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§1. Introduction

A Pseudo-Euclidean space is a particular Smarandache space defined on a Euclidean space

Rnsuch that a straight line passing through a point p may turn an angle θp ≥ 0. If θp ≥ 0 ,

then p is called a non-Euclidean point. Otherwise, a Euclidean point. In this paper, normed

spaces are considered to be Euclidean, i.e., every point is Euclidean.In [7], S. Gähler introduced

n-norms on a linear space. A detailed theory of n-normed linear space can be found in [8,10,12-

13]. In [8], H. Gunawan and M. Mashadi gave a simple way to derive an (n−1)- norm from the

n-norm in such a way that the convergence and completeness in the n-norm is related to those

in the derived (n − 1)-norm. A detailed theory of fuzzy normed linear space can be found in

[1,3,4,5,6,9,11]. In [14], A. Narayanan and S. Vijayabalaji have extend n-normed linear space

to fuzzy n-normed linear space. In section 2, we quote some basic definitions, and we show

that a fuzzy n-norm is closely related to an ascending system of n-seminorms. In section 3, we

introduce a locally convex topology in a fuzzy n-normed space. In section 4, we consider finite

dimensional fuzzy n-normed linear spaces. In section 5, we give some fixed point theorem in

fuzzy n− normed spaces.
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§2. Fuzzy n-norms and ascending families of n-seminorms

Let n be a positive integer, and let X be a real vector space of dimension at least n. We recall

the definitions of an n-seminorm and a fuzzy n-norm [14].

Definition 2.1 A function (x1, x2, . . . , xn) 7→ ‖x1, . . . , xn‖ from Xn to [0,∞) is called an

n-seminorm on X if it has the following four properties:

(S1) ‖x1, x2, . . . , xn‖ = 0 if x1, x2, . . . , xn are linearly dependent;

(S2) ‖x1, x2, . . . , xn‖ is invariant under any permutation of x1, x2, . . . , xn;

(S3) ‖x1, . . . , xn−1, cxn‖ = |c|‖x1, , . . . , xn−1, xn‖ for any real c;

(S4) ‖x1, . . . , xn−1, y + z‖ 6 ‖x1, . . . , xn−1, y‖ + ‖x1, . . . , xn−1, z‖.

An n-seminorm is called a n-norm if ‖x1, x2, . . . , xn‖ > 0 whenever x1, x2, . . . , xn are

linearly independent.

Definition 2.1 A fuzzy subset N of Xn × R is called a fuzzy n-norm on X if and only if :

(F1) For all t 6 0, N(x1, x2, . . . , xn, t) = 0;

(F2) For all t > 0, N(x1, x2, . . . , xn, t) = 1 if and only if x1, x2, . . . , xn are linearly dependent;

(F3) N(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn;

(F4) For all t > 0 and c ∈ R, c 6= 0,

N(x1, x2, . . . , cxn, t) = N(x1, x2, . . . , xn,
t

|c|);

(F5) For all s, t ∈ R,

N(x1, . . . , xn−1, y + z, s+ t) ≥ min {N(x1, . . . , xn−1, y, s), N(x1, . . . , xn−1z, t)} .

(F6) N(x1, x2, . . . , xn, t) is a non-decreasing function of t ∈ R and

lim
t→∞

N(x1, x2, . . . , xn, t) = 1.

The following two theorems clarify the relationship between Definitions 2, 1 and 2.2.

Theorem 2.1 Let N be a fuzzy n-norm on X. As in [14] define for x1, x2, . . . , xn ∈ X and

α ∈ (0, 1)

‖x1, x2, . . . , xn‖α := inf {t : N(x1, x2, . . . , xn, t) ≥ α} . (1)

Then the following statements hold.

(A1) For every α ∈ (0, 1), ‖•, •, . . . , •‖α is an n-seminorm on X;
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(A2) If 0 < α < β < 1 and x1, . . . , xn ∈ X then

‖x1, x2, . . . , xn‖α 6 ‖x1, x2, . . . , xn‖β ;

(A3) If x1, x2, . . . , xn ∈ X are linearly independent then

lim
α→1−

‖x1, x2, . . . , xn‖α = ∞.

Proof (A1) and (A2) are shown in [14, Theorem 3.4]. Let x1, x2, . . . , xn ∈ X be linearly

independent, and t > 0 be given. We set β := N(x1, x2, . . . , xn, t). It follows from (F2) that

β ∈ [0, 1). Then (F6) shows that, for α ∈ (β, 1),

‖x1, x2, . . . , xn‖α > t.

