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Abstract
We calculate the Poisson-Lie sigma model for every 4-dimensional
Manin triples (function of its structure constant) and we
give the 6-dimensional models for the Manin triples
(sl(2,C) & sl(2,C)*,sl(2,C),sl(2,C)"),
(sl(2,C) & sl(2,C)*,sl(2,C)*),sl(2,C),
(sl(2,C),su(2,C),sb(2,C)) and
(sl(2,C),sb(2,C),su(2,C))



1 Introduction

A Manin triples (©,g,d) is a bialgebra (g,g which don’t intersect each others and a direct sum
of this bialgebra ©® = g @ g). If the corresponding Lie groups have a Poisson structure, they are
called Poisson-Lie groups. A Poisson-Lie sigma models is an action (3.13) calculated by a Poisson
vector field matrix. [3] have deduced the extremal field which minimize the action of this models,
which gives the motion equation (3.19). We calculate here the action and the equations of mo-
tion for some 6-dimensionals Manin triples and we give a general formula for each 4-dimensional
Manin triples. The 6-dimensional Manin triples are (sl(2,C) & sl(2,C)*,sl(2,C),sl(2,C)*),(sl(2,C) &
sl(2,C)*,sl(2,C)*),s1(2,C),(sl(2,C),su(2,C),sb(2,C)) and (sl(2,C),sb(2,C), su(2,C)).



2 Some Manin triples

The Drinfeld double D is defined as a Lie group such that its Lie algebra © equipped by a symmetric
ad-invariant nondegenerate bilinear form < .,. > can be decomposed into a pair of maximally isotropic
subalgebras g, g such that © as a vector space is the direct sum of g and g. Any such decomposition
written as an ordered set (9, g,g) is called a Manin triples (D, g,9),(9, g, 9).

One can see that the dimensions of the subalgebras are equal and that bases {T;}, {T*} in the
subalgebras can be chosen so that

<T,Tj>=0, <T;,T' >=<T/T; >=¢§, <T', T/ >=0 (2.1)
This canonical form of the bracket is invariant with respect to the transformations
T) = T Af, T7 = (A7) 1" (2:2)
Due to the ad-invariance of < .,. > the algebraic structure of ® is
T3, T;] = c;; " T, [, 7] = 9, 1"
1.1 = PRI = e,/ T"
There are just four types of nonisomorphic four-dimensional Manin triples.
Abelian Manin triples :
[T;,T;] =0, [T°,T7=0, [I;,T]=0, i,j=1,2 (2.3)
Semi-Abelian Manin triples (only non trivial brackets are displayed) :
TH, T2 =T% (1,1 =T, [1bT*=-T) (2.4)
Type A non-Abelian Manin triples (8 #0) :

[T1, T3] = T, [T",7°) = BT

[T17T2] - _T27 [T27T1] = 5T2 ) [T27T2] - _BTI + Tl
Type B non-Abelian Manin triples :
[T1, Ty = T, T, 7% = T*

[Tb Tl} = T27 [T17 TQ] = _Tl - T2 ) [TQ’ T2] = Tl

Now we focus some six dimensional Manin triples. We recall that the commutation relations of the
Lie algebra sl(2,C) of the Lie group SL(2,C) :
[T1, Ty = 2T, [11,T3]) = =213, [T, T3] =Ty (2.5)

The dual Lie algebra s[(2,C)* of the Lie algebra s((2,C') has the commutation relations :

o 1- o 1. o
[TlaT2] = 1T27 [T17T3} = ZT?)’ [TQ,TS] =0 (26)



There is a scalar product on (sl(2,C) @ s[(2,C)* such that (see [2]) :
(T;,T7) = & (2.7)

Finally, we have that (sl(2,C) @ sl(2,C)*,sl((2,C),sl(2,C)*) with this scalar product is a Manin triple.
We note that (sl(2,C) @ sl(2,C)*, sl(2,C)*,sl(2,C)) with this scalar product is also a Manin triples.

The Iwasawa decomposition allows us to decompose :
s[(2,C) = su(2,C) @ sb(2,C) (2.8)
where su(2, C) is the Lie algebra of the Lie group SU(2) with commutation relations :
[TV, T5) = Ts, [To, T3] =Ty, [T3,T1] =T (2.9)
sb(2,C) is the Lie algebra of the Borel subgroup SB(2,C) with commutation relations :
T4, 7% =712, [T, 13 =13, [T* 1% =0 (2.10)
Here we can see in comparing (2.10) and (2.6) that sb(2,C) ~ sl(2,C)*.

