
x,y € R\{0,a,b} such that

i. ax=0 or za=0
w. by=0 or yb=0
1. xzy=0 or yax=0

Definition 1.3[3]. Let L,(m) ={e,1,2,3--- ,n} be a set where n > 3, n is odd and m
is a positive integer such that (m,n) =1 and (m — 1,n) = 1 with m < n. Define on L,(m), a

binary operation ’." as follows:

i. ei=4d.e for all i€ Ly(m)\{e}

ii. 2. =e for all i€ L,(m)

tit. i.j=t, where t=(mj—(m—1)i)(modn) for all i,j€L,(m), i#e and j#e.
Then L, (m) is a loop. This loop is always of even order; further for varying m, we get a class
of loops of order n + 1 which we denote by L,,.

Example 1.1[3]. Consider L;(2) = {e,1,2,3,4,5}. The composition table for Ls(2) is

given below:

e|1]2]3|4]|5
ele|12|3|4]5
1]1je|3|5]2|4
212|5]e4d4|1]3
313(4|1|e|b5]|2
41413512 |e|l
51524 |11]3]e

This loop is non-commutative and non-associative and of order 6.
Theorem 1.1[3]. Let L,(m) € L,. For every t|n there exists ¢t subloops of order k + 1,
where k = n/t.
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Theorem 1.2[3]. Let L,(m) € L,,. If H is a subloop of L, (m) of order ¢ + 1, then ¢|n.

Remark 1.2[3]. Lagrange’s theorem is not satisfied by all subloops of the loop L, (m),i.e
there always exists a subloop H of L,(m) which does not satisfy the Lagrange’s theorem, i.e

o(H) 1 o(Ln(m)).

§2. Definition of the number of S-zero divisors in Z;L,(m)
and ZL,(m)

In this section, we give the number of S-zero divisors in Z;L,(m). We prove ZL,(m)
(where n = p? or pq, p and ¢ are odd primes), has infinitely many S-zero divisors. Further we
show any loop L of odd (or even) order if it has a proper subloop of even (or odd) order then
the loop ring Zy L, (m) over the field Z5 has S-zero divisors. We first show if L is a loop of odd
order and L has a proper subloop of even order, then Z5L,,(m) has S-zero divisors.

Theorem 2.1. Let L be a finite loop of odd order. Zy = {0,1}, the prime field of
characteristic 2. Suppose H is a subloop of L of even order, then ZsL has S-zero divisors.

Proof. Let |L| = n; where n is odd. Z3L be the loop ring of L over Z;. H be the subloop

of L of order m, where m is even. Let X = Zgi and Y = Z h;, then
i=1

i=1

XY =0.
Now
(1 + gt)X =0, g€ l\H
also
(1+hi—|—hj+hk)Y=O, hi,hj, h, € H.
so that

(14 ge)(1+ hi + hj + hg) # 0.

Hence the claim.

Corollary 2.1. If L is a finite loop of even order n and H is a subloop of odd order m,
then the loop ring Z5L has S-zero divisors.

It is important here to mention that Z3L may have other types of S-zero divisors. This
theorem only gives one of the basic conditions for Z;L to have S-zero divisors.

Example 2.1. Let ZsLas(m) be the loop ring of the loop Los(m) over Zs, where
(m,25) =1 and (m—1,25) = 1. As 5|25, so Las(m) has 5 proper subloops each of order 6. Let
H be one of the proper subloops of Las(m).