This proves (A3). �

We now prove a converse of Theorem 2.1.

Theorem 2.2 Suppose we are given a family ‖•, •, . . . , •‖α, α ∈ (0, 1), of n-seminorms on X

with properties (A2) and (A3). We define

N(x1, x2, . . . , xn, t) := inf{α ∈ (0, 1) : ‖x1, x2, . . . , xn‖α > t}. (2)

where the infimum of the empty set is understood as 1. Then N is a fuzzy n-norm on X.

Proof (F1) holds because the values of an n-seminorm are nonnegative.

(F2): Let t > 0. If x1, . . . , xn are linearly dependent then N(x1, . . . , xn, t) = 1 follows from

property (S1) of an n-seminorm. If x1, . . . , xn are linearly independent thenN(x1, . . . , xn, t) < 1

follows from (A3).

(F3) is a consequence of property (S2) of an n-seminorm.

(F4) is a consequence of property (S3) of an n-seminorm.

(F5): Let α ∈ (0, 1) satisfy

α < min{N(x1, . . . , xn−1, y, s), N(x1, . . . , xn−1, z, s)}. (3)

It follows that ‖x1, . . . , xn−1, y‖α < s and ‖x1, . . . , xn−1, z‖α < t. Then (S4) gives

‖x1, . . . , xn−1, y + z‖α < s+ t.

Using (A2) we find N(x1, . . . , xn−1, y+z, s+t) > α and, since α is arbitrary in (3), (F5) follows.

(F6): Definition 2.2 shows thatN is non-decreasing in t. Moreover, limt→∞N(x1, . . . , xn, t) =

1 because seminorms have finite values. �

It is easy to see that Theorems 2.1 and 2.2 establish a one-to-one correspondence between

fuzzy n-norms with the additional property that the function t 7→ N(x1, . . . , xn, t) is left-

continuous for all x1, x2, . . . , xn and families of n-seminorms with properties (A2), (A3) and

the additional property that α 7→ ‖x1, . . . , xn‖α is left-continuous for all x1, x2, . . . , xn.
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Example 2.3([14,Example 3.3] Let ‖•, •, . . . , •‖ be a n-norm on X . Define N(x1, x2, . . . , xn, t)

= 0 if t 6 0 and, for t > 0,

N(x1, x2, . . . , xn, t) =
t

t+ ‖x1, x2, . . . , xn‖
.

Then the seminorms (2.1) are given by

‖x1, x2, . . . , xn‖α =
α

1 − α
‖x1, x2, . . . , xn‖.

§3. The locally convex topology generated by a fuzzy n-norm

In this section (X,N) is a fuzzy n-normed space, that is, X is real vector space and N is

fuzzy n-norm on X . We form the family of n-seminorms ‖•, •, . . . , •‖α, α ∈ (0, 1), according to

Theorem 2.1. This family generates a family F of seminorms

‖x1, . . . , xn−1, •‖α, where x1, . . . , xn−1 ∈ X and α ∈ (0, 1).

The family F generates a locally convex topology on X ; see [15, Def. (37.9)], that is, a basis of

neighborhoods at the origin is given by

{x ∈ X : pi(x) 6 ǫi for i = 1, 2, . . . , n},

where pi ∈ F and ǫi > 0 for i = 1, 2 . . . , n. We call this the locally convex topology generated

by the fuzzy n-norm N .

Theorem 3.1 The locally convex topology generated by a fuzzy n-norm is Hausdorff.

Proof Given x ∈ X , x 6= 0, choose x1, . . . , xn−1 ∈ X such that x1, . . . , xn−1, x are linearly

independent. By Theorem 2.1(A3) we find α ∈ (0, 1) such that ‖x1, . . . , xn−1, x‖α > 0. The

desired statement follows; see [15, Theorem 37.21]. �

Some topological notions can be expressed directly in terms of the fuzzy-norm N . For

instance, we have the following result on convergence of sequences. We remark that the defi-

nition of convergence of sequences in a fuzzy n-normed space as given in [20, Definition 2.2] is

meaningless.

Theorem 3.2 Let {xk} be a sequence in X and x ∈ X. Then {xk} converges to x in the locally

convex topology generated by N if and only if

lim
k→∞

N(a1, . . . , an−1, xk − x, t) = 1 (4)

for all a1, . . . , an−1 ∈ X and all t > 0.

