Scientia Magna Vol. 2 (2006), No. 3, 1-25

A note on the Pseudo-Smarandache function

A.A.K. Majumdar¹

Department of Mathematics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh

Abstract This paper gives some results and observations related to the Pseudo-Smarandache function $Z(n)$. Some explicit expressions of $Z(n)$ for some particular cases of n are also given. Keywords The Pseudo-Smarandache function, Smarandache perfect square, equivalent.

§1. Introduction

The Pseudo-Smarandache function $Z(n)$, introduced by Kashihara [1], is as follows :

Definition 1.1. For any integer $n \geq 1$, $Z(n)$ is the smallest positive integer m such that $1 + 2 + \cdots + m$ is divisible by *n*. Thus,

$$
Z(n) = \min\left\{m : m \in \mathbb{N} : n \mid \frac{m(m+1)}{2}\right\}.
$$
 (1.1)

As has been pointed out by Ibstedt [2], an equivalent definition of $Z(n)$ is

Definition 1.2.

$$
Z(n) = \min\{k : k \in \mathbb{N} : \sqrt{1 + 8kn} \text{ is a perfect square}\}.
$$

Kashihara [1] and Ibstedt [2] studied some of the properties satisfied by $Z(n)$. Their findings are summarized in the following lemmas:

Lemma 1.1. For any $m \in N$, $Z(n) \ge 1$. Moreover, $Z(n) = 1$ if and only if $n = 1$, and $Z(n) = 2$ if and only if $n = 3$.

Lemma 1.2. For any prime $p \geq 3$, $Z(p) = p - 1$.

Lemma 1.3. For any prime $p \ge 3$ and any $k \in N$, $Z(p^k) = p^k - 1$.

Lemma 1.4. For any $k \in N$, $Z(2^k) = 2^{k+1} - 1$.

Lemma 1.5. For any composite number $n \geq 4$, $Z(n) \geq \max\{Z(N): N \mid n\}$.

In this paper, we give some results related to the Pseudo-Smarandache function $Z(n)$.

In §2, we present the main results of this paper. Simple explicit expressions for $Z(n)$ are available for particular cases of n. In Theorems 2.1 – 2.11, we give the expressions for $Z(2p)$, $Z(3p)$, $Z(2p^2)$, $Z(3p^3)$, $Z(2p^k)$, $Z(3p^k)$, $Z(4p)$, $Z(5p)$, $Z(6p)$, $Z(7p)$ and $Z(11p)$, where p is a prime and $k(\geq 3)$ is an integer. Ibstedt [2] gives an expression for $Z(pq)$ where p and q are distinct primes. We give an alternative expressions for $Z(pq)$, which is more efficient from the computational point of view. This is given in Theorem 2.12, whose proof shows that the solution of $Z(pq)$ involves the solution of two Diophantine equations. Some particular cases of Theorem

¹On Sabbatical leave from: Ritsumeikan Asia-Pacific University, 1-1 Jumonjibaru, Beppu-shi, Oita-ken, Japan.

2.12 are given in Corollaries $2.1 - 2.16$. We conclude this paper with some observations about the properties of $Z(n)$, given in four Remarks in the last §3.

§2. Main Results

We first state and prove the following results.

Lemma 2.1. Let $n = \frac{k(k+1)}{2}$ $\frac{k+1}{2}$ for some $k \in N$. Then, $Z(n) = k$.

Proof. Noting that $k(k + 1) = m(m + 1)$ if and only if $k = m$, the result follows. The following lemma gives lower and upper bounds of $Z(n)$.

Lemma 2.2. $3 \le n \le 2n - 1$ for all $n \ge 4$.

Proof. Letting $f(m) = \frac{m(m+1)}{2}$, $m \in N$, see that $f(m)$ is strictly increasing in m with $f(2) = 3$. Thus, $Z(n) = 2$ if and only if $n = 3$. This, together with Lemma 1.1, gives the lower bound of $Z(n)$ for $n \geq 4$. Again, since $n \mid f(2n-1)$, it follows that $Z(n)$ cannot be greater than $2n-1$. Since $Z(n) = 2n-1$ if $n = 2k$ for some $k \in N$, it follows that the upper bound of $Z(n)$ in Lemma 2.2 cannot be improved further. However, the lower bound of $Z(n)$ can be improved. For example, since $f(4) = 10$, it follows that $Z(n) \geq 5$ for all $n \geq 11$. A better lower bound of $Z(n)$ is given in Lemma 1.5 for the case when n is a composite number. In Theorems 2.1 – 2.4, we give expressions for $Z(2p)$, $Z(3p)$, $Z(2p^2)$ and $Z(3p^2)$ where $p \ge 5$ is a prime. To prove the theorems, we need the following results.

Lemma 2.3. Let p be a prime. Let an integer $n(\geq p)$ be divisible by p^k for some integer $k(\geq 1)$. Then, p^k does not divide $n+1$ (and $n-1$).

Lemma 2.4. 6 | $n(n+1)(n+2)$ for any $n \in N$. In particular, 6 | (p^2-1) for any prime $p \geq 5$.

Proof. The first part is a well-known result. In particular, for any prime $p > 5$, 6 $(p-1)p(p+1)$. But since $p(\geq 5)$ is not divisible by 6, it follows that 6 | $(p-1)(p+1)$.

Theorem 2.1. If $p \geq 5$ is a prime, then

$$
Z(2p) = \begin{cases} p-1, & \text{if } 4 \mid (p-1); \\ p, & \text{if } 4 \mid (p+1). \end{cases}
$$

 \overline{a}

Proof.

$$
Z(2p) = \min\left\{m: 2p \mid \frac{m(m+1)}{2}\right\} = \min\left\{m: p \mid \frac{m(m+1)}{4}\right\}.
$$
 (1)

If $p \mid m(m+1)$, then p must divide either m or $m+1$, but not both (by Lemma 2.3). Thus, the minimum m in (1) may be taken as $p-1$ or p depending on whether $p-1$ or $p+1$ respectively is divisible by 4. We now consider the following two cases that may arise :

Case 1 : p is of the form p=4a+1 for some integer $a \ge 1$. In this case, 4 | $(p-1)$, and hence, $Z(2p) = p - 1$.

Case 2 : p is of the form $p = 4a + 3$ for some integer $a \ge 1$. Here, $4 | (p + 1)$ and hence, $Z(2p) = p$.

Theorem 2.2. If $p \geq 5$ is a prime, then

$$
Z(3p) = \begin{cases} p-1, & \text{if } 3 \mid (p-1); \\ p, & \text{if } 3 \mid (p+1). \end{cases}
$$

Proof.

$$
Z(3p) = \min\left\{m: 3p \mid \frac{m(m+1)}{2}\right\} = \min\left\{m: p \mid \frac{m(m+1)}{6}\right\}.
$$
 (2)

If $p \mid m(m+1)$, then p must divide either m or m+1, but not both (by Lemma 2.3). Thus, the minimum m in (2) may be taken as $p-1$ or p according as $p-1$ or $p+1$ respectively is divisible by 6. But, since both $p-1$ and $p+1$ are divisible by 2, it follows that the minimum m in (2) may be taken as $p - 1$ or p according as $p - 1$ or $p + 1$ respectively is divisible by 3.

We now consider the following two possible cases that may arise :

Case 1 : p is of the form $p = 3a + 1$ for some integer $a \ge 1$. In this case, 3 | $(p-1)$, and hence, $Z(3p) = p - 1$.

Case 2 : p is of the form $p = 3a + 2$ for some integer $a \ge 1$. Here, $3 | (p + 1)$, and hence, $Z(3p) = p$.

Theorem 2.3. If $p \ge 3$ is a prime, then $Z(2p^2) = p^2 - 1$. Proof.

$$
Z(2p^2) = \min\left\{m: 2p^2 \mid \frac{m(m+1)}{2}\right\} = \min\left\{m: p^2 \mid \frac{m(m+1)}{4}\right\}.
$$
 (3)

If $p^2|m(m+1)$, then p^2 must divide either m or $m+1$, but not both (by Lemma 2.3). Thus, the minimum m in (3) may be taken as $p^2 - 1$ if $p^2 - 1$ is divisible by 4. But, since both $p-1$ and $p+1$ are divisible by 2, it follows that $4|(p-1)(p+1)$. Hence, $Z(2p^2) = p^2 - 1$.

Theorem 2.4. If $p \ge 5$ is a prime, then $Z(3p^2) = p^2 - 1$. Proof.

$$
Z(3p^2) = \min\left\{m: 3p^2 \mid \frac{m(m+1)}{2}\right\} = \min\left\{m: p^2 \mid \frac{m(m+1)}{6}\right\}.
$$
 (4)

If $p^2|m(m+1)$, then p^2 must divide either m or $m+1$, but not both (by Lemma 2.3). Thus, the minimum m in (4) may be taken as p^21 if p^2-1 is divisible by 6. By Lemma 2.4, 6 | $(p^2 - 1)$. Consequently, $Z(2p^2) = p^2 - 1$.

Definition 2.1. A function $g : N \to N$ is called multiplicative if and only if $g(n_1n_2)$ $g(n_1)g(n_2)$ for all $n_1, n_2 \in N$ with $(n_1, n_2) = 1$.

Remark 2.1. From Lemma 1.2 and Theorem 2.1, we see that $Z(2p) \neq 3(p-1) = Z(2)Z(p)$ for any odd prime p. Moreover, $Z(3p^2) = p^2 - 1 \neq Z(2p^2) + Z(p^2)$. These show that $Z(n)$ is neither additive nor multiplicative, as has already been noted by Kashihara [1]. The expressions for $Z(2p^k)$ and $Z(3p^k)$ for $k \geq 3$ are given in Theorem 2.5 and Theorem 2.6 respectively. For the proofs, we need the following results:

Lemma 2.5.