Now take
6

26
X=> g Y=Y hi, gi€La(m), hi€H,
1=1

=1
then
(1+9)X =0, g€ Los(m)\H
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(1+h)Y =0, h;eH

but
(1+g:)(1+h;) #0.

so X and Y are S-zero divisors in Z3Los(m).
Theorem 2.2. Let L, (m) be a loop of order n+1 (n an odd number,n > 3) with n = p?,
p an odd prime. Z5 be the prime field of characteristic 2. The loop ring ZsL,,(m) has exactly

p—1
P (1 + 0y “CT)
r=2, r even

S-zero divisors.
Proof. Given L, (m) is aloop of order n+1, where n = p? (p an odd prime). Let ZoL,,(m)
be the loop ring of the loop L, (m) over Zs. Now clearly the loop L, (m) has exactly p subloops
of order p+ 1. The number of S-zero divisors in Zs L, (m) for n = p? can be enumerated in the

following way: Let
n+1 p+1

X=) g and Y=Y h
i=1 i=1

where g; € L,,(m) and h; € H;. For this

XY =0
choose
a=(l+g), g€ Ln(m)\H,
b= (h; +hj), hih;e€H;
then
a.X=0 and bY =0
but

a.b#0.

So X and Y are S-zero divisors. There are p such S-zero divisors, as we have p subloops H;
(.] = 1a 27 e ap) of Ln(m)'
Next consider, S-zero divisors of the form
n+1

(h1+h2)zgl :0, where hl,hz S Hj, g; € Ln(m)
=1

put
n+1

X=(hi+hy), Y= g
1=1

we have PT1C, such S-zero divisors. This is true for each of the subloops. Hence there exists

PT1C, x p such S-zero divisors. Taking four elements hq, ha, hs, hs from H; at a time, we get

n+1
(h1+h2+h3+h4)2gi:0

=1
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so we get PT1C, x p such S-zero divisors. Continue in this way, we get

n+1
(h1+h2+"'+hp—1)zgi:07 where hl,hg,"‘ ,hp_leHj
i=1

So we get PT1C),_1 x p such S-zero divisors. Adding all these S-zero divisors, we get

p—1

; <1 S pﬂc,«)
r=2, r even

number of S-zero divisors in the loop ring Z3 L, (m). Hence the claim.

Example 2.2. Let Z5Ls9(m) be the loop ring of the loop Lsg(m) over Zs, where (m,49) =
1 and (m —1,49) = 1. Here p = 7, so from Theorem 2.2, Z3L49(m) has

6
7<1+ > 7“@)

r=2, r even

6
S-zero divisors i.e 7(1 + Z 8C,) = 889 S-zero divisors.

r=2, r even

Theorem 2.3. Let L,(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = p3, p an odd prime. Z5 be the prime field of characteristic 2. The loop ring Z5L,,(m) has

exactly
p°=1

p—1
pl1+ Y. PP +p2<1+ > p“@)

r=2, r even r=2, r even
S-zero divisors.
Proof. We enumerate all the S-zero divisors of Z3L,,(m) in the following way:
Case I: As p|p3, L,,(m) has p proper subloops Hj each of order p? 4+ 1. In this case I, we

have p? — 1 types of S-zero divisors. We just index them by type I, type Io, - - -, type L.
Type I;: Here
n+1  pi+1
Zglzh1207 gzeLn(m)7 hzeH]a(J:1527ap)
i=1 =1
So we will get p S-zero divisors of this type.
Type I5:
n+1
(h1+h2)zgi:0; h17h2€Hj(j:1a2,7p)
i=1

As in the Theorem 2.2, we will get p2+102 X p S-zero divisors of this type.
Type I3:
n+1
(hi+ha+hs+ha) Y gi=0, hyhyhg hy€Hj(j=12-,p).
i=1
We will get p2+104 X p S-zero divisors of this type.
Continue this way,
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Type Ip2_q:
n+1
(h1+h2+"'+hp2,1)zgi:0, hiEHj
i=1
We will get pQHC’pz,l X p S-zero divisors of this type. Hence adding all this types of S-zero

divisors we will get
2
p°—1

pll+ > e,

r=2, r even

S-zero divisors for case I.
Case II:  Again p?|p3, so there are p? subloops H; each of order p + 1. Now we can

enumerate all the S-zero divisors in this case exactly as in case I above. So there are

p—1

p2(1 + Z p+1CT)

r=2, r even
S-zero divisors. Hence the total number of S-zero divisors in Zs L, (m) is

p>-1

p—1
pl1+ Y Tt +p2<1+ > P+1cr>

r=2, r even r=2, r even

Hence the claim.
Example 2.3. Let Z3Loz(m) be the loop ring of the loop Laor(m) over Zs, where
(m,27) =1 and (m — 1,27) = 1. Here p = 3, so from Theorem 2.3, Z5Lo7(m) has