Proof Suppose that {xk} converges to x in (X,N). Then, for every α ∈ (0, 1) and all

a1, a2, . . . , an−1 ∈ X , there is K such that, for all k > K, ‖a1, a2, . . . , an−1, xk − x‖α < ǫ. The

latter implies

N(a1, a2, . . . , an−1, xk − x, ǫ) > α.
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Since α ∈ (0, 1) and ǫ > 0 are arbitrary we see that (4) holds. The converse is shown in a

similar way. �

In a similar way we obtain the following theorem.

Theorem 3.3 Let {xk} be a sequence in X. Then {xk} is a Cauchy sequence in the locally

convex topology generated by N if and only if

lim
k,m→∞

N(a1, . . . , an−1, xk − xm, t) = 1 (5)

for all a1, . . . , an−1 ∈ X and all t > 0.

It should be noted that the locally convex topology generated by a fuzzy n-norm is not

metrizable, in general. Therefore, in many cases it will be necessary to consider nets {xi} in

place of sequences. Of course, Theorems 3.2 and 3.3 generalize in an obvious way to nets.

§4. Fuzzy n-norms on finite dimensional spaces

In this section (X,N) is a fuzzy n-normed space and X has finite dimension at least n. Since

the locally convex topology generated by N is Hausdorff by Theorem 3.1 Tihonov’s theorem

[15, Theorem 23.1] implies that this locally convex topology is the only one on X . Therefore,

all fuzzy n-norms on X are equivalent in the sense that they generate the same locally convex

topology.

In the rest of this section we will give a direct proof of this fact (without using Tihonov’s

theorem). We will set X = Rd with d > n.

Lemma 4.1 Every n-seminorm on X = Rd is continuous as a function on Xn with the

euclidian topology.

Proof For every j = 1, 2, . . . , n, let {xj,k}∞k=1 be a sequence in X converging to xj ∈ X .

Therefore, lim
k→∞

‖xj,k − xj‖ = 0, where ‖x‖ denotes the euclidian norm of x. From property

(S4) of an n-seminorm we get

|‖x1,k, x2,k, . . . , xn,k‖ − ‖x1, x2,k, . . . , xn,k‖| ≤ ‖x1,k − x1, x2,k, . . . , xn,k‖.

Expressing every vector in the standard basis of Rd we see that there is a constant M such that

‖y1, y2, . . . , yn‖ ≤M ‖y1‖ . . . ‖yn‖ for all yj ∈ X.

Therefore,

lim
k→∞

‖x1,k − x1, x2,k, . . . , xn,k‖ = 0

and so

lim
k→∞

|‖x1,k, x2,k, . . . , xn,k‖ − ‖x1, x2,k, . . . , xn,k‖| = 0.

We continue this procedure until we reach

lim
k→∞

‖x1,k, x2,k, . . . , xn,k‖ = ‖x1, x2, . . . , xn‖ . �
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Lemma 4.2 Let (Rd, N) be a fuzzy n-normed space. Then ‖x1, x2, . . . , xn‖α is an n-norm if

α ∈ (0, 1) is sufficiently close to 1.

Proof We consider the compact set

S =
{
(x1, x2, . . . , xn) ∈ R

dn : x1, x2, . . . , xn is an orthonormal system in R
d
}
.

For each α ∈ (0, 1) consider the set

Sα = {(x1, x2, . . . , xn) ∈ S : ‖x1, x2, . . . , xn‖α > 0} .

By Lemma 4.1, Sα is an open subset of S. We now show that

S = ∪
α∈(0,1)

Sα. (6)

If (x1, x2, . . . , xn) ∈ S then (x1, x2, . . . , xn) is linearly independent and therefore there is

β such that N(x1, x2, . . . , xn, 1) < β < 1. This implies that ‖x1, x2, . . . , xn‖β ≥ 1 so (6) is

proved. By compactness of S, we find α1, α2, . . . , αm such that

S =
m∪

i=1
Sαi

.

Let α = max {α1, α2, . . . , αm}. Then ‖x1, x2, . . . , xn‖α > 0 for every (x1, x2, . . . , xn) ∈ S.

Let x1, x2, . . . , xn ∈ X be linearly independent. Construct an orthonormal system

e1, e2, . . . , en from x1, x2, . . . , xn by the Gram-Schmidt method. Then there is c > 0 such

that

‖x1, x2, . . . , xn‖α = c ‖e1, e2, . . . , en‖α > 0.

