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Abstract: Let G be a graph and E1 ⊂ E(G). A Smarandachely E1-lict graph nE1(G)

of a graph G is the graph whose point set is the union of the set of lines in E1 and the

set of cutpoints of G in which two points are adjacent if and only if the corresponding

lines of G are adjacent or the corresponding members of G are incident.Here the lines and

cutpoints of G are member of G. Particularly, if E1 = E(G), a Smarandachely E(G)-lict

graph nE(G)(G) is abbreviated to lict graph of G and denoted by n(G). In this paper, the

concept of pathos lict sub-division graph Pn[S(T )] is introduced. Its study is concentrated

only on trees. We present a characterization of those graphs, whose lict sub-division graph is

planar, outerplanar, maximal outerplanar and minimally nonouterplanar. Further, we also

establish the characterization for Pn[S(T )] to be eulerian and hamiltonian.
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§1. Introduction

The concept of pathos of a graph G was introduced by Harary [1] as a collection of minimum

number of line disjoint open paths whose union is G. The path number of a graph G is the

number of paths in a pathos. Stanton [7] and Harary [3] have calculated the path number

for certain classes of graphs like trees and complete graphs. The subdivision of a graph G is

obtained by inserting a point of degree 2 in each line of G and is denoted by S(G). The path

number of a subdivision of a tree S(T ) is equal to K, where 2K is the number of odd degree

point of S(T ). Also, the end points of each path of any pathos of S(T ) are odd points. The

lict graph n(G) of a graph G is the graph whose point set is the union of the set of lines and

the set of cutpoints of G in which two points are adjacent if and only if the corresponding lines

of G are adjacent or the corresponding members of G are incident.Here the lines and cutpoints

of G are member of G.

For any integer k ≥ 1, a Smarandache path k-cover of a graph G is a collection ψ of paths

in G such that each edge of G is in at least one path of ψ and two paths of ψ have at most
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k vertices in common. Thus if k = 1 and every edge of G is in exactly one path in ψ, then a

Smarandache path k-cover of G is a simple path cover of G. See [8].

By a graph we mean a finite, undirected graph without loops or multiple lines. We refer

to the terminology of [1]. The pathos lict subdivision of a tree T is denoted as Pn[S(T )] and

is defined as the graph, whose point set is the union of set of lines, set of paths of pathos and

set of cutpoints of S(T ) in which two points are adjacent if and only if the corresponding lines

of S(T ) are adjacent and the line lies on the corresponding path Pi of pathos and the lines

are incident to the cutpoints. Since the system of path of pathos for a S(T ) is not unique,

the corresponding pathos lict subdivision graph is also not unique. The pathos lict subdivision

graph is defined for a tree having at least one cutpoint.

In Figure 1, a tree T and its subdivision graph S(T ), and their pathos lict subdivision

graphs Pn[S(T )] are shown.
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Figure 1

The line degree of a line uv in S(T ) is the sum of the degrees of u and v. The pathos length

is the number of lines which lies on a particular path Pi of pathos of S(T ). A pendant pathos is

a path Pi of pathos having unit length which corresponds to a pendant line in S(T ). A pathos

point is a point in Pn[S(T )] corresponding to a path of pathos of S(T ). If G is planar graph,the

innerpoint number i(G) of a graph G is the minimum number of vertices not belonging to the

boundary of the exterior region in any embedding of the plane. A graph is said to be minimally

nonouterplanar if i(G) = 1 was given by [4].
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We need the following for immediate use.

Remark 1.1 For any tree T , n[S(T )] is a subgraph of Pn[S(T )].

Remark 1.2 For any tree T , T ⊆ S(T ).

Remark 1.3 If the line degree of a nonpendant line in S(T ) is odd(even), the correspondig

point in Pn[S(T )] is of even(odd) degree.

Remark 1.4 The pendant line in S(T ) is always odd degree and the corresponding point in

Pn[S(T )] is of odd degree.

Remark 1.5 For any tree T with C cutpoints, the number of cutpoints in n[S(T )] is equal to

sum of the lines incident to C in T .

Remark 1.6 For any tree T , the number of blocks in n[S(T )] is equal to the sum of the cutpoints

and lines of T .

Remark 1.7 n[S(T )] is connected if and only if T is connected.

Theorem 1.1([5]) If G is a non trivial connected (p, q) graph whose points have degree di and

li be the number of lines to which cutpoint Ci belongs in G, then lict graph n(G) has q +
∑

Ci

points and −q +
∑

[
d2

i

2 + li] lines.

Theorem 1.2([5]) The lict graph n(G) of a graph G is planar if and only if G is planar and

the degree of each point is atmost 3.