- (1) 4 divides $3^2k 1$ for any integer $k \geq 1$.
- (2) 4 divides $3^{2k+1} + 1$ for any integer $k \geq 0$.

(1) Writing $3^{2k} - 1 = (3k - 1)(3k + 1)$, the result follows immediately.

(2) The proof is by induction on k. The result is clearly true for $k = 0$. So, we assume that the result is true for some integer k, so that 4 divides $3^{2k+1} + 1$ for some k. Now, since $3^{2k+3} + 1 = 9(3^{2k+1} + 1) - 8$, it follows that 4 divides $3^{2k+3} + 1$, completing the induction.

Lemma 2.6.

(1) 3 divides $2^2k - 1$ for any integer $k \geq 1$.

(2) 3 divides $2^{2k+1} + 1$ for any integer $k \ge 0$.

Proof.

(1) By Lemma 2.4, 3 divides $(2k-1)2k(2k+1)$. Since 3 does not divide $2k$, 3 must divide $(2k-1)(2k+1) = 2^2k - 1.$

(2) The result is clearly true for $k = 0$. To prove by induction, the induction hypothesis is that 3 divides $2^{2k+1} + 1$ for some k. Now, since $2^{2k+3} + 1 = 4(3^{2k+1} + 1) - 3$, it follows that 3 divides $2^{2k+3} + 1$, so that the result is true for $k+1$ as well, completing the induction.

Theorem 2.5. If $p \geq 3$ is a prime and $k \geq 3$ is an integer, then

$$
Z(2p^k) = \begin{cases} p^k, & \text{if } 4 \mid (p-1) \text{ and } k \text{ is odd;} \\ p^k - 1, & \text{otherwise.} \end{cases}
$$

Proof.

$$
Z(2p^k) = \min\left\{m: 2p^k \mid \frac{m(m+1)}{2}\right\} = \min\left\{m: p^k \mid \frac{m(m+1)}{4}\right\}.
$$
 (5)

If $p^k|m(m+1)$, then p^k must divide either m or $m+1$, but not both (by Lemma 2.3). Thus, the minimum m in (5) may be taken as $p^k - 1$ or p^k according as $p^k - 1$ or p^k is respectively divisible by 4. We now consider the following two possibilities:

Case 1 : p is of the form $4a + 1$ for some integer $a \ge 1$. In this case, $p^k = (4a + 1)^k$ $(4a)^k + C_k^1(4a)^{k-1} + \cdots + C_k^{k-1}(4a) + 1$, showing that $4 \mid (p^k - 1)$. Hence, in this case, $Z(2p^k) = p^k - 1.$

Case 2 : p is of the form $4a + 3$ for some integer $a \ge 1$. Here, $p^k = (4a + 3)k =$ $(4a)^k + C_k^1 (4a)^{k-1}3 + \cdots + C_k^{k-1} (4a)3^{k-1} + 3^k.$

(1) If $k \ge 2$ is even, then by Lemma 2.5, 4 | $(3^k - 1)$, so that 4 | $(p^k - 1)$. Thus, $Z(2p^k) = p^k - 1.$

(2) If $k \ge 3$ is odd, then by Lemma 2.5, 4 $| (3^k + 1)$, and so 4 $| (p^k + 1)$. Hence, $Z(2p^k) = p^k$. All these complete the proof of the theorem.

Theorem 2.6. If $p \geq 3$ is a prime and $k \geq 3$ is an integer, then

$$
Z(3p^k) = \begin{cases} p^k, & \text{if } 3 \mid (p+1) \text{ and } k \text{ is odd;} \\ p^k - 1, & \text{otherwise.} \end{cases}
$$

Proof.

$$
Z(3p^k) = \min\left\{m: 3p^k \mid \frac{m(m+1)}{2}\right\} = \min\left\{m: p^k \mid \frac{m(m+1)}{6}\right\}.
$$
 (6)

If $p^k|m(m+1)$, then p^k must divide either m or $m+1$, but not both (by Lemma 2.3). Thus, the minimum m in (6) may be taken as $p^k - 1$ or p^k according as $p^k - 1$ or p^k is respectively divisible by 6. We now consider the following two possible cases:

Case 1 : p is of the form $3a + 1$ for some integer $a \ge 1$. In this case, $p^k = (3a + 1)^k$ $(3a)^k + C_k^1(3a)^{k-1} + \cdots + C_k^{k-1}(3a) + 1$, it follows that $3 \mid (p^k - 1)$. Thus, in this case, $Z(3p^k) = p^k - 1.$

Case 2: p is of the form $3a + 2$ for some integer $a \ge 1$. Here, $p^k = (3a + 2)k =$ $(3a)^k + C_k^1 (3a)^{k-1} (2) + \cdots + C_k^{k-1} (3a) 2^{k-1} + 2^k.$

(1) If $k \ge 2$ is even, then by Lemma 2.6, 3 | $(2^k - 1)$, so that 3 | $(p^k - 1)$. Thus, $Z(3p^k) = p^k - 1.$

(2) If $k \ge 3$ is odd, then by Lemma 2.6, $3 | (2^k + 1)$, and so $3 | (p^k + 1)$. Thus, $Z(3p^k) = p^k$.

In Theorem 2.7 – Theorem 2.9, we give the expressions for $Z(4p)$, $Z(5p)$ and $Z(6p)$ respectively, where p is a prime. Note that, each case involves 4 possibilities.

Theorem 2.7. If $p \geq 5$ is a prime, then

$$
Z(4p) = \begin{cases} p-1, & \text{if } 8 \mid (p-1); \\ p, & \text{if } 8 \mid (p+1); \\ 3p-1, & \text{if } 8 \mid (3p-1); \\ 3p, & \text{if } 8 \mid (3p+1). \end{cases}
$$

Proof.

$$
Z(4p) = \min\left\{m : 4p \mid \frac{m(m+1)}{2}\right\} = \min\left\{m : p \mid \frac{m(m+1)}{8}\right\}.
$$
 (7)

If $p|m(m+1)$, then p must divide either m or $m+1$, but not both (by Lemma 2.3), and then 8 must divide either $p-1$ or $p+1$, In the particular case when 8 divides $p-1$ or $p+1$, the minimum m in (7) may be taken as $p-1$ or $p+1$ respectively. We now consider the following four cases may arise:

Case 1 : p is of the form $p = 8a + 1$ for some integer $a \ge 1$. In this case, $8 \mid (p-1)$, and hence $Z(4p) = p - 1$.

Case 2 : p is of the form $p = 8a + 7$ for some integer $a \ge 1$. Here, $8 \mid (p + 1)$, and hence $Z(4p) = p$.

Case 3 : p is of the form $p = 8a + 3$ for some integer $a \ge 1$. In this case, 8 $(3p - 1)$, and hence $Z(4p) = 3p - 1$.

Case 4 : p is of the form $p = 8a + 5$ for some integer $a \ge 1$. Here, $8 \mid (3p + 1)$, and hence $Z(4p) = 3p.$

Theorem 2.8. If $p \geq 7$ is a prime, then

$$
Z(5p) = \begin{cases} p-1, & \text{if } 10 \mid (p-1); \\ p, & \text{if } 10 \mid (p+1); \\ 2p-1, & \text{if } 5 \mid (2p-1); \\ 2p, & \text{if } 5 \mid (2p+1). \end{cases}
$$

$$
Z(5p) = \min\left\{m : 5p \mid \frac{m(m+1)}{2}\right\} = \min\left\{m : p \mid \frac{m(m+1)}{10}\right\}.
$$
 (8)

If $p|m(m+1)$, then p must divide either m or $m+1$, but not both (by Lemma 2.3), and then 5 must divide either $m-1$ or $m+1$, In the particular case when 5 divides $p-1$ or $p+1$, the minimum m in (8) may be taken as $p-1$ or $p+1$ respectively. We now consider the four below that may arise:

Case 1 : p is a prime whose last digit is 1. In this case, $10 | (p-1)$, and hence $Z(5p) = p-1$. Case 2 : p is a prime whose last digit is 9. In such a case, $10 | (p+1)$, and so $Z(5p) = p$.

Case 3 : p is a prime whose last digit is 3. In this case, $5 \mid (2p-1)$. Thus, the minimum m in (9) may be taken as $2p - 1$. Hence $Z(5p) = 2p - 1$.

Case 4 : p is a prime whose last digit is 7. Here, $5 | (2p + 1)$, and hence $Z(5p) = 2p$.

Theorem 2.9. If $p \geq 5$ is a prime, then

$$
Z(6p) = \begin{cases} p-1, & \text{if } 12 \mid (p-1); \\ p, & \text{if } 12 \mid (p+1); \\ 2p-1, & \text{if } 4 \mid (3p+1); \\ 2p, & \text{if } 4 \mid (3p-1). \end{cases}
$$

Proof.

$$
Z(6p) = \min\left\{m : 6p \mid \frac{m(m+1)}{2}\right\} = \min\left\{m : p \mid \frac{m(m+1)}{12}\right\}.
$$
 (9)

If $p|m(m+1)$, then p must divide either m or $m+1$, but not both (by Lemma 2.3), and then 12 must divide either $m-1$ or $m+1$, In the particular case when 12 divides $p-1$ or $p+1$, the minimum m in (9) may be taken as $p-1$ or p respectively. We now consider the four cases that may arise:

Case 1 : p is of the form $p = 12a + 1$ for some integer $a \ge 1$. In this case, $12 | (p-1)$, and hence $Z(6p) = p - 1$.