This proves the lemma. �

Theorem 4.1 Let N be a fuzzy n-norm on Rd, and let {xk} be a sequence in Rd and x ∈ Rd.

(a) {xk} converges to x with respect to N if and only if {xk} converges to x in the euclidian

topology.

(b) {xk} is a Cauchy sequence with respect to N if and only if {xk} is a Cauchy sequence

in the euclidian metric.

Proof (a) Suppose {xk} converges to x with respect to euclidian topology. Let a1, a2, . . . , an−1 ∈
X . By Lemma 4.1, for every α ∈ (0, 1),

lim
k→∞

‖a1, a2, . . . , an−1, xk − x‖α = 0.

By definition of convergence in (Rd, N), we get that {xk} converges to x in (Rd, N). Conversely,

suppose that {xk} converges to x in (Rd, N). By Lemma 4.2, there is α ∈ (0, 1) such that

‖y1, y2, . . . , yn‖α is an n-norm. By definition, {xk} converges to x in the n-normed space

(Rd, ‖·‖α). It is known from[8, Proposition 3.1] that this implies that {xk} converges to x with

respect to euclidian topology.

(b) is proved in a similar way. �
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Theorem 4.2 A finite dimensional fuzzy n-normed space (X,N) is complete.

Proof This follows directly from Theorem 3.4. �

§5. Some fixed point theorem in fuzzy n− normed spaces

In this section we prove some fixed point theorems.

Definition 5.1 A sequence a {xk} in a fuzzy n-normed space (X,N) is said to be fuzzy n-

convergent to x∗ ∈ X and denoted by xk  x∗ as k → ∞ if

lim
k→∞

N(x1, · · · , xn−1, xk − x∗, t) = 1

for every x1, · · · , xn−1 ∈ X and x∗ is called the fuzzy n-limit of {xk}.

Remark 5.1 It is noted that if (X,N) is a fuzzy n-normed space then the fuzzy n-limit of a

fuzzy n-convergent sequence is unique. Indeed, if {xk} is a fuzzy n-convergent sequence and

suppose it converges to x∗ and y∗ in X . Then by definition lim
k→∞

N(x1, · · · , xn−1, xk −x∗, t) = 1

and lim
k→∞

N(x1, · · · , xn−1, xk − y∗, t) = 1 for every x1, · · · , xn−1 ∈ X and for every t > 0. By

(N5), we have

N(x1, · · · , xn−1, x− y, t) = N(x1, · · · , xn−1, x
∗ − xk + xk − y∗, t/2 + t/2)

> min{N(x1, · · · , xn−1, x
∗ − xk, t/2), N(x1, · · · , xn−1, xk − y∗, t/2)}.

By letting k → ∞, we obtain N(x1, · · · , xn−1, x
∗ − y∗, t) = 1, which implies that x∗ = y∗.

Definition 5.2 A sequence {xk} in a fuzzy n-normed space (X,N) is said to be fuzzy n-Cauchy

sequence if

lim
k,m→∞

N(x1, . . . , xn−1, xk − xm, t) = 1

for every x1, · · · , xn−1 ∈ X and for every t > 0.

Proposition 5.1 In a fuzzy n-normed space (X,N), every fuzzy n-convergent sequence is a

fuzzy n-Cauchy sequence.

Proof Let {xk} be a fuzzy n-convergent sequence in X converging to x∗ ∈ X . Then

lim
k→∞

N(x1, · · · , xn−1, xk − x∗, t) = 1 for every x1, · · · , xn−1 ∈ X and for every t > 0. By (N5),

N(x1, · · · , xn−1, xk − xm, t)

= N(x1, · · · , xn−1, xk − x∗ + x∗ − xm, t/2 + t/2)

> min{N(x1, · · · , xn−1, xk − x∗, t/2), N(x1, · · · , xn−1, x
∗ − xm, t/2)}.

By letting n,m→ ∞, we get,

lim
k,m→∞

N(x1, · · · , xn−1, xk − xm, t) = 1

for every x1, · · · , xn−1 ∈ X and for every t > 0, i.e., {xk} is a fuzzy n-Cauchy sequence. �
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If every fuzzy n-Cauchy sequence in X converges to an x∗ ∈ X , then (X,N) is called

a complete fuzzy n-normed space. A complete fuzzy n-normed space is then called a fuzzy

n-Banach space.