8 2
30+ Y. FHloy+sia+ Y oy
r=2, r even r=2, r even

8 2
S-zero divisors i.e 3 (1 + Z 1OC7~> +9 (1 + Z 4C’T> = 1533 S-zero divisors.

r=2, r even r=2, r even

Theorem 2.4. Let L,(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = pq, where p,q are odd primes. Zs be the prime field of characteristic 2. The loop ring
Z5 L, (m) has exactly

q—1 p—1
p+q+p<1+ > q+1cr> +q<1+ > P+10r>
r=2, r even r=2, r even
S-zero divisors.
Proof. We will enumerate all the S-zero divisors in the following way:

Case I: As plpg, L,(m) has p subloops H; each of order ¢ + 1. Proceeding exactly in the
-1
same way as in the Theorem 2.3, we will get p + p (1 + qz ‘I'HCT> S-zero divisors for
case L r=2, r even
Case II: Again ¢|pq, so L, (m) has ¢ subloops H; each of order p + 1. Now as above we
-1
will get ¢ + ¢ (1 + ”2: p+1Cr> S-zero divisors for case II. Hence adding all the S-zero

r=2, r even
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divisors in case I and case II, we get

q—1 p—1
pta+p <1+ > q“@) +q <1+ > P“Cr>
r=2, r even r=2, r even

S-zero divisors in Zs L, (m).

Hence the claim.

Now we prove for the loop ring ZL,(m) when n = p? or p* or pg, where p,q are odd
primes, ZL,(m) has infinitely many S-zero divisors.

Theorem 2.5. Let ZL,(m) be the loop ring of the loop L, (m) over Z, where n = p? or
p3 or pq (p,q are odd primes), then ZL,,(m) has infinitely many S-zero divisors.

Proof. Let L,(m) be a loop ring such that n = p2. L, (M) has p subloops (say H;) each
of order p + 1.

Now the loop ring ZL,,(m) has the following types of S-zero divisors:

n+1
X = a — bhy + bhy — ahs and Y:Zgi

i=1
where a,b € Z and h; € H;, g; € L,(m) such that

n+1

(a — bhy + bhy — ahz) Y g; =0
i=1

Again
(1—gx)Y =0, g€ Ln(m)\H;
also
(a — bhy + bhy — ahg) > h; =0, h; € H,
clearly

(I—g) | D hi] #0.
hiEHj
So X,Y are S-zero divisors in ZL,(m). Now we see there are infinitely many S-zero divisors
of this type for a and b can take infinite number of values in Z. For n = p? or p? or pq we can

prove the results in a similar way. Hence the claim.

§3. Determination of the number of S-weak zero divisors
in ZoL,(m) and ZL,(m)

In this section, we give the number of S-weak zero divisors in the loop ring Z3L,,(m) when
n is of the form p?, p? or pg where p and ¢ are odd primes. Before that we prove the existence
of S-weak zero divisors in the loop ring Z> L whenever L has a proper subloop.

Theorem 3.1. Let n be a finite loop of odd order. Suppose H is a subloop of L of even

order, then Z5L has S-weak zero divisors.
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Proof. Let |L| = n; n odd. Z>L be the loop ring. H be the subloop of L of order m,

where m is even. Let X = Zgi and Y =1+ h¢,g; € L,hy € H, then

i=1

XY =0
Now ”
Y.Y hi=0, hi€H
i=1
also
X(1+g)=0, g(#h)ecH
so that

(1—|—gt)2hi =0.
i=1

Hence the claim.
Example 3.1. Let Z3Las(m) be the loop ring of the loop Los(m) over Z,, where
(m,25) =1 and (m — 1,25) = 1. As 5|25, so Las(m) has 5 proper subloops each of order 6.