Case 2 : p is of the form $p = 12a + 11$ for some integer $a \ge 1$. Here, $12 | (p+1)$, and hence $Z(6p) = p.$

Case 3 : p is of the form $p = 12a + 5$ for some integer $a \ge 1$. In this case, $4 | (3p+1)$. The minimum m in (10) may be taken as 3p, and hence $Z(6p) = 3p$.

Case 4 : p is of the form $p = 12a + 7$ for some integer $a \ge 1$. Here, 4 | (3p – 1), and hence $Z(6p) = 3p - 1.$

It is possible to find explicit expressions for $Z(7p)$ or $Z(11p)$, where p is a prime, as are given in Theorem 2.10 and Theorem 2.11 respectively, but it becomes more complicated. For example, in finding the expression for $Z(7p)$, we have to consider all the six possibilities, while the expression for $Z(11p)$ involves 10 alternatives.

Theorem 2.10. If $p \ge 11$ is a prime, then

$$
Z(7p) = \left\{ \begin{array}{ll} p-1, & \text{ if } 7 \mid (p-1); \\ p, & \text{ if } 7 \mid (p+1); \\ 2p-1, & \text{ if } 7 \mid (2p-1); \\ 2p, & \text{ if } 7 \mid (2p+1); \\ 3p-1, & \text{ if } 7 \mid (3p-1); \\ 3p, & \text{ if } 7 \mid (3p+1). \end{array} \right.
$$

Proof:

,

$$
Z(7p) = \min\{m : 7p \mid \frac{m(m+1)}{2}\} = \min\{m : p \mid \frac{m(m+1)}{14}\}.
$$
 (10)

If $p|m(m + 1)$, then p must divide either m or $m + 1$, but not both (by Lemma 2.3), and then 7 must divide either $m + 1$ or m respectively. In the particular case when 12 divides $p - 1$ or $p + 1$, the minimum m in (10) may be taken as $p - 1$ or p respectively. We now consider the following six cases that may arise:

Case 1 : p is of the form $p = 7a+1$ for some integer $a \ge 1$. In this case, $7|(p-1)$. Therefore, $Z(7p) = p - 1.$

Case 2 : p is of the form $p = 7a + 6$ for some integer $a \ge 1$. Here, $7|(p+1)$, and so, $Z(7p) = p.$

Case 3 : p is of the form $p = 7a + 2$ for some integer $a \ge 1$, so that $7|(3p+1)$. In this case, the minimum m in (11) may be taken as 3p. That is, $Z(7p) = 3p$.

Case 4 : p is of the form $p = 7a + 5$ for some integer $a \ge 1$. Here, $7|(3p-1)$, and hence, $Z(7p) = 3p - 1.$

Case 5 : p is of the form $p = 7a + 3$ for some integer $a \ge 1$. In this case, $7|(2p+1)$, and hence, $Z(7p) = 2p$.

Case 6 : p is of the form $p = 7a + 4$ for some integer $a \ge 1$. Here, $7|(2p-1)$, and hence, $Z(7p) = 2p - 1.$

Theorem 2.11. For any prime $p \geq 13$,

$$
Z(7p) = \begin{cases} p-1, & \text{if } 11 \mid (p-1); \\ p, & \text{if } 11 \mid (p+1); \\ 2p-1, & \text{if } 11 \mid (2p-1); \\ 2p, & \text{if } 11 \mid (2p+1); \\ 3p-1, & \text{if } 11 \mid (3p-1); \\ 3p, & \text{if } 11 \mid (3p+1); \\ 4p-1, & \text{if } 11 \mid (4p-1); \\ 4p, & \text{if } 11 \mid (4p+1); \\ 5p-1, & \text{if } 11 \mid (5p-1); \\ 5p, & \text{if } 11 \mid (5p+1). \end{cases}
$$

Proof:

$$
Z(11p) = \min\{m: 11p \mid \frac{m(m+1)}{2}\} = \min\{m: p \mid \frac{m(m+1)}{22}\}.
$$
 (11)

If $p|m(m+1)$, then p must divide either m or $m+1$, but not both (by Lemma 2.3), and then 11 must divide either $m+1$ or m respectively. In the particular case when 11 divides $p-1$ or $p + 1$, the minimum m in (11) may be taken as $p - 1$ or p respectively. We have to consider the ten possible cases that may arise :

Case 1 : p is of the form $p = 11a + 1$ for some integer $a > 1$. In this case, $11|(p-1)$, and so, $Z(11p) = p - 1$.

Case 2 : p is of the form $p = 11a + 10$ for some integer $a \ge 1$. Here, $11|(p+1)$, and hence, $Z(11p) = p.$

Case 3 : p is of the form $p = 11a + 2$ for some integer $a \ge 1$. In this case, $11(5p+1)$, and hence, $Z(11p) = 5p$.

Case 4 : p is of the form $p = 11a + 9$ for some integer $a \ge 1$. Here, $11(5p-1)$, and hence, $Z(11p) = 5p - 1.$

Case 5 : p is of the form $p = 11a + 3$ for some integer $a \ge 1$. In this case, $11|(4p-1)$, and hence, $Z(11p) = 4p - 1$.

Case 6 : p is of the form $p = 11a + 8$ for some integer $a \ge 1$. Here, $11|(4p+1)$, and hence, $Z(11p) = 4p.$

Case 7 : p is of the form $p = 11a + 4$ for some integer $a \ge 1$. In this case, $11(3p-1)$, and hence, $Z(11p) = 3p - 1$.

Case 8 : p is of the form $p = 11a + 7$ for some integer $a \ge 1$. Here, $11|(3p+1)$, and hence, $Z(11p) = 3p.$

Case 9 : p is of the form $p = 11a + 5$ for some integer $a \ge 1$. In this case, $11|(2p+1)$, and hence, $Z(11p) = 2p$.

Case 10 : p is of the form $p = 11a + 6$ for some integer $a > 1$. Here, $11(2p-1)$, and hence, $Z(11p) = 2p - 1.$

In Theorem 2.12, we give an expression for $Z(pq)$, where p and q are two distinct primes. In this connection, we state the following lemma. The proof of the lemma is similar to, for example, Theorem 12.2 of Gioia [3], and is omitted here.

Lemma 2.7. Let p and q be two distinct primes. Then, the Diophantine equation

$$
qy - px = 1
$$

has an infinite number of solutions. Moreover, if (x_0, y_0) is a solution of the Diophantine equation, then any solution is of the form

$$
x = x_0 + qt, y = y_0 + pt,
$$

where $t \geq 0$ is an integer.

Theorem 2.12. Let p and q be two primes with $q > p \ge 5$. Then,

$$
Z(pq) = \min\{qy_0 - 1, px_0 - 1\},\
$$

where

$$
y_0 = \min\{y : x, y \in N, qy - px = 1\},\
$$

 $x_0 = \min\{x : x, y \in N, px - qy = 1\}.$

Proof: Since

$$
Z(pq) = \min\{m : pq | \frac{m(m+1)}{2}\},\tag{12}
$$

it follows that we have to consider the three cases below that may arise :

Case 1 : When $p|m$ and $q|(m+1)$. In this case, $m = px$ for some integer $x \ge 1$, $m+1 = qy$ for some integer $y \geq 1$. From these two equations, we get the Diophantine equation

$$
qy - px = 1.
$$

By Lemma 2.7, the above Diophantine equation has infinite number of solutions. Let

$$
y_0 = \min\{y : x, y \in N, qy - px = 1\}.
$$

For this y₀, the corresponding x₀ is given by the equation $q_0y - p_0x = 1$. Note that y₀ and x₀ cannot be both odd or both even. Then, the minimum m in (12) is given by

$$
m + 1 = qy_0 \Rightarrow m = qy_0 - 1.
$$

Case 2 : When $p|(m+1)$ and $q|m$. Here, $m+1 = px$ for some integer $x \ge 1$, $m = qy$ for some integer $y \geq 1$. These two equations lead to the Diophantine equation. $px - qy = 1$. Let

$$
x_0 = \min\{x : x, y \in N, px - qy = 1\}.
$$

For this x_0 , the corresponding y_0 is given by $y_0 = (px_0-1)/q$. Here also, x_0 and y_0 both cannot be odd or even simultaneously. The minimum m in (12) is given by

$$
m + 1 = px_0 \Rightarrow m = px_0 - 1.
$$

Case 3 : When $pq|(m+1)$. In this case, $m = pq-1$. But then, by Case 1 and Case 2 above. this does not give the minimum m. Thus, this case cannot occur. The proof of the theorem now follows by virtue of Case 1 and Case 2.

Remark 2.2. Let p and q be two primes with $q \ge p \ge 5$. Let $q = kp + \ell$ for some integers k and ℓ with $k \ge 1$ and $1 \le \ell \le p - 1$. We now consider the two cases given in Theorem 2.12:

Case 1 : When $p|m$ and $q|(m+1)$. In this case, $m = px$ for some integer $x \ge 1, m+1 =$ $qy = (kp + \ell)y$ for some integer $y \ge 1$. From these two equations, we get

$$
\ell y - (x - ky)p = 1\tag{2.1}.
$$

Case 2 : When $p|(m+1)$ and $q|m$. Here, $m+1 = px$ for some integer $x \ge 1$, $m = (kp+\ell)y$ for some integer $y \geq 1$. These two equations lead to

$$
(x - ky)p - \ell y = 1
$$
\n^(2.2)

In some particular cases, explicit expressions of $Z(pq)$ may be found. These are given in the following corollaries.