Theorem 5.1 Let (X,N) be a fuzzy n-normed space. Let f : X → X be a map satisfies the

condition:

There exists a λ ∈ (0, 1) such that for all x, x1, · · · , xn−1 ∈ X and for all t > 0,one has

N(x1, · · · , xn−1, x, t) > 1 − t ⇒ N(x1, · · · , xn−1, f(x), λt) > 1 − λt. (7)

Then

(i) For any real number ǫ > 0 there exists k0(ǫ) ∈ N such that fk(x) θ.

(ii) f has at most a fixed point, that is the null vector of X. Moreover, if f is a linear mapping,

f has exactly one fixed point.

Proof (i) Note that if f satisfies the condition (1), then for every ǫ ∈ (0, 1), there exists a

k0 = k0(ǫ) such that, for all k > k0, and for every x, x1, · · · , xn−1 ∈ X

N(x1, · · · , xn−1, f
k(x), ǫ) > 1 − ǫ

holds. Indeed, one has easily that

N(x1, · · · , xn−1, x, 1 + ǫ) > 1 − (1 + ǫ).

Then by condition (1), for all x, x1, · · · , xn−1 ∈ X and k > 1,

N(x1, · · · , xn−1, f
k(x), λk(1 + ǫ)) > 1 − λk(1 + ǫ)

holds. Indeed, for each ǫ > 0 there exists a k = k0 implies that λn(1 + ǫ) 6 ǫ, from which,

because of condition (N6), there exists a k0 ∈ N such that for k > k0,

N(x1, · · · , xn−1, f
k(x), ǫ) > N(x1, · · · , xn−1, f

k(x), λk(1 + ǫ))

> 1 − λk(1 + ǫ)

> 1 − ǫ.

Since ǫ is an arbitrary, we have fk(x) θ as required.

(ii) Assume that f(x) = x. By applying part (i), for all ǫ ∈ (0, 1) one has

N(x1, · · · , xn−1, x, ǫ) > 1 − ǫ

for every x1, · · · , xn−1 ∈ X . This implies that

N(x1, · · · , xn−1, x, 0+) = 1

for every x1, · · · , xn−1 ∈ X , i.e., x = θ. �
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Lemma 5.1 Let {xk} be a sequence in a fuzzy n-normed space (X,M). If for every t > 0,

there exists a constant λ ∈ (0, 1) such that

N(x1, . . . , xn−1, xk − xk+1, t) ≥ N(x1, . . . , xn−1, xk−1 − xk, t/λ) (8)

for all x1, · · · , xn−1 ∈ X, then {xk} is a fuzzy n-Cauchy sequence in X.

Proof Let t > 0 and λ ∈ (0, 1). Then for m > k, by using (N5) and the inequality (1), we

have

N(x1, . . . , xn−1, xk − xm, t)

> min{N(x1, . . . , xn−1, xk − xk+1, (1 − λ)t),

N(x1, . . . , xn−1, xk+1 − xm, λt)}
· · ·

> min{N(x1, . . . , xn−1, x0 − x1,
(1 − λ)t

λk
),

N(x1, . . . , xn−1, xk+1 − xm, λt)}

Also,

N(x1, . . . , xn−1, xk+1 − xm, λt)

> min{N(x1, . . . , xn−1, xk+1 − xk+2, (1 − λ)λt),

N(x1, . . . , xn−1, xk+2 − xm, λ
2t)}

· · ·
> min{N(x1, . . . , xn−1, x0 − x1,

(1 − λ)t

λk
),

N(x1, . . . , xn−1, xk+2 − xm, λ
2t)}

By repeating these argument, we get

N(x1, . . . , xn−1, xk − xm, t)

> min{N(x1, . . . , xn−1, x0 − x1,
(1 − λ)t

λk
),

N(x1, . . . , xn−1, xm−1 − xm, λ
m−n−1t)}

· · ·
> min{N(x1, . . . , xn−1, x0 − x1,

(1 − λ)t

λk
),

N(x1, . . . , xn−1, x0 − x1,
t

λk
)}

Since (1 − λ) t
λk ≤ t

λk and the property (F6), we conclude that

N(x1, . . . , xn−1, xk − xm, t) ≥ N(x1, . . . , xn−1, x0 − x1,
(1 − λ)t

λk
).