Take
26
X:Z%, Y=1+h, g€ Lass(m), hheH
i=1
then
XY =0
again
X(1+g9)=0, g(#h)cH
6
Yy hi=0, hieH
i=1
also

6
1=1

So X and Y are S-weak zero divisors in ZsLas(m).
Example 3.2. Let ZyLo1(m) be the loop ring of the loop Lot (m) over Zs, where where
(m,21) =1 and (m —1,21) = 1. As 3|21, so La;(m) has 3 proper subloops each of order 8.

Take
8

X=) hi, Y=1+h, hiheH

i=1
then
XY =0

again
X(149:)=0, g(#h)cH

22
Y'Y gi=0, g€ Ly(m)

=1
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also

22
(149> g =0,
=1

So X and Y are S-weak zero divisors in Zs Loy (m).

Theorem 3.2. Let L,(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = p?, p an odd prime. Zy be the prime field of characteristic 2. The loop ring ZoL,,(m) has
exactly

p—1
2p ( Z p+1 C’r)
r=2, v even

S-weak zero divisors.

Proof. Clearly the loop L, (m) has p subloops H; each of order p 4+ 1. As in case of
Theorem 2.3, we index the p — 1 types of S-weak zero divisors by Iy, Iz, -+ ,Ip—1. Now the
number of S-weak zero divisors in Z3 L, (m) for n = p? can be enumerated in the following way:

Type I7. Let
n+1

X = hi + hg, Y:Zgi

=1

where hy,hy € Hj and g; € L,(m) then

XY =0

take

p+1

a:Zhi, and b=hs+hys where h;eH;, (j=1,2,---,p)

i=1

then
aX =0, bY =0

also

ab=0

So for each proper subloop we will get P1Cy S-weak zero divisors and as there are p proper
subloops we will get P71y x p such S-weak zero divisors.

Type I5. Again let

p+1
X = hy + ho, Y:Zhi, h; € H;
i=1
then
XY =0
take
n+1
a=Y g gi€Ln(m), b=hy+hy, hihy€H,
i=1
then

aX =0, Y =0
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also
ab=0

Here also we will get P71Cy x p such S-weak zero divisors of this type.

Type Is. X
n—+

(h1+h2+h3+h4)zgi, g; € L,(m), h; € Hj.
i=1
As above we can say there are P*'Cy x p such S-weak zero divisors.

Type 14. .
P+

(h1+h2+h3+h4)2hi, hiEHj.
i=1
There are PY1Cy x p such S-weak zero divisors.
Continue this way,
Type I,_o.

n+1
(h1+h2+"'+hp71)zgi, gieLn(m), hiEHj.
i=1

there are P*1C,_; x p such S-weak zero divisors.

Type I,_;.

(hi+ho+ -+ hp1) > hi, hi € Hj.
i=1
Again there are PT1C,_; x p such S-weak zero divisors of this type. Adding all these S-weak

zero divisors we will get the total number of S-weak zero divisors in Zy L, (m) as

p—1
w( 5 )
r=2, r even
Hence the claim.
Theorem 3.3. Let L,(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = p3, p an odd prime. Zy be the prime field of characteristic 2. The loop ring ZoL,,(m) has

exactly
p>—1

p—1
| Y o |+ ( 3 P+10r>
r=2, 7 even r=2, r even
S-weak zero divisors.
Proof. We enumerate all the S-weak zero divisors of ZyL,(m) in the following way:
Case I: As p|p®, L,(m) has p proper subloops H; each of order p? + 1. Now as in the
Theorem 3.2.

Type I;: X
n+

(h1+h2)zgi:07 gi € Lp(m), h; € Hj.
i=1

So we will get PZ'HC’Q X p S-weak zero divisors of type I7.
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Type I5:
pP+1
(h1+h2)2h1’:0, hiEHj.
i=1
So we will get p2+1C’2 X p S-weak zero divisors of type Is.
Continue in this way

Type Ip2_s:
n+1

(hl +h2+"'+hp2_1)zgi =0,
i=1
So we will get pz‘HC’pz,l X p S-weak zero divisors of this type.