Corollary 2.1. Let p and q be two primes with $q > p \geq 5$. Let $q = kp+1$ for some integer $k \geq 2$. Then, $Z(pq) = q - 1$.

Proof. From (2.1) with $\ell = 1$, we get $y - (x - ky)p = 1$, the minimum solution of which is $y = 1$, $x = ky = k$. Then, the minimum m in (12) is given by

$$
m + 1 = qy = q \Rightarrow m = q - 1.
$$

Note that, from (2.2) with $\ell = 1$, we have $(x - ky)p - y = 1$, with the least possible solution $y = p - 1$ (and $x - ky = 1$).

Corollary 2.2. Let p and q be two primes with $q > p \ge 5$. Let $q = (k+1)p-1$ for some integer $k \geq 1$.

Then, $Z(pq) = q$.

Proof. From (2.2) with $\ell = p - 1$, we have, $y - [(k + 1)y - x]p = 1$, the minimum solution of which is $y = 1$, $x = (k+1)y = k+1$. Then, the minimum m in (12) is given by $m = qy = q$. Note that, from (2.1) with $\ell = p - 1$, we have $[(k + 1)y - x]p - x = 1$ with the least possible solution $y = p - 1$ (and $(k + 1)y - x = 1$).

Corollary 2.3. Let p and q be two primes with $q > p \ge 5$. Let $q = kp + 2$ for some integer $k \geq 1$. Then,

$$
Z(pq) = \frac{q(p-1)}{2}.
$$

Proof. From (2.2) with $\ell = 2$, we have $(x - ky)p - 2y = 1$, with the minimum solution $y = \frac{p-1}{2}$ (and $x - ky = 1$). This gives $m = qy = \frac{q(p-1)}{2}$ $\frac{2^{j-1}}{2}$ as one possible solution of (12). Now, (2.1) with $\ell = 2$ gives $2y - (x - ky)p = 1$, with the minimum solution $y = \frac{p+1}{2}$ (and $x = ky + 1$). This gives $m = qy - 1 = \frac{q(p+1)}{2} - 1$ as another possible solution of (12). Now, since $\frac{q(p+1)}{2} - 1 > \frac{q(p-1)}{2}$ $\frac{2^{n-1}}{2}$, it follows that

$$
Z(pq) = \frac{q(p-1)}{2},
$$

which we intended to prove.

Corollary 2.4. Let p and q be two primes with $q > p \ge 5$. Let $q = (k + 1)p - 2$ for some integer $k \geq 1$. Then,

$$
Z(pq) = \frac{q(p-1)}{2} - 1.
$$

Proof. By (2.1) with $\ell = p - 2$, we get $[(k + 1)y - x]p - 2y = 1$, whose minimum solution is $y = \frac{p-1}{2}$ (and $x = (k+1)y-1$). This gives $m = qy-1 = \frac{q(p-1)}{2} - 1$ as one possible solution of (12). Note that, (2.2) with $\ell = p - 2$ gives $2y - [(k+1)y - x]p = 1$, with the minimum solution $y = \frac{p+1}{2}$ (and $x = (k+1)y-1$). Corresponding to this case, we get $m = qy = \frac{q(p+1)}{2}$ $\frac{p+1}{2}$ as another possible solution of (12). But since $\frac{q(p+1)}{2} > \frac{q(p-1)}{2} - 1$, it follows that $Z(pq) = \frac{q(p-1)}{2} - 1$, establishing the theorem.

Corollary 2.5. Let p and q be two primes with $q > p \ge 7$. Let $q = kp + 3$ for some integer $k \geq 1$. Then, \overline{a}

$$
Z(pq) = \begin{cases} \frac{q(p-1)}{3}, & \text{if } 3|(p-1); \\ \frac{q(p+1)}{3} - 1, & \text{if } 3|(p+1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = 3$, we have respectively

$$
3y - (x - ky)p = 1,\t(13)
$$

$$
(x - ky)p - 3y = 1.
$$
\n
$$
(14)
$$

We now consider the following two possible cases :

Case 1 : When 3 divides $p-1$.

In this case, the minimum solution is obtained from (14), which is $y = \frac{p-1}{3}$ (and $x - ky = 1$). Also, $p-1$ is divisible by 2 as well. Therefore, the minimum m in (12) is $m = qy = \frac{q(p-1)}{3}$ $\frac{2^{j-1}}{3}$.

Case 2 : When 3 divides $p + 1$.

In this case, (13) gives the minimum solution, which is $y = \frac{p+1}{3}$ (and $x - ky = 1$). Note that, 2 divides $p + 1$. Therefore, the minimum m in (12) $m = qy - 1 = \frac{q(p+1)}{3} - 1$.

Thus, the theorem is established.

Corollary 2.6. Let p and q be two primes with $q > p \ge 7$. Let $q = (k+1)p - 3$ for some integer $k \geq 1$. Then, \overline{a}

$$
Z(pq) = \begin{cases} \frac{q(p+1)}{3}, & \text{if } 3|(p+1); \\ \frac{q(p-1)}{3} - 1, & \text{if } 3|(p-1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = p - 3$, we have respectively

$$
[(k+1)y - x]p - 3y = 1,
$$
\n(15)

$$
3y - [(k+1)y - x]p = 1.
$$
\n(16)

We now consider the following two cases :

Case 1 : When 3 divides $p + 1$.

In this case, the minimum solution, obtained from (14), is $y = \frac{p+1}{3}$ (and $x = (k+1)y$ 1). Moreover, 2 divides $p + 1$. Therefore, the minimum m in (12) is $m = qy = \frac{q(p+1)}{3}$ $\frac{1}{3}$.

Case 2 : When 3 divides $p-1$.

In this case, the minimum solution, obtained from (13), is $y = \frac{p-1}{3}$ (and $x = (k+1)y - 1$). Moreover, 2 divides $p-1$. Therefore, the minimum m in (12) is $m = qy = \frac{q(p-1)}{3} - 1$.

Corollary 2.7. Let p and q be two primes with $q > p \ge 7$. Let $q = kp + 4$ for some integer $k \geq 1$. Then, \overline{a}

$$
Z(pq) = \begin{cases} \frac{q(p-1)}{4}, & \text{if } 4|(p-1); \\ \frac{q(p+1)}{4} - 1, & \text{if } 4|(p+1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = 4$, we have respectively

$$
4y - (x - ky)p = 1,\t(17)
$$

$$
(x - ky)p - 4y = 1.
$$
\n
$$
(18)
$$

Now, for any prime $p \geq 7$, exactly one of the following two cases can occur : Either $p-1$ is divisible by 4, or $p+1$ is divisible by 4. We thus consider the two possibilities separately below:

Case 1 : When 4 divides $p-1$.

In this case, the minimum solution is obtained from (18), is $y = \frac{p-1}{4}$ (and $x = ky + 1$). Therefore, the minimum m in (12) is is $m = qy = \frac{q(p-1)}{4}$ $\frac{(-1)}{4}$.

Case 2 : When 4 divides $p + 1$.

In this case, (17) gives the minimum solution, which is $y = \frac{p+1}{4}$ (and $x = ky+1$). Therefore, the minimum m in (12) $m = qy - 1 = \frac{q(p+1)}{4} - 1$.

Corollary 2.8. Let p and q be two primes with $q > p \ge 7$. Let $q = (k + 1)p - 4$ for some integer $k \geq 1$. Then, \overline{a}

$$
Z(pq) = \begin{cases} \frac{q(p+1)}{4}, & \text{if } 4|(p+1); \\ \frac{q(p-1)}{4} - 1, & \text{if } 4|(p-1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = p - 4$, we have respectively

$$
[(k+1)y - x]p - 4y = 1,
$$
\n(19)

$$
4y - [(k+1)y - x]p = 1.
$$
\n(20)

We now consider the following two cases which are the only possibilities (as noted in the proof of Corollary 2.7).

Case 1 : When 4 divides $p + 1$.

In this case, the minimum solution obtained from (20) is $y = \frac{p+1}{4}$ (and $x = (k+1)y$ 1). Therefore, the minimum m in (12) is $m = qy = \frac{q(p+1)}{4}$ $\frac{1}{4}$.

Case 2 : When 4 divides $p-1$.

In this case, the minimum solution, obtained from (19), is $y = \frac{p-1}{4}$ (and $x = (k+1)y$ 1). Therefore, the minimum m in (12) is $m = qy = \frac{q(p-1)}{4} - 1$.

Corollary 2.9 . Let p and q be two primes with $q > p \ge 11$. Let $q = kp + 5$ for some integer $k \geq 1$. Then, \overline{a}

$$
Z(pq) = \begin{cases} \frac{q(p-1)}{5}, & \text{if } 5|(p-1); \\ q(2a+1)-1, & \text{if } p = 5a+2; \\ q(2a+1), & \text{if } p = 5a+3; \\ \frac{q(p+1)}{5}-1, & \text{if } 5|(p+1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = 5$, we have respectively

$$
5y - (x - ky)p = 1,\t(21)
$$

$$
(x - ky)p - 5y = 1.
$$
\n
$$
(22)
$$

Now, for any prime $p \geq 7$, exactly one of the following four cases occur:

Case 1 : When p is of the form $p = 5a + 1$ for some integer $a \ge 2$.

In this case, 5 divides $p-1$. Then, the minimum solution is obtained from (22) which is $y = \frac{p-1}{5}$ (and $x - ky = 1$). Therefore, the minimum m in (12) is $m = qy = \frac{q(p-1)}{5}$ $\frac{(-1)}{5}$.