Therefore, by letting m > k → ∞, we get

lim
k,m→∞

N(x1, · · · , xn−1, xk − xm, t) = 1
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for every x1, · · · , xn−1 ∈ X and for every t > 0, i.e., {xk} is a fuzzy n-Cauchy sequence. �

Definition 5.3 A pair of maps (f, g) is called weakly compatible pair if they commute at

coincidence point, i.e., fx = gx implies fgx = gfx.

Theorem 5.2 Let (X,M) be a fuzzy n-normed space and let f, g : X → X satisfy the following

conditions:

(i) f(X) ⊆ g(X);

(ii) any one f(X) or g(X) is complete;

(iii) N(x1, . . . , xn−1, f(x)−f(y), t) > N(x1, . . . , xn−1, g(x)−g(y), t/λ), for all x, y, x1, · · · , xn−1 ∈
X, t > 0, λ ∈ (0, 1).

Then f and g have a unique common fixed point provided f and g are weakly compatible

on X.

Proof Let x0 ∈ X . By condition (i), we can find x1 ∈ X such that f(x0) = g(x1) = y1.

By induction, we can define a sequence yk in X such that

yk+1 = f(xk) = g(xk+1),

n = 0, 1, 2, · · · . We consider two cases:

Case I: If yr = yr+1 for some r ∈ N, then

yr = f(xr−1) = f(xr) = g(xr) = g(xr+1) = yr+1 = z

for some z ∈ X . Since f(xr) = g(xr) and f, g are weakly compatible, we have f(z) = fg(xr) =

gf(xr) = g(z). By condition (iii), for all x1, · · · , xn−1 ∈ X and for all t > 0, we have

N(x1, · · · , xn−1, f(z) − z, t) = N(x1, · · · , xn−1, f(z) − f(xr), t)

> N(x1, · · · , xn−1, g(z) − g(xr), t/λ)

> · · · ≥ N(x1, · · · , xn−1, g(z) − g(xr), t/λ
k).

Clearly, the righthand side of the inequality approaches 1 as k → ∞ for every x1, . . . , xn−1 ∈ X

and t > 0. Hence, N(x1, · · · , xn−1, f(z) − z, t) = 1. This implies that f(z) = z = g(z), i.e., z

is a common fixed point of f and g.

Case II yk 6= yk+1, for each k = 0, 1, 2, · · · . Then, by condition (ii) again, we have

N(x1, · · · , xn−1, yk − yk+1, t) = N(x1, · · · , xn−1, g(xk) − g(xk+1), t)

= N(x1, · · · , xn−1, f(xk−1) − f(xk), t)

≥ N(x1, · · · , xn−1, g(xk−1) − g(xk), t/λ)

= N(x1, · · · , xn−1, yk−1 − yk, t)
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Then, by Lemma 5.1, {yk} is a Cauchy sequence (with respect to fuzzy n-norm) in X . Since

g(X) is complete, there exists w ∈ g(X) such that

lim
k→∞

yk = lim
k→∞

g(xk) = w.

Also, since w ∈ g(X), we can find a p ∈ X such that g(p) = w. Note that

w = g(p) = lim
k→∞

g(xk) = lim
k→∞

f(xk).

Thus, by (iii), we have

N(x1, · · · , xn−1, f(p) − g(p), t) = lim
k→∞

N(x1, · · · , xn−1, f(p) − f(xk), t)

≥ lim
k→∞

N(x1, · · · , xn−1, g(p) − g(xk), t/λ)

= N(x1, · · · , xn−1, g(p) − w, t/λ)

= N(x1, · · · , xn−1, w − w, t/λ),

which implies that w = f(p) = g(p) is a common fixed point of f and g. Furthermore, f and g

are weakly compatible maps, we have

f(w) = fg(w) = gf(w) = g(w).

But than, by (iii),

N(x1, · · · , xn−1, f(w) − w, t) = N(x1, · · · , xn−1, f(w) − f(p), t)

≥ N(x1, · · · , xn−1, g(w) − g(p), t/λ)

= N(x1, · · · , xn−1, f(w) − f(p), t/λ)

≥ · · · ≥ N(x1, · · · , xn−1, g(w) − g(p), t/λk).

Clearly, the expression on the righthand side approaches 1 as k → ∞ for every x1, . . . , xn−1 ∈ X

and t > 0, which implies that f(w) = w. Therefore, w is a common fixed point of f and g. The

uniqueness of fixed point is immediate from condition (iii). �
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