Theorem 1.3([2]) Every maximal outerplanar graph G with p points has 2p− 3 lines.

Theorem 1.4([6]) A graph is a nonempty path if and only if it is a connected graph with p ≥ 2

points and
∑

d2
i − 4p+ 6 = 0.

Theorem 1.5([2]) A graph G is eulerian if and only if every point of G is of even degree.

§2. Pathos Lict Subdivision Graph

In the following Theorem we obtain the number of points and lines of Pn[S(T )].

Theorem 2.1 For any (p, q) graph T , whose points have degree di and cutpoints C have degree

Cj, then the pathos lict sub-division graph Pn[S(T )] has (3q+C+Pi) points and 1
2

∑

d2
i +4q+

∑

Cj lines.

Proof By Theorem 1.1, n(T ) has q +
∑

c points by subdivision of T n(S(T ))contains

2q+ q+
∑

c points and by Remark 1.1, PnS(T ) will contain 3q+
∑

c+ Pi points, where Pi is

the path number. By the definition of n(T ), it follows that L(T ) is a subgraph of n(T ). Also,

subgraphs of L(T ) are line-disjoint subgraphs of n[S(T )] whose union is L(T ) and the cutpoints

c of T having degree Cj are also the members of n[s(T )]. Hence this implies that n[s(T )]

contains −q + 1
2

∑

d2
i +

∑

cj lines. Apart from these lines every subdivision of T generates
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a line and a cutpoint c of degree 2. This creates q + 2q lines in n[s(T )]. Thus n[S(T )] has
1
2

∑

d2
i +

∑

cj + 2q lines. Further, the pathos contribute 2q lines to PnS(T ). Hence Pn[S(T )]

contains 1
2

∑

d2
i +

∑

cj + 4qlines. �

Corollary 2.1 For any (p, q) graph T , the number of regions in Pn[S(T )] is 2(p+ q) − 3.

§3. Planar Pathos Lict Sub-division Graph

In this section we obtain the condition for planarity of pathos.

Theorem 3.1 Pn[S(T )] of a tree T is planar if and only if ∆(T ) ≤ 3.

Proof Suppose Pn[S(T )] is planar. Assume ∆(T ) ≤ 4. Let v be a point of degree 4 in T .

By Remark 1.1, n(S(T )) is a subgraph of Pn[S(T )] and by Theorem 1.2, Pn[S(T )] is non-planar.

Clearly, Pn[S(T )] is non-planar, a contradiction.

Conversely, suppose ∆(T ) ≤ 3. By Theorem 1.2, n[S(T )] is planar. Further each block of

n[S(T )] is either K3 or K4. The pathos point is adjacent to atmost two vertices of each block

of n[S(T )]. This gives a planar Pn[S(T )]. �

We next give a characterization of trees whose pathos lict subdivision of trees are outer-

planar and maximal outerplanar.

Theorem 3.2 The pathos lict sub-division graph Pn[S(T )] of a tree T is outerplanar if and

only if ∆(T ) ≤ 2.

Proof Suppose Pn[S(T )] is outerplanar. Assume T has a point v of degree 3. The lines

incident to v and the cut-point v form 〈K4〉 as a subgraph in n[S(T )]. Hence Pn[S(T )] is

non-outerplanar, a contradiction.

Conversely, suppose T is a path Pm of length m ≥ 1, by definition each block of n[S(T )] is

K3 and n[S(T )] has 2m− 1 blocks. Also, S(T ) has exactly one path of pathos and the pathos

point is adjacent to atmost two points of each block of n[S(T )]. The pathos point together

with each block form 2m − 1 number of 〈K4 − x〉 subgraphs in Pn[S(T )]. Hence Pn[S(T )] is

outerplanar. �

Theorem 3.3 The pathos lict sub-division graph Pn[S(T )] of a tree T is maximal outerplanar

if and only if.

Proof Suppose Pn[S(T )] is maximal outerplanar. Then Pn[S(T )] is connected. Hence by

Remark 1.7, T is connected. Suppose Pn[S(T )] is K4 − x, then clearly, T is K2. Let T be any

connected tree with p > 2 points, q lines and having path number k and C cut-points. Then

clearly, Pn[S(T )] has 3q+k+C points and 1
2

∑

d2
i +4q+

∑

Cj lines. Since Pn[S(T )] is maximal
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outerplanar, by Theorem 1.3, it has [2(3q + k + C) − 3] lines. Hence

1

2

∑

d2
i + 4q +

∑

Cj = [2(3q + k + C) − 3]

= [2(3(p− 1) + k + C) − 3]

= 6p− 6 + 2k + 2C − 3

= 6p+ 2k + 2C − 9.