Case 2 : When p is of the form $p = 5a + 2$ for some integer $a > 2$.

In this case, from (21) and (22), we get respectively

$$
1 = 5y - (x - ky)(5a + 2) = 5[y - (x - ky)a] - 2(x - ky),
$$
\n(23)

$$
1 = (x - ky)(5a + 2) - 5y = 2(x - ky) - 5[y - (x - ky)a]
$$
\n(24)

Clearly, the minimum solution is obtained from (23), which is

 $y - (x - ky)a = 1$, $x - ky = 2 \implies y = 2a + 1$ (and $x = k(2a + 1) + 2$).

Hence, in this case, the minimum m in (12) is $m = qy - 1 = q(2a + 1) - 1$.

Case 3 : When p is of the form $p = 5a + 3$ for some integer $a \ge 2$. From (21) and (22), we get

$$
1 = 5y - (x - ky)(5a + 3) = 5[y - (x - ky)a] - 3(x - ky),
$$
\n(25)

$$
1 = (x - ky)(5a + 3) - 5y = 3(x - ky) - 5[y - (x - ky)a].
$$
\n(26)

The minimum solution is obtained from (27) as follows :

- $y (x ky)a = 1$, $x ky = 2 \implies y = 2a + 1$ (and $x = k(2a + 1) + 2$).
- Hence, in this case, the minimum m in (12) is $m = qy = q(2a + 1)$.

Case 4 : When p is of the form $p = 5a + 4$ for some integer $a > 2$.

In this case, 5 divides $p + 1$. Then, the minimum solution is obtained from (21), which is $y = \frac{p+1}{5}$ (and $x - ky = 1$). Therefore, the minimum m in (12) is $m = qy - 1 = \frac{q(p+1)}{5} - 1$.

Corollary 2.10. Let p and q be two primes with $q > p \ge 11$. Let $q = (k + 1)p - 5$ for some integer $k \geq 1$. Then,

$$
Z(pq) = \begin{cases} \frac{q(p-1)}{5} - 1, & \text{if } 5|(p-1); \\ q(2a+1), & \text{if } p = 5a+2; \\ q(2a+1) - 1, & \text{if } p = 5a+3; \\ \frac{q(p+1)}{5}, & \text{if } 5|(p+1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = p - 5$, we have respectively

$$
[(k+1)y - x]p - 5y = 1,
$$
\n(27)

$$
5y - [(k+1)y - x]p = 1.
$$
\n(28)

As in the proof of Corollary 2.9, we consider the following four possibilities :

Case 1 : When p is of the form $p = 5a + 1$ for some integer $a \ge 2$.

In this case, 5 divides $p - 1$. Then, the minimum solution is obtained from (27), which is $y = \frac{p-1}{5}$ (and $x = (k+1)y-1$). Therefore, the minimum m in (12) is $m = qy-1 = \frac{q(p-1)}{5} - 1$. Case 2 : When p is of the form $p = 5a + 2$ for some integer $a > 2$. In this case, from (27) and (28), we get respectively

$$
1 = [(k+1)y - x](5a + 2) - 5y = 2[(k+1)y - x] - 5[y - a(k+1)y - x],
$$
\n(29)

$$
1 = 5y - [(k+1)y - x](5a + 2) = 5[y - a(k+1)y - x] - 2[(k+1)y - x].
$$
 (30)

Clearly, the minimum solution is obtained from (30), which is

 $y - a(k+1)y - x = 1$, $(k+1)y - x = 2 \implies y = 2a + 1$ (and $x = (k+1)(2a+1) - 2$). Hence, in this case, the minimum m in (12) is $m = qy = q(2a + 1)$. Case 3 : When p is of the form $p = 5a + 3$ for some integer $a \ge 2$.

$$
1 = [(k+1)y - x](5a+3) - 5y = 3[(k+1)y - x] - 5[y - a(k+1)y - x],
$$
\n(31)

$$
1 = 5y - [(k+1)y - x](5a+3) = 5[y - a(k+1)y - x] - 3[(k+1)y - x].
$$
 (32)

The minimum solution is obtained from (31) as follows :

$$
y - a(k+1)y - x = 1, (k+1)y - x = 2 \Longrightarrow y = 2a + 1 \text{ (and } x = (k+1)(2a+1) - 2).
$$

Hence, in this case, the minimum m in (12) is $m = qy - 1 = q(2a + 1) - 1$.

Case 4 : When p is of the form $p = 5a + 4$ for some integer $a > 2$.

In this case, 5 divides $p + 1$. Then, the minimum solution is obtained from (28), which is $y = \frac{p+1}{5}$ (and $x = (k+1)y-1$). Therefore, the minimum m in (12) is $m = qy = \frac{q(p+1)}{5}$ $\frac{1}{5}$.

Corollary 2.11. Let p and q be two primes with $q > p \ge 13$. Let $q = kp + 6$ for some integer $k \geq 1$. Then, \overline{a}

$$
Z(pq) = \begin{cases} \frac{q(p-1)}{6}, & \text{if } 6|(p-1); \\ \frac{q(p+1)}{6} - 1, & \text{if } 6|(p+1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = 6$, we have respectively

$$
6y - (x - ky)p = 1,\t\t(33)
$$

$$
(x - ky)p - 6y = 1.
$$
\n
$$
(34)
$$

Now, for any prime $p \geq 13$, exactly one of the following two cases can occur : Either $p-1$ is divisible by 6, or $p + 1$ is divisible by 6. We thus consider the two possibilities separately below :

Case 1 : When 6 divides $p-1$.

In this case, the minimum solution, obtained from (34), is $y = \frac{p-1}{6}$ (and $x = ky + 1$). Therefore, the minimum m in (12) is $m = qy = \frac{q(p-1)}{6}$ $\frac{(-1)}{6}$.

Case 2 : When 6 divides $p + 1$.

In this case, (33) gives the minimum solution, which is $y = \frac{p+1}{6}$ (and $x = ky+1$). Therefore, the minimum m in (12) is $m = qy - 1 = \frac{q(p+1)}{6} - 1$.

Corollary 2.12. Let p and q be two primes with $q > p \ge 13$. Let $q = (k+1)p - 6$ for some integer $k \geq 1$. Then,

$$
Z(pq) = \begin{cases} \frac{q(p+1)}{6}, & \text{if } 6|(p+1); \\ \frac{q(p-1)}{6} - 1, & \text{if } 6|(p-1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = p - 6$, we have respectively

$$
[(k+1)y - x]p - 6y = 1,
$$
\n(35)

$$
6y - [(k+1)y - x]p = 1.
$$
\n(36)

We now consider the following two cases which are the only possibilities (as noted in the proof of Corollary 2.11) :

Case 1 : When 6 divides $p + 1$.

In this case, the minimum solution, obtained from (36), is $y = \frac{p+1}{6}$ (and $x = (k+1)y-1$). Therefore, the minimum m in (12) is $m = qy = \frac{q(p+1)}{6}$ $\frac{1}{6}$.

Case 2 : When 6 divides $p-1$.

Here, the minimum solution is obtained from (35), which is $y = \frac{p-1}{6}$ (and $x = (k+1)y-1$). Therefore, the minimum m in (12) is $m = qy = \frac{q(p-1)}{6} - 1$.

Corollary 2.13. Let p and q be two primes with $q > p \ge 13$. Let $q = kp + 7$ for some integer $k > 1$. Then, $\int q(p-1)$

$$
Z(pq) = \begin{cases} \frac{q(p-1)}{7}, & \text{if } 7|(p-1); \\ q(3a+1)-1, & \text{if } p = 7a+2; \\ q(2a+1)-1, & \text{if } p = 7a+3; \\ q(2a+1), & \text{if } p = 7a+4; \\ q(3a+2), & \text{if } p = 7a+5; \\ \frac{q(p+1)}{7}-1, & \text{if } 7|(p+1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = 7$, we have respectively

$$
7y - (x - ky)p = 1,\t\t(37)
$$

$$
(x - ky)p - 7y = 1.
$$
\n
$$
(38)
$$

Now, for any prime $p \ge 11$, exactly one of the following six cases occur:

Case 1 : When p is of the form $p = 7a + 1$ for some integer $a \ge 2$. In this case, 7 divides $p - 1$. Then, the minimum solution is obtained from (38), which is $y = \frac{p-1}{7}$ (and $x - ky = 1$).

Therefore, the minimum m in (12) is $m = qy = \frac{q(p-1)}{7}$ $rac{(-1)}{7}$.

Case 2 : When p is of the form $p = 7a + 2$ for some integer $a \ge 2$. In this case, from (37) and (38), we get respectively

$$
1 = 7y - (x - ky)(7a + 2) = 7[y - (x - ky)a] - 2(x - ky),
$$
\n(39)

$$
1 = (x - ky)(7a + 2) - 7y = 2(x - ky) - 7[y - (x - ky)a].
$$
\n(40)

Clearly, the minimum solution is obtained from (39), which is

 $y - (x - ky)a = 1, x - ky = 3 \Longrightarrow y = 3a + 1$ (and $x = k(3a + 1) + 3$).

Hence, in this case, the minimum m in (12) is $m = qy - 1 = q(3a + 1) - 1$.

