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Abstract
After diagonalizing the Lorentz Matrix,
we find the frame where the Dirac
equation is one derivation and
we calculate the ’speed’ of
the Schwarschild metric



Introduction

The Lorentz transformation is the only transformation which leaves Maxwell equations invariants.
As a matter of fact, the matrix representation of the Lorentz belongs to what we call the Poincare
group. However, the Lorentz matrix is often express in the Cartesian coordinates x, y, z, t. Furthermore,
I wondered what are the eigenvalues and the eigenvectors of the Lorentz matrix.

After diagonalizing the Lorentz matrix, we see that the first coordinates of its eigenvectors are x4+ ct
and x — ct and that the eigenvalues are inverse each others. In that case the idea came to me to express
some well-known physics equation in the coordinates x +ct, z —ct. But the only physic equation I found
where I could do it was the Dirac equation. Also, there was some derivation in the Dirac equation
and I searched which frame I have to derivate by to obtain the derivations in the Dirac equation. The
answer of this question is not z + ¢t but
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Uz, t) = ctly + Y oy (0.1)

Jj=1

where the «; are related with the Pauli matrices. So the derivation by the 'metric’ U(z,t) gives the
Dirac equation
(1)

ih oy — Mco P(z,t) (0.2)

with ag = 7o.

Moreover, I remarked that, if we decompose the well known Schwarschild metric, we have a matrix
with two eigenvalues inverse each others, which remind us the diagonalization of the Lorentz matrix.
Then we decide to calculate the corresponidng speed of the Schwarschild metric which gives us
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In the first part, we calculate the eigenvalues and the eigenvectors of the Lorentz matrix expressed
with hyperbolic functions. We recall the definition of O(1,1) and the Poincare group and we give the
diagonalized matrix in function of the speed v of the translation of the frame. In the second part, we
use the coordinates x + ct found in the eigenvectors to express the Dirac equation with a derivation
by a frame function of the Pauli matrices. In the third part, we find the corresponding speed of the
Schwarzschild metric in decomposing it and comparing it with the diagonalization of the Lorentz
matrix.



1 The Poincare Group

We recall the definition of the Lorentz transformation in a direction = (taken on Wikipedia)

ct! cosh(a)  —sinh(a) ct
x’ —sinh(a)  cosh(a z
Yy Y
2 1 z
L
with cosh(a) = ~, sinh(a) = By and v = \/11_?, B = 2. We often say that L belongs to the Poincare

group.

Now we study the matrix

g = < cosh(a) — —sinh(a) > €0(1,1) (1.5)

—sinh(a)  cosh(a)

where O(1,1) has been defined by [1] as

o(1,1) = {gEGL(Q,R) | g Jitg = Jl} _ {\meR | gzexp(a(l 1))} (1.6)

1
e (U) 0
You can check that

(e i ) (o) (o )= (L) o

Now we calculate the eigenvalues of ¢

with

| cosh(a) =X —sinh(«) _
det(g = Aldz) = —sinh(a)  cosh(a) — A | 0 (1.9)
So we have two eigenvalues AL given by
Ay = et (1.10)
and the corresponding eigenvectors
—sinh(a) —sinh(«) B 1
ker < —sinh(a) —sinh(a) N -1
sinh(o)  —sinh(«) _ 1
ker( —sinh(a)  sinh(« > N < 1 ) (L.11)



So we can diagonalize the matrix L :

(S e ) =3 (L) (7 =) ()

and the equation (1.4)

ct' — 2 e ct —x
c +2 | e @ ct+x (1.12)
Y - 1 y '
2! 1 z
Because cosh(a)) = 7, sinh(a) = fv, we can write :
148
ct' — 2’ 1-32 ct—x
/ / 1-8
| - +z (1.13)
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where 3 = .
Thus wee have seen in (1.13) that the coordinates x + ¢t and = — ¢t are very special coordinates

because these are the coordinates where Lorentz transformation matrices are diagonales. Now we try
to write the Dirac equation in these ’kind’ of coordinates.

2 The Dirac Equation

We know the Dirac equation under the form (cf. Wikipedia)

<i hy" 0, —m c) P(x) = 0 (2.14)
But the explicit form is given by
3
ih&/)gz’t): (mc2a0—ihc;ajaij>1/}(x,t) (2.15)
where
1
ap = ( 2 1, ) (2.16)
and

o=, 7) 1)



for each Pauli matrices

= (i) e () e ()

The matrices 77 in (2.14) are defined by

o ‘
7 =a ¥ = ma

Now we can write (2.15) in the form

thc <]l;1§t + ; Oéjaij> Y(x,t) = m02a01/1<1',t)

Becausel =1"" and a; = o ! we can rewrite (2.20) as

3

ih ]EQ—FZa*li Y(x,t) = meagp(z,t)
c Ot st I Oz, o 0

For a general function U(x!, 2% 23,t) = U(z,t), we have

o _ o 9 om0 dxy O duy 0
oU(x,t) — OU(x,t) Ot

OU(x,1) 0x1 | 9U(w.t) Ows | 0U(,1) dag
If we take the frame U(z,t) = ctly + Z?Zl «; x;, we have
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which is the derivation in (2.21). Finally we can express the derivate in (2.21) as

- OY(x,t)
ih = mcuo x,t
o o (1)
Then we can see U(z,t) as a 'metric’ given by
ct 0 T3 T — 1x2
. 0 ct T1 + 122 —Is3
Ula,t) = x3 Tl — 1T ct 0
T1 + 129 —T3 0 ct

(2.18)
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3 Lorentz transformation in the Schwarschild metric ?

We consider the Schwarschild metric

_ 2GM
1 c2r
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_(1_26M
c2r (3.26)
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Now what I will do is really speculative. We ”imagine” that the Schwarzschild metric is the product
of a Lorentz transformation and the Minskowskian polar metric
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Juv =

Now we compare the first matrix of (3.27) with (1.13) and we identify

1+p | 2GM
Nz c2r
32 _ 2GM
(1+ﬂ)<1+ ste) = 1=
1+ ~ 1-— 2G2M
ccr
v 2GM
-~ (3.28)

The expression (3.28) has to be compared with the liberation speed of a black hole gravitation

2GM
2
c2r (3.29)

Viip =
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