But for k = 1,
∑

d2
i + 8q + 2

∑

Cj = 12p+ 4C − 18 + 4,
∑

d2
i + 2

∑

Cj = 4p+ 4C − 6,
∑

d2
i + 2

∑

Cj − 4p− 4C + 6 = 0.

Since every cut-point is of degree two in a path, we have,
∑

Cj = 2C.

Therefore
∑

d2
i + 6 − 4p = 4C − 2x2C = 0.

Hence
∑

d2
i + 6 − 4p = 0. By Theorem 1.4, it follows that T is a non-empty path.

Conversely, Suppose T is a non-empty path. We now prove that Pn[S(T )] is maximal outer-

planar by induction on the number of points (≥ 2). Suppose T is K2. Then Pn[S(T )] = K4−x.
Hence it is maximal outerplanar. As the inductive hypothesis, let the pathos lict subdivision

of a non-empty path P with n points be maximal outerplanar. We now show that Pn[S(T )]

of a path P with n + 1 points is maximal outerplanar. First we prove that it is outerpla-

nar. Let the point and line sequence of the path P ′ be v1, e1, v2, e2, v3, e3, . . . , vn, en, vn+1.

P ′, S(P ′) and Pn[S(P ′)] are shown in Figure 2. Without loss of generality, P ′ − vn+1 = P .

By inductive hypothesis Pn[S(P )] is maximal outerplanar. Now the point vn+1 is one point

more in Pn[S(P ′)] than in Pn[S(P )]. Also there are only eight lines (e′n−1, en), (e′n−1, en−1),

(en−1, en), (en, R), (en, e
′
n), (en, C

′
n), (C′

n, e
′
n), (e′n, R) more in Pn[S(P ′)]. Clearly, the induced

subgraph on the points e′n−1, Cn−1, en, e′n, C′
n, R is not K4. Hence Pn[S(P ′)] is outerplanar.

We now prove Pn[S(P ′)] is maximal outerplanar. Since Pn[S(P )] is maximal outerplanar, it

has 2(3q + C + 1) − 3 lines. The outerplanar graph Pn[S(P ′)] has 2(3q + C + 1) − 3 + 8 lines

= 2[3(q + 1) + (C+) + 1] − 3 lines. By Theorem 1.3, Pn[S(P ′)] is maximal outerplanar. �

Theorem 3.4 For any tree T , Pn[S(T )] is minimally nonouterplanar if and only if ∆(T ) ≤ 3

and T has a unique point of degree 3.

Proof Suppose Pn[S(T )] is minimally non-outerplanar. Assume ∆(T ) > 3. By Theorem

3.1, Pn[S(T )] is nonplanar, a contradiction. Hence ∆(T ) ≤ 3.

Assume ∆(T ) < 3. By Theorem 3.2, Pn[S(T )] is outerplanar, a contradiction. Thus

∆(T ) = 3.

Assume there exist two points of degree 3 in T . Then n[S(T )] has at least two blocks as

K4. Any pathos point of S(T ) is adjacent to atmost two points of each block in n[S(T )] which

gives i(Pn[S(T )]) > 1, a contradiction. Hence T has exactly one point point of degree 3.
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Conversely, suppose every point of T has degree ≤ 3 and has a unique point of degree 3,

then n[S(T )] has exactly one block as K4 and remaining blocks are K3’s. Each pathos point is

adjacent to atmost two points of each block. Hence i(Pn[S(T )]) = 1. �

P ′ :
v1 v2 v3 vn−1 vn vn+1

e1 e2
en−1 en

v3v1 v′1 v2 v′2 vn−1 v′n−1
vn v′n vn+1

e1c
′
1 e′1 e2 e′2

c2c1 c′2
cn−1cn−2

en−1 e′n−1
en e′n

c′n−1 c′n

S(P ′) :

Pn[S(P ′)] :
e1 e′1 e2 e′2

c′1
c1 c′2

e′n
ene′n−1en−1

R

c′n−1 cn−1 c′n

Figure 2

§4. Traversability in Pathos Lict Subdivision of a Tree

In this section, we characterize the trees whose Pn[S(T )] is eulerian and hamiltonian.

Theorem 4.1 For any non-trivial tree T , the pathos lict subdivision of a tree is non-eulerian.