Case 3 : When p is of the form $p = 7a + 3$ for some integer $a \ge 2$. Here, from (37) and (38),

$$
1 = 7y - (x - ky)(7a + 3) = 7[y - (x - ky)a] - 3(x - ky),
$$
\n(41)

$$
1 = (x - ky)(7a + 3) - 7y = 3(x - ky) - 7[y - (x - ky)a].
$$
\n(42)

The minimum solution is obtained from (41) as follows:

 $y - (x - ky)a = 1, x - ky = 2 \implies y = 2a + 1(\text{and } x = k(2a + 1) + 2).$ Hence, in this case, the minimum m in (12) is $m = qy - 1 = q(2a + 1) - 1$. 16 A.A.K. Majumdar No. 3

Case 4 : When p is of the form $p = 7a + 4$ for some integer $a \ge 2$. In this case, from (37) and (38), we get respectively

$$
1 = 7y - (x - ky)(7a + 4) = 7[y - (x - ky)a] - 4(x - ky),
$$
\n(43)

$$
1 = (x - ky)(7a + 4) - 7y = 4(x - ky) - 7[y - (x - ky)a].
$$
\n(44)

Clearly, the minimum solution is obtained from (44), which is

 $y - (x - ky)a = 1, x - ky = 2 \Longrightarrow y = 2a + 1(\text{and } x = k(2a + 1) + 2).$ Hence, in this case, the minimum m in (12) is $m = qy - 1 = q(2a + 1) + 1$.

Case 5 : When p is of the form $p = 7a + 5$ for some integer $a \ge 2$. From (37) and (38), we

have

$$
1 = 7y - (x - ky)(7a + 5) = 7[y - (x - ky)a] - 5(x - ky),
$$
\n(45)

$$
1 = (x - ky)(7a + 5) - 7y = 5(x - ky) - 7[y - (x - ky)a].
$$
\n(46)

The minimum solution is obtained from (46), which is

 $y - (x - ky)a = 2, x - ky = 3 \implies y = 3a + 2(\text{and } x = k(3a + 2) + 3).$

Hence, in this case, the minimum m in (12) is $m = qy - 1 = q(3a + 2)$.

Case 6 : When p is of the form $p = 7a + 6$ for some integer $a \ge 2$. In this case, 7 divides $p + 1$. Then, the minimum solution is obtained from (37), which is $y = \frac{p+1}{7}$ (and $x - ky = 1$). Therefore, the minimum m in (12) is $m = qy - 1 = \frac{q(p+1)}{7} - 1$.

Corollary 2.14. Let p and q be two primes with $q > p \ge 13$. Let $q = (k+1)p - 7$ for some integer $k \geq 1$.

Then,

$$
Z(pq) = \begin{cases} \frac{q(p-1)}{7}, & \text{if } 7|(p-1); \\ q(3a+1), & \text{if } p = 7a+2; \\ q(2a+1), & \text{if } p = 7a+3; \\ q(2a+1)-1, & \text{if } p = 7a+4; \\ q(3a+2)-1, & \text{if } p = 7a+5; \\ \frac{q(p+1)}{7}, & \text{if } 7|(p+1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = 7$, we have respectively

$$
[(k+1)y - x]p - 7y = 1,\t\t(47)
$$

$$
7y - [(k+1)y - x]p = 1.
$$
\n(48)

We now consider the following six possibilities:

Case 1 : When p is of the form $p = 7a + 1$ for some integer $a \ge 2$. In this case, 7 divides p−1. Then, the minimum solution is obtained from (47), which is $y = \frac{p-1}{7}$ (and $x = (k+1)y-1$). Therefore, the minimum m in (12) is $m = qy - 1 = \frac{q(p-1)}{7} - 1$.

Case 2 : When p is of the form $p = 7a + 2$ for some integer $a \ge 2$. In this case, from (47) and (48), we get respectively

$$
1 = [(k+1)y - x](7a+2) - 7y = 2[(k+1)y - x] - 7[y - a\{(k+1)y - x\}],
$$
 (49)

$$
1 = 7y - [(k+1)y - x](7a + 2) = 7[y - a\{(k+1)y - x\}] - 2[(k+1)y - x].
$$
 (50)

Clearly, the minimum solution is obtained from (50), which is

 $y - a\{(k+1)y - x\} = 1, (k+1)y - x = 3 \Longrightarrow y = 3a + 1$ (and $x = (k+1)(3a+1) - 3$). Hence, in this case, the minimum m in (12) is $m = qy = q(3a + 1)$.

Case 3 : When p is of the form $p = 7a + 3$ for some integer $a > 2$.

Here, from (47) and (48),

$$
1 = [(k+1)y - x](7a+3) - 7y = 3[(k+1)y - x] - 7[y - a\{(k+1)y - x\}],
$$
\n(51)

$$
1 = 7y - [(k+1)y - x](7a+3) = 7[y - a\{(k+1)y - x\}] - 3[(k+1)y - x].
$$
 (52)

Then, (52) gives the minimum solution, which is:

 $y - a\{(k+1)y - x\} = 1, (k+1)y - x = 2 \Longrightarrow y = 2a + 1$ (and $x = (k+1)(2a+1) - 2$). Hence, in this case, the minimum m in (12) is $m = qy = q(2a + 1)$.

Case 4 : When p is of the form $p = 7a + 4$ for some integer $a \ge 2$. Here, from (47) and (48) ,

$$
1 = [(k+1)y - x](7a+4) - 7y = 4[(k+1)y - x] - 7[y - a\{(k+1)y - x\}],
$$
\n(53)

$$
1 = 7y - [(k+1)y - x](7a+4) = 7[y - a\{(k+1)y - x\}] - 4[(k+1)y - x].
$$
 (54)

Clearly, the minimum solution is obtained from (53) as follows:

 $y - a\{(k+1)y - x\} = 1, (k+1)y - x = 2 \Longrightarrow y = 2a + 1$ (and $x = (k+1)(2a+1) - 2$). Hence, in this case, the minimum m in (12) is $m = qy - 1 = q(2a + 1) - 1$.

Case 5 : When p is of the form $p = 7a + 5$ for some integer $a \geq 2$.

In this case, from (47) and (48), we get respectively

$$
1 = [(k+1)y - x](7a+5) - 7y = 5[(k+1)y - x] - 7[y - a\{(k+1)y - x\}],
$$
\n(55)

$$
1 = 7y - [(k+1)y - x](7a+5) = 7[y - a\{(k+1)y - x\}] - 5[(k+1)y - x].
$$
 (56)

Then, (55) gives the following minimum solution:

 $y - a\{(k+1)y - x\} = 2, (k+1)y - x = 3 \Longrightarrow y = 3a + 2$ (and $x = (k+1)(3a+2) - 3$). Hence, in this case, the minimum m in (12) is $m = qy - 1 = q(3a + 2) - 1$.

Case 6 : When p is of the form $p = 7a+6$ for some integer $a \ge 2$. In this case, 7 divides $p+1$. Then, the minimum solution is obtained from (48), which is $y = \frac{p+1}{7}$ (and $x = (k+1)y - 1$). Therefore, the minimum m in (12) is $m = qy = \frac{q(p+1)}{7}$ $\frac{1}{7}$.

Corollary 2.15. Let p and q be two primes with $q > p \ge 13$. Let $q = kp + 8$ for some integer $k \geq 1$.

Then,

$$
Z(pq) = \begin{cases} \frac{q(p-1)}{8}, & \text{if } 8|(p-1); \\ q(3a+1), & \text{if } p = 8a+3; \\ q(3a+2)-1, & \text{if } p = 8a+5; \\ \frac{q(p+1)}{8}-1, & \text{if } 8|(p+1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = 8$, we have respectively

$$
8y - (x - ky)p = 1,\t\t(57)
$$

$$
(x - ky)p - 8y = 1.
$$
\n
$$
(58)
$$

Now, for any prim $p \geq 13$, exactly one of the following four cases occur:

Case 1 : When p is of the form $p = 8a + 1$ for some integer $a \ge 2$.

In this case, 8 divides $p - 1$. Then, the minimum solution is obtained from (58), which is $y = \frac{p-1}{8}$ (and $x - ky = 1$).

Therefore, the minimum m in (12) is $m = qy = \frac{q(p-1)}{8}$ $\frac{(-1)}{8}$.

Case 2 : When p is of the form $p = 8a + 3$ for some integer $a \ge 2$. In this case, from (57) and (58), we get respectively

$$
1 = 8y - (x - ky)(8a + 3) = 8[y - (x - ky)a] - 3(x - ky),
$$
\n(59)

$$
1 = (x - ky)(8a + 3) - 8y = 3(x - ky) - 8[y - (x - ky)a].
$$
\n(60)

Clearly, the minimum solution is obtained from (60), which is

 $y - (x - ky)a = 1, x - ky = 3 \Longrightarrow y = 3a + 1$ (and $x = k(3a + 1) + 3$). Hence, in this case, the minimum m in (12) is $m = qy = q(3a + 1)$.

Case 3 : When p is of the form $p = 8a + 5$ for some integer $a \ge 2$. From (57) and (58) , We get

$$
1 = 8y - (x - ky)(8a + 5) = 8[y - (x - ky)a] - 5(x - ky),
$$
\n(61)

$$
1 = (x - ky)(8a + 5) - 8y = 5(x - ky) - 8[y - (x - ky)a].
$$
\n(62)

The minimum solution is obtained from (61) as follows:

 $y - (x - ky)a = 2, x - ky = 3 \Longrightarrow y = 3a + 2$ (and $x = k(3a + 2) + 3$).

Hence, in this case, the minimum m in (12) is $m = qy - 1 = q(3a + 2) - 1$.

