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Abstract The main purpose of this paper is using the elementary method to study the

calculating problem of one kind infinite series involving the k-th power complements, and

obtain several interesting identities.
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§1. Introduction and Results

For any given natural number k ≥ 2 and any positive integer n, we call ak(n) as a k-th
power complements, if ak(n) is the smallest positive integer such that n ·ak(n) is a perfect k-th
power. That is,

ak(n) = min{m : mn = uk, u ∈ N}.

Especially, we call a2(n), a3(n), a4(n) as the square complement number, cubic comple-
ment number, and the quartic complement number, respectively. In reference [1], Professor
F.Smarandache asked us to study the properties of the k-th power complement number se-
quence. About this problem, there are many people have studied it, see references [4], [5], and
[6]. For example, Lou Yuanbing [7] gave an asymptotic formula involving the square complement
number a2(n). Let real number x ≥ 3, he proved that

∑

n≤x

d(a2(n)) = c1x lnx + c2x + O(x
1
2+ε),

where d(n) is the divisor function, ε > 0 be any fixed real number, c1 and c2 are defined as
following:

c1 =
6
π2

∏
p

(
1− 1

(p + 1)2

)
,

c2 =
6
π2

∏
p

(
1− 1

(p + 1)2

) (∑
p

2(2p + 1) ln p

(p− 1)(p + 1)(p + 2)
+ 2γ − 1

)
,

γ is the Euler’s constant,
∏
p

denotes the product over all primes.
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In reference [8], Yao Weili obtained an asymptotic formula involving k-th power comple-
ment number ak(n). That is, for any real number x ≥ 1, we have

∑

n≤x

d(nak(n)) = x(A0 lnk x + A1 lnk−1 x + · · ·+ Ak) + O(x
1
2+ε),

where A0, A1, · · · , Ak are computable constant, ε is any fixed positive number.
In reference [4], Zhang Wenpeng obtained some identities involving the k-th power com-

plements. Those are, for any complex numbers s with Re(s) ≥ 1, we have

+∞∑
n=1

1
(na2(n))s

=
ζ2(2s)
ζ(4s)

,

+∞∑
n=1

1
(na3(n))s

=
ζ2(3s)
ζ(6s)

∏
p

(
1 +

1
p3s + 1

)
,

+∞∑
n=1

1
(na4(n))s

=
ζ2(4s)
ζ(8s)

∏
p

(
1 +

1
p4s + 1

)(
1 +

1
p4s + 2

)
,

where ζ(s) is the Riemann zeta-function.
On the other hand, F.Russo [9] proposed 21 unsolved problems, the problem 19 asked us

evaluate the infinite series
+∞∑
n=1

(−1)n 1
a2(n)

.

But is problem very easy. In fact, a2(4n2) = 1 for all positive integer n. So we have

lim
n−→∞

(−1)4n2 1
a2(4n2)

= 1 6= 0.

That is, the infinite series
+∞∑
n=1

(−1)n 1
a2(n)

dos not convergent.

In this paper, we shall use the elementary method to study the calculating problem of the
infinite series

+∞∑
n=1

(−1)n−1

nak(n)
,

and obtain several interesting identities for it. That is, we shall prove the following:
Theorem. For any given positive integer k ≥ 2, we have the identity

+∞∑
n=1

(−1)n−1

nak(n)
=

2k − k − 1
2k + k − 1

ζ(k)
∏
p

(
1 +

k − 1
pk

)
,

where ζ(s) is the Riemann-zeta function, and
∏
p

denotes the product over all different primes.

Taking k = 2 in our theorem, and note that the fact ζ(2) = π2

6 , ζ(4) = π4

90 and

∏
p

(
1 +

1
p2

)
=

∏
p

(
1− 1

p4

) ∏
p

(
1− 1

p2

)−1

=
ζ(2)
ζ(4)

,
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we may immediately obtain the following:
Corollary 1. For the square complement number a2(n), we have the identity

+∞∑
n=1

(−1)n−1

na2(n)
=

1
2
.

Corollary 2. For the cubic complement number a3(n), we have the identity

+∞∑
n=1

(−1)n−1

na3(n)
=

2
5
ζ(3)

∏
p

(
1 +

2
p3

)
.

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. For all positive integers n, we
separate n into three parts: 2 † n; 2 | n and 2k † n; 2k | n. Then from the definition of ak(n) we
have:

+∞∑
n=1

(−1)n−1

nak(n)
=

+∞∑
n=1
2†n

1
nak(n)

−
∞∑

α=0

k−1∑

β=1

∞∑
n=1
2†n

1
(2αk+βn)ak(2αk+βn)

−
∞∑

α=1

∞∑
n=1
2†n

1
(2αkn)ak(2αkn)

=
∞∑

n=1
2†n

1
nak(n)

−
∞∑

α=0

k−1∑

β=1

1
2(α+1)k

∞∑
n=1
2†n

1
nak(n)

−
∞∑

α=1

1
2αk

∞∑
n=1
2†n

1
nak(n)

=
2k − k − 1

2k − 1

∞∑
n=1
2†n

1
nak(n)

.

It is clear that the infinite series
∞∑

n=1
2†n

1
nak(n)

is absolutely convergent, so from the Euler

product formula (see Theorem 11.6 of [2]) we know that the infinite series can be expressed as
an absolutely convergent infinite product. That is,

∞∑
n=1
2†n

1
nak(n)

=
∏
p

p6=2

{
1 +

1
pak(p)

+
1

p2ak(p2)
+ . . .

}

=
∏
p

p6=2

∞∑

l=0

1
plak(pl)

=
∏
p

p6=2




∞∑
α=0

k−1∑

β=1

1
pαk+βak(pαk+β)

+
∞∑

α=0

1
pαkak(pαk)



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=
∏
p

p6=2




∞∑
α=0

k−1∑

β=1

1
p(α+1)k

+
∞∑

α=0

1
pαk




=
∏
p

p6=2

pk + k − 1
pk − 1

=
∏
p

1 + k−1
pk

1− 1
pk

· 1− 1
2k

1 + k−1
2k

=
2k − 1

2k + k − 1
ζ(k)

∏
p

(
1 +

k − 1
pk

)
.

So we have ∞∑
n=1

(−1)n−1

nak(n)
=

2k − k − 1
2k + k − 1

ζ(k)
∏
p

(
1 +

k − 1
pk

)
.

This completes the proof of the theorem.
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