Proof Let T be a non-trivial tree. Remark 1.4 implies Pn[S(T )] always contains a point

of odd degree. Hence by Theorem 1.5, the result follows. �

Theorem 4.2 The pathos lict subdivision Pn[S(T )] of a tree T is hamiltonian if and only if

every cut-point of T is even of degree.
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Proof If T = P2, then Pn[S(T )] is K4 − x. If T is a tree with p ≥ 3 points. Suppose

Pn[S(T )] is hamiltonian. Assume that T has at least one cut-point v of odd degree m. Then

G = K1,m is a subgraph of T . Clearly, n(S(K1,m)) = Km+1, together with each point of Km

incident to a line of K3. In number of path of pathos of S(T ) there exist at least one path

of pathos Pi such that it begins with the cut-point v of S(T ). In Pn[S(T )] each pathos point

is adjacent to exactly two points of Km. Further the pathos beginning with the cut-point v

of S(T ) is adjacent to exactly one point of Km in n(S(T )). Hence this creates a cut-point in

Pn[S(T )], a contradiction.

Conversely, suppose every cut-point of T is even. Then every path of pathos starts and

ends at pendant points of T .

We consider the following cases.

Case 1 If T has only cut-points of degree two. Clearly, T is a path. Further S(T ) is also a

path with p+ q points and has exactly one path of pathos. Let T = Pl, v1, v2, · · · , vl is a path.

Now S(T ):v1, v
′
1, v2, v

′
2, · · · , v′l−1, vl for all vi ∈ V [S(Pl)] such that viv

′
i = ei, v

′
ivi+1 = e′i are

consecutive lines and for all ei, e
′
i ∈ E[S(Pn)]. Further V [n(S(T ))]={e1, e′1, e2, e′2, · · · , ei, e

′
i} ∪

{C′
1, C1, C

′
2, C2, · · · , C′

i} where,(C′
1, C1, C

′
2, C2, · · · , C′

i) are cut-points of S(T ). Since each block

is a triangle in n(S(T )) and each block consist of points as B1 = (e1C
′
1e

′
1), B2 = (e2C

′
2e

′
2), · · · ,

Bm = (eiC
′
ie

′
i). In Pn[S(T )], the pathos point w is adjacent to e1, e

′
1, e2, e

′
2, · · · , ei, e

′
i. Hence,

Pn[S(T )]= e1, e
′
1, e2, e

′
2, · · · , ei, e

′
i∪(C′

1, C1, C
′
2, C2, · · · , C′

i)∪w form a cycle as we1C
′
1e

′
1C1e2C

′
2e

′
2

· · · e′iw containing all the points of Pn[S(T )].Hence Pn[S(T )] is hamiltonian.

Case 2 If T has all cut-points of even degree and is not a path.

we consider the following subcases of this case.

Subcase 2.1. If T has exactly one cut-point v of even degree m, v = ∆(T ) and is K1,m.

Clearly, S(K1,m) = F , such that E(F )={e1, e′1, e2, e′2, · · · , eq, e
′
q}. Now n(F ) contains point set

as {e1, e′1, e2, e′2, · · · , eq, e
′
q}∪{v, C′

1, C
′
2, C

′
3, · · · , C′

q}. For S[K1,m], it has m
2 paths of pathos with

pathos point as P1, P2, · · · , Pm
2
. By definition of Pn[S(T )], each pathos point is adjacent to ex-

actly two points of n(S(T )). Also, V [Pn[S(T )]]={e1, e′1, e2, e′2, · · · , eq, e
′
q}∪{v, C′

1, C
′
2, C

′
3, · · · , C′

q}
∪{P1, P2, · · · , Pm

2
}. Then there exist a cycle containing all the points of Pn[S(T )] as P1, e

′
1, C

′
1, e1,

v, e2, C
′
2, e

′
2, P2, · · · , Pm

2
, e′q−1, C

′
q−1, eq−1, eq, C

′
q, e

′
q, P1 .

Subcase 2.2. Assume T has more than one cut-point of even degree. Then in n(S(T )) each

block is complete and every cut-point lies on exactly two blocks of n(S(T )). Let V [n(S(T ))]={e1,
e′1, e2, e

′
2, · · · , eq, e

′
q}∪{C1, C2, · · · , Ci}∪{C′

1, C
′
2, C

′
3, · · · , C′

q}∪{P1, P2, · · · , Pj}. But each Pj is

adjacent to exactly two point of the block Bj except {C1, C2, · · · , Ci}∪ {C′
1, C

′
2, C

′
3, · · · , C′

q} and

all these points together form a hamiltonian cycle of the type, {P1, e
′
1, C

′
1, e1, v, e2, C

′
2, e

′
2, P2,

· · · , Pr, e
′
k, C

′
k, ek, ek+1, C

′
k+1, e

′
k+1, Pr+1, · · · , Pj , e

′
q−1, C

′
q−1, eq−1, eq, C

′
q, e

′
q, P1}.

Hence Pn[S(T )] is hamiltonian. �
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