Case 4 : When p is of the form $p = 8a + 7$ for some integer $a \ge 2$. In this case, 8 divides $p-1$. Then, the minimum solution is obtained from (57), which is

 $y = \frac{p+1}{8}$ (and $x - ky = 1$). Therefore, the minimum m in (12) is $m = qy - 1 = \frac{q(p+1)}{8} - 1$.

Corollary 2.16. Let p and q be two primes with $q > p \ge 13$. Let $q = (k + 1)p - 8$ for some integer $k \geq 1$.

Then,

$$
Z(pq) = \begin{cases} \frac{q(p-1)}{8}, & \text{if } 8|(p-1); \\ q(3a+1)-1, & \text{if } p = 8a+3; \\ q(3a+2), & \text{if } p = 8a+5; \\ \frac{q(p+1)}{8}, & \text{if } 8|(p+1). \end{cases}
$$

Proof. From (2.1) and (2.2) with $\ell = p - 8$, we have respectively

$$
[(k+1)y - x]p - 8y = 1,
$$
\n(63)

$$
8y - [(k+1)y - x]p = 1.
$$
\n(64)

We now consider the four possibilities that may arise:

Case 1 : When p is of the form $p = 8a + 1$ for some integer $a > 2$.

In this case, 8 divides $p - 1$. Then, the minimum solution is obtained from (63), which is $y = \frac{p-1}{8}$ (and $x = (k+1)y-1$). Therefore, the minimum m in (12) is $m = qy-1 = \frac{q(p-1)}{8} - 1$. Case 2 : When p is of the form $p = 8a + 3$ for some integer $a \ge 2$.

In this case, from (63) and (64), we get respectively

$$
1 = [(k+1)y - x](8a+3) - 8y = 2[(k+1)y - x] - 8[y - a\{(k+1)y - x\}],
$$
\n(65)

$$
1 = 8y - [(k+1)y - x](8a+3) = 8[y - a\{(k+1)y - x\}] - 3[(k+1)y - x].
$$
 (66)

Clearly, the minimum solution is obtained from (65), which is

$$
y - a\{(k+1)y - x\} = 1, (k+1)y - x = 3 \Longrightarrow y = 3a + 1(\text{and } x = (k+1)(3a+1) - 3).
$$

Hence, in this case, the minimum m in (12) is $m = qy = q(3a + 1) - 1$.

Case 3 : When p is of the form $p = 8a + 5$ for some integer $a \ge 1$. In this case, from (63) and (64), we get respectively

$$
1 = [(k+1)y - x](8a+5) - 8y = 5[(k+1)y - x] - 8[y - a\{(k+1)y - x\}],
$$
 (67)

$$
1 = 8y - [(k+1)y - x](8a+5) = 8[y - a\{(k+1)y - x\}] - 5[(k+1)y - x].
$$
 (68)

The minimum solution is obtained from (68) as follows:

$$
y - a\{(k+1)y - x\} = 2, (k+1)y - x = 3 \Longrightarrow y = 3a + 2(\text{and } x = (k+1)(3a+2) - 3).
$$

Hence, in this case, the minimum m in (12) is $m = qy = q(3a + 2)$.

Case 4 : When p is of the form $p = 8a + 7$ for some integer $a \ge 2$. In this case, 8 divides $p + 1$. Then, the minimum solution is obtained from (64), which is $y = \frac{p+1}{8}$ (and $x = (k+1)y-1$). Therefore, the minimum m in (12) is $m = qy = \frac{q(p+1)}{8}$ $\frac{1}{8}$.

We now consider the case when n is a composite number. Let

 $Z(n) = m_0$ for some integer $m_0 \geq 1$. Then, n divides $\frac{m_0(m_0+1)}{2}$.

We now consider the following two cases that may arise :

Case 1 : m_0 is even (so that $m_0 + 1$ is odd).

(1) Let *n* be even. In this case, *n* does not divide $\frac{m_0}{2}$, for otherwise,

$$
\frac{n|m_0}{2} \Longrightarrow \frac{n|m_0(m_0+1)}{2} \Longrightarrow Z(n) \le (m_0-1).
$$

(2) Let n be odd. In such a case, n does not divide m_0 .

Case 2 : m_0 is odd (so that $m_0 + 1$ is even).

(1) Let *n* be even. Then, *n* does not divide m_0 .

(2) Let *n* be odd. Here, *n* does not divide m_0 , for

$$
n|m_0 \Longrightarrow \frac{n|m_0(m_0-1)}{2} \Longrightarrow Z(n) \leq (m_0-1).
$$

Thus, if n is a composite number, n does not divide m_0 .

Now let

$$
n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} p_{i+1}^{\alpha_{i+1}} \cdots p_s^{\alpha_s}
$$

be the representation of *n* in terms of its distinct prime factors $p_1, p_2, \cdots p_i, p_{i+1}, \cdots p_s$, not necessarily ordered. Then, one of m_0 and $m_0 + 1$ is of the form

$$
2^{\beta}p_1^{\beta_1}p_2^{\beta_2}\cdots p_i^{\beta_i}q_{i+1}^{\beta_{i+1}}\cdots q_s^{\beta_s}
$$

for some $1 \leq i < s$; $\beta_j \geq \alpha_j$ for $1 \leq j < i$, and the other one is of the form

$$
p_{i+1}^{\gamma_{i+1}} \cdots p_s^{\gamma_s}, r_{s+1}^{\gamma_{s+1}} \cdots r_u^{\gamma_u} \gamma_j \ge \alpha_j
$$

for $i + 1 \leq j \leq s$; where $q_{i+1}, \dots q_s$ and $r_{s+1}, \dots r_u$ are all distinct primes, not necessarily ordered.

§3. Some Observations

Some observations about the Pseudo-Smarandache Function are given below : Remark 3.1. Kashihara raised the following questions (see Problem 7 in [1]) : (1) Is there any integer n such that $Z(n) > Z(n+1) > Z(n+2) > Z(n+3)$? (2) Is there any integer n such that $Z(n) < Z(n+1) < Z(n+2) < Z(n+3)$? The following examples answer the questions in the affirmative:

(1) $Z(256) = 511 > 256 = Z(257) > Z(258) = 128 > 111 = Z(259) > Z(260) = 39$,

$$
(2) \quad Z(159) = 53 < 64 = Z(160) < Z(161) = 69 < 80 = Z(162) < Z(163) = 162.
$$

These examples show that even five consecutive increasing or decreasing terms are available in the sequence $\{Z(n)\}.$

Remark 3.2 Kashihara raises the following question (see Problem 5 in [1]) : Given any integer $m_0 \geq 1$, how many n are there such that $Z(n) = m_0$? Given any integer $m_0 \backslash 3$, let

$$
Z^{-1}(m_0) = \{n : n \in N, Z(n) = m_0\},\tag{2.3}
$$

with

$$
Z^{-1}(1) = \{1\}, Z^{-1}(2) = \{3\}.
$$
\n^(2.4)

Thus, for example, $Z^{-1}(8) = \{8, 12, 18, 36\}.$ By Lemma 2.1,

$$
n_{\max} \equiv \frac{m_0(m_0+1)}{2} \in Z^{-1}(m_0).
$$

This shows that the set $Z^{-1}(m_0)$ is non-empty; moreover, n_{max} is the biggest element of $Z^{-1}(m_0)$, so that $Z^{-1}(m_0)$ is also bounded. Clearly, $n \in Z^{-1}(m_0)$ only if n divides $f(m_0) \equiv$ $m_0(m_0 + 1)/2$. This is a necessary condition, but is not sufficient. For example, $4|36 \equiv f(8)$ but $4 \notin Z^{-1}(8)$. The reason is that $Z(n)$ is not bijective. Let

$$
Z^{-1} \equiv \sum_{m=1}^{\infty} Z^{-1}(m)
$$

Let $n \in \mathbb{Z}^{-1}$. Then, there is one and only one mo such that $n \in \mathbb{Z}^{-1}(m_0)$, that is, there is one and only one mo such that $Z(n) = m_0$.

However, we have the following result whose proof is almost trivial : $n \in \mathbb{Z}^{-1}(m_0)$ ($n \neq 1, 3$) if and only if the following two conditions are satisfied

(1) n divides $m_0(m_0+1)/2$,

(2) n does not divide $m(m+1)/2$ for any m with $3 \le m \le m_0 - 1$.

Since $4|28 \equiv f(7)$, it therefore follows that $4 \notin Z^{-1}(8)$.

Given any integer $m_0 \geq 1$, let $C(m_0)$ be the number of integers n such that $Z(n) = m_0$, that is, $C(m_0)$ denotes the number of elements of $Z^{-1}(m_0)$. Then,

$$
1 \le C(m_0) \le d(m_0(m_0+1)/2) - 1 \quad form_0 \ge 3; \quad C(1) = 1, \quad C(2) = 2,
$$

where, for any integer n, $d(n)$ denotes the number of divisors of n including 1 and n. Now, let $p \ge 3$ be a prime. Since, by Lemma 1.2, $Z(p) = p - 1$, we see that $p \in Z^{-1}(p-1)$ for all $p \ge 3$. Let $n \in \mathbb{Z}^{-1}(p-1)$. Then, n divides $p(p-1)/2$. This shows that n must divide p, for otherwise

$$
n\left|\frac{p-1}{2}\Rightarrow n\right|\frac{(p-1)(p-2)}{2}\Rightarrow Z(n)\leq p-2,
$$

contradicting the assumption. Thus, any element of $Z^{-1}(p-1)$ is a multiple of p. In particular, p is the minimum element of $Z^{-1}(p-1)$. Thus, if $p \ge 5$ is a prime, then $Z^{-1}(p-1)$ contains at least two elements, namely, p and $p(p-1)/2$. Next, let p be a prime factor of $m_0(m_0+1)/2$. Since, by Lemma 1.2, $Z(p) = p - 1$, we see that $p \in Z^{-1}(m_0)$ if and only if $p - 1 \ge m_0$, that is, if and only if $p > m_0 + 1$.