Type Ip2_q:

(hi+ho+-+hype 1) Y hi=0,
i=1
So we will get pz‘HC’pz,l X p S-weak zero divisors of type Ip2_;.

Adding all this S-weak zero divisors, we will get the total number of S-weak zero divisors
p—1
(in case I) in ZyL,(m) as 2p Z p2+1CT
r=2, r even

Case II: Again p?|p?, so there are p* proper subloops H; each of order p+ 1. Now we can

enumerate all the S-weak zero divisors in this case exactly as in case I above. So there are
p—1
(L )
r=2, r even
S-weak zero divisors in case II.

Hence the total number of S-weak zero divisors in ZyL,,(m) is

p>—1

—1
2p Z p2+1CT 4 2p? ( pz p+1cr>

r=2, r even r=2, r even

Hence the claim.
Theorem 3.4. Let L,(m) be a loop of order n + 1 (n an odd number, n > 3) with
n = pq, p,q are odd primes. Z be the prime field of characteristic 2. The loop ring ZsL,,(m)

5L e)

r=2, r even r=2, r even

has exactly

S-weak zero divisors.
Proof. We will enumerate all the S-weak zero divisors in the following way:
Case I: As p|pg, L,,(m) has p proper subloops H; each of order ¢ + 1. Proceeding exactly

same way as in Theorem 3.3, we will get

q—1
2}7 ( Z q+lcr>

r=2, r even
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S-weak zero divisors in case 1.

Case II: Again as ¢|pg, L,,(m) has ¢ proper subloops H; each of order p+ 1. So as above
we will get

p—1
r=2, r even

S-weak zero divisors in case II.

Hence adding all the S-weak zero divisors in case I and case II, we get

(8 o) E )

r=2, r even r=2, r4 even

2

S-weak zero divisors in ZyL,,(m).

Hence the claim.

Now we prove for the loop ring ZL,(m) where n = p? or p* or pq, (p,q are odd primes),
Z Ly, (m) has infinitely many S-weak zero divisors.

Theorem 3.5. Let ZL,(m) be the loop ring of the loop L, (m) over Z, where n = p? or
p? or pq (p,q are odd primes), then ZL,,(m) has infinitely many S-weak zero divisors.

Proof. Let L, (m) be a loop ring such that n = p®. L,(M) has p subloops (say H;) each
of order p+ 1. Now the loop ring ZL,,(m) has the following types of S-weak zero divisors:

nt1
X =a—bhy +bhy —ahs and Y = Zgi

i=1

where a,b € Z,9; € L,(m) and hq, ho, hg € H; are such that

XY =0.

Again

p+1

XZhi =0, h;€H,

i=1

also
(1-9)Y =0, gi(# h) € Hy

clearly

p+1
(1—gt) (Z hi) = 0.

So X,Y are S-weak zero divisors in ZL,,(m). Now we see there are infinitely many S-weak zero
divisors of this type for a and b can take infinite number of values in Z.
For n = p? or p3 or pg we can prove the results in a similar way.

Hence the claim.
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8§4. Conclusions:

In this paper we find the exact number of S-zero divisors and S-weak zero divisors for the
loop rings ZoL,(m) in case of the special type of loops L, (m) € L, over Zy, when n = p? or
p3 or pq (p,q are odd primes). We also prove for the loop ring ZL,,(m) has infinite number of
S-zero divisors and S-weak zero divisors. We obtain conditions for any loop L to have S-zero
divisors and S-weak zero divisors. We suggest it would be possible to enumerate in the similar
way the number of S-zero divisors and S-weak zero divisors for the loop ring ZsL,(m) when
n =p°®,s > 3; p a prime or when p = p1ps - - - p; where p1,p2,--- ,ps are odd primes. However
we find it difficult when we take Z, instead of Z,, where p can be odd prime or a composite
number such that (p,n+1 = 1) or (p,n+1 = p) and n is of the form n = pi*p% ---plr t; > 1,n
is odd and p1, ps, - - - p are odd primes.
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