Remark 3.3. Ibstedt[2] provides a table of values of $Z(n)$ for $1 \leq n \leq 1000$. A closer look at these values reveal some facts about the values of $Z(n)$. These observations are given in the conjectures below, followed by discussions in each case.

Conjecture 1. $Z(n) = 2n - 1$ if and only if $n = 2^k$ for some integer $k \ge 0$. Let, for some integer $n \geq 1$,

$$
Z(n) = m_0
$$
, where $m_0 = 2n - 1$.

Note that the conjecture is true for $n = 1$ (with $k = 0$). Also, note that n must be composite. Now, since $m_0 = 2n - 1$, and since $n \left(\frac{m_0(m_0+1)}{2}, \right)$ it follows that

n does not divide m_0 , and $n \left\lfloor \frac{m_0+1}{2} \right\rfloor$; moreover, by virtue of the definition of $Z(n)$, *n* does not divide m_0 , and $n \mid \frac{m+1}{2}$ for all $1 \leq m \leq m_0 - 1$.

Let

$$
Z(2n) = m_1.
$$

We want to show that $m_1 = 2m_o + 1$. Since $n \left| \frac{m_0+1}{2} \right|$, it follows that $2n \left| \frac{2(m_0+1)}{2} \right| = \frac{(2m_0+1)+1}{2}$; moreover, 2n does not divide

$$
\frac{2(m+1)}{2} = \frac{(2m+1)+1}{2}
$$

for all $1 \leq m \leq m_0 - 1$. Thus,

$$
m_1 = 2m_0 + 1 = 2(2n - 1) + 1 = 2^2n - 1.
$$

All these show that

$$
Z(n) = 2n - 1 \Rightarrow Z(2n) = 2^2n - 1.
$$

Continuing this argument, we see that

$$
Z(n) = 2n - 1 \Rightarrow Z(2^{k}n) = 2^{k+1}n - 1.
$$

Since $Z(1) = 1$, it then follows that $Z(2^k) = 2^{k+1} - 1$.

Conjecture 2. $Z(n) = n-1$ if and only if $n = p^k$ for some prime $p \ge 3$ and integer $k \ge 1$. Let, for some integer $n \geq 2$,

$$
Z(n) = m_0
$$
, where $m_0 = n - 1$.

Then, $2|m_0$ and $n|(m_0+1)$; moreover, n does not divide $m+1$ for any $1 \le m \le m_0-1$. Let

$$
Z(n^2) = m_1.
$$

Since $n|(m_0+1)$, it follows that

$$
n^2|(m_0+1)^2 = (m_0^2 + 2m_0) + 1;
$$

moreover, n^2 does not divide $|(m + 1)^2 = (m^2 + 2m) + 1$ for all $1 \le m \le m_0 - 1$. Thus,

$$
m_1 = m_0^2 + 2m_0 = (n-1)^2 + 2(n-1) = n^2 - 1,
$$

so that(since $2|m_0 \Rightarrow 2|m_1$)

$$
Z(n) = n - 1 \Rightarrow Z(n^2) = n^2 - 1.
$$

Continuing this argument, we see that

$$
Z(n) = n - 1 \Rightarrow Z(n^{2k}) = n^{2k} - 1.
$$

Next, let

$$
Z(n^{2k+1}) = m_2
$$
 for some integer $k \ge 1$.

Since $n|(m_0+1)$, it follows that

$$
n^{2k+1}|(m_0+1)^{2k+1} = [(m_0+1)^{2k+1}-1] + 1;
$$

moreover,

 n^{2k+1} does not divide

$$
|(m+1)^{2k+1} = [(m+1)^{2k+1} - 1] + 1
$$

for all $1 \leq m \leq m_0 - 1$. Thus,

$$
m_2 = (m_0 + 1)^{2k+1} - 1 = n^{2k+1} - 1,
$$

so that (since $2|m_0 \Rightarrow 2|m_2|$)

$$
Z(n) = n - 1 \Rightarrow Z(n^{2k+1}) = n^{2k+1} - 1.
$$

All these show that

$$
Z(n) = n - 1 \Rightarrow Z(n^k) = n^k - 1.
$$

Finally, since $Z(p) = p - 1$ for any prime $p \ge 3$, it follows that $Z(p^k) = p^k - 1$.

Conjecture 3. If *n* is not of the form 2^k for some integer $k \geq 0$, then $Z(n) < n$. First note that, we can exclude the possibility that $Z(n) = n$, because

$$
n\left|\frac{n(n+1)}{2}\right| \Rightarrow n\left|\frac{n(n-1)}{2}\right| \Rightarrow Z(n) \leq n-1.
$$

So, let

$$
Z(n) = m_0
$$
 with $m_0 > n$.

Note that, *n* must be a composite number, not of the form p^k ($p \ge 3$ is prime, $k \ge 0$). Let

$$
m_0 = an + b
$$
 for some integers $a \ge 1, 1 \le b \le n1$.

Then,

$$
m_0(m_0 + 1) = (an + b)(an + b + 1) = n(a^2n + 2ab + a) + b(b + 1).
$$

Therefore,

$$
n|m_0(m_0+1)
$$
 if and only if $b+1=n$.

But, by Conjecture 1, $b + 1 = n$ leads to the case when n is of the form 2^k .

Remark 3.4. Kashihara proposes (see Problem $4(a)$ in [1]) to find all the values of n such that $Z(n) = Z(n + 1)$. In this connection, we make the following conjecture :

Conjecture 4. For any integer $n \geq 1$, $Z(n) \neq Z(n + 1)$. Let

$$
Z(n) = Z(n+1) = m_0 \text{ for some } n \in N, m_0 \ge 1.
$$
 (69)

Then, neither *n* nor $n + 1$ is a prime.

To prove this, let $n = p$, where p is a prime. Then, by Lemma 1.2, $Z(n) = Z(p) = p - 1$.

$$
n+1 = p+1
$$
 does not divide
$$
\frac{p(p-1)}{2} \Rightarrow Z(n+1) \neq p-1 = Z(n).
$$

Similarly, it can be shown that $n + 1$ is not a prime. Thus, both n and $n + 1$ are composite numbers.

From (68), we see that both n and $n+1$ divide $m_0(m_0+1)/2$. Let

$$
\frac{m_0(m_0+1)}{2} = an \text{ for some integer } a \ge 1.
$$

Since $n + 1$ divides $m_0(m_0 + 1)$ and since $n + 1$ does not divide n, it follows that $n + 1$ must divide a. So, let

$$
a = b(n + 1)
$$
 for some integer $b \ge 1$.

Then,

$$
\frac{m_0(m_0+1)}{2} = abn(n+1),
$$

which shows that

$$
n(n+1) \text{ must divide } \frac{m_0(m_0+1)}{2}.
$$
\n
$$
(70)
$$

From (69), we see that

 $Z(n(n+1)) \leq m_0$,

which, together with Lemma 1.5 (that $Z(n(n+1)) > Z(n)$), gives

$$
Z(n(n+1)) = m_0.
$$
\n(71)

From (70), we see that

$$
n(n+1)\frac{m_0(m_0+1)}{2} \Rightarrow \frac{n(n+1)}{2}|\frac{m_0(m_0+1)}{2} \Rightarrow Z(\frac{n(n+1)}{2}) \le m_0.
$$

Thus, by virtue of Lemma 2.1, $Z(\frac{n(n+1)}{2})$ $\binom{n+1}{2}$ = $n \leq m_0 = Z(n)$. It can easily be verified that neither n nor $n + 1$ can be of the form 2k. Thus, if Conjecture 3 is true then Conjecture 4 is also true.

Remark 3.5. An integer $n > 0$ is called f-perfect if

$$
n = \sum_{i=1}^{k} f(d_i),
$$

where $d_1 \equiv 1, d_2, \ldots, d_k$ are the proper divisors of n, and f is an arithmetical function. In particular, n is Pseudo-Smarandache perfect if

$$
n = \sum_{i=1}^{k} Z(d_i).
$$

In [4], Ashbacher reports that the only Pseudo-Smarandache perfect numbers less than 1, 000, 000 are $n = 4, 6, 471544$. However, since $n = 471544$ is of the form $n = 8p$ with $p = 58943$, its only perfect divisors are $1, 2, 4, 8, p, 2p$ and $4p$. Since $8|(p+1) = 58944$, it follows from Lemma 1.2, Theorem 2.1 and Theorem 2.7 that

$$
Z(p) = p - 1, \quad Z(2p) = p, \quad Z(4p) = p,
$$

so that

$$
n = 471544 > \sum_{i=1}^{k} Z(d_i),
$$

so that $n = 471544$ is not Pseudo-Smarandache perfect.

References

[1] Kashihara, Kenichiro, Comments and Topics on Smarandache Notions and Problems, USA, Erhus University Press, 1996.

[2] Ibstedt, Henry, Surfing on the Ocean of Numbers-A Few Smarandache Notions and Similar Topics, USA, Erhus University Press, 1997.

[3] Gioia, Anthony A, The Theory of Numbers–An Introduction, NY, USA, Dover Publications Inc., 2001.

[4] Ashbacher, Charles, On Numbers that are Pseudo-Smarandache and Smarandache perfect, Smarandache Notions Journal, $14(2004)$, pp. $40 - 41$.