The Iwasawa decomposition (2.8) allows us to identify sb(2,C) ~ su(2,C)*. We define a scalar
product on (sl(2,C) @ s[(2,C)* such that (x,y) =Im(Tr(z|y)). With this scalar product we have (see

[2]) : o
(T;,17) = & (2.11)

Finally we have that (s[(2,C),su(2,C),sb(2,C)) with this scalar product is a Manin triple. We note
that (sl(2,C),sb(2,C),su(2,C)) with this scalar product is also a Manin triples.

3 Poisson-Lie sigma models

Given a Lie group M and a Poisson structure on it. We define the action of this model (see [1])
as :

1
Si = /E(< dgg™t, A > -5 < A, (r—AdgrAdg)A >) (3.12)

where g € G, A = A ,dé®X; and r € g ® g is a classical » matrix with g as the Lie algebra of G and
{X.} as a basis of g. Note that the above action can be applied for simple or nonsemisimple Lie group
G with ad-invariant symmetric bilinear nondegenerate form < X;, X; >= G;; on the Lie algebra g.
When the metric G; of Lie algebra is denegerate then the above action is not good. Here we use the
following action instead of the above one :

Sy = /(dXz NA; — %’PUAZ A Aj) (3.13)
%

where x are Lie group parameters with parametrization (e.g.)

Vg e G, g =e1TieXel2 | (3.14)



where P% is the Poisson structure on the Lie group which for coboundary Poisson Lie groups it is
obtained from

(P(9))x = blg)alg)™ (3.15)
We can obtain a(g)~! and b(g) in computing :
T T
N (3.16)
_ (ale)™" —alg)Tb(g) d(g)"
Gy = () AL .17)

where 7' denotes the transpose matrix.
The extremal fiels (X, A) which minimize the action (3.13) have to satisfy the equation written
locally (see [3]) as :

dX; +PY9(X)A; =0 (3.18)
1 ..
dA+ 5PV ((X)Ai N A =0 (3.19)

where P* = 8k73ij|Xk:0.

4 Poisson-Lie sigma model of any 4-dimensional Manin triple

We first calculate the matrix of the adjoint actions function of structure constant :

0 012; (1)2 -3
adr, = 8 K fol 8
0 0 —0121 —0122
R A
adr, = C&Q 0 012% 192
0 0 0 0

To obtain the matrix P, we calculate the adjoint action matrix of a general element g = H?Zl e i

by the formula :

2
(Adnle XiTy )x = H eiladr)x (4.20)
i=1
Similarily, we have :
2
(Adgpe_ oximya)x = [ [ e 0=y (4.21)
i=1

We can deduce the matrix P¥ :

0o —p
PY = (7;21 0 )



where

P21 _ Crot (1 + €2 M) F12) 4 ¢ 2ecrn Mimen ' Xa (] 4 gcr' X2 f12)

2. 1
C127C12

Now, we can calculate the action (3.13) of the model

2
Sy = / ZdXz N A; —PQlAQ N Aq
=1

and the equations of motion (3.19) :
dX,— P A3 =0
dXy+ P A1 =0

1, 2r12 2, 2 —¢y5 1 Xo 12
e [T Hepgtep(—em 2 P2 4+ 1)

dA, — 241N A =0
C127C12
2 ¢5%2X1,, 1r12
Cioef12 e
dAs + 12 12 2A2/\A1 =0

2
C127C12

5 Poisson-Lie sigma model of (s(2,C) & sl(2,C)*, sl(2,C),sl(2,C)*)

We first calculate the matrix of the adjoint actions :

00 0 0 0 0
02 0 0 0 0
ady = 00 -20 0 0
1 00 0 0 0 0
00 0 0 —20
00 0 0 0 2
004 0 -10
800 1 0 0
“r, =% | 5 50 0 8 o
000 0 0 0
0 00 —4 0 0
0 -4 00 0 —1
00 000 O
wdp = 8 0010 0
*~1 10 0 000 -8
00 040 0
00 000 O

(4.22)

(4.23)

(4.24)



To obtain the matrix P, we calculate the adjoint action matrix of a general element g = H?:l e

by the formula :
3
(AdH3:1 eXiT; H €X7 adt;)x
i=1

Similarily, we have :

3
(Adqpa_| ximya)x = [[ e ot

=1
We can deduce the matrix P¥ :
0 —%(1 + X2X3)€2X1 —%672)(1
P7o= | f(1 T X5 X3)e2X1 0 £2Xs
e—2X1 _X2X3 0
1 2

Now, we can calculate the action (3.13) of the model

X, X
/de ANA;+( 4( + X9 X3)eX 1) Ay A Ay + 43 e PXIALN Az —
Ez 1

and the equations of motion (3.19) :

X X
dX — (72(1 + X5 X3)e2X1) Ay — 736—”1143 =0
XoXs

X
dX2 =+ (f(l + X2X3)€2X1)A1 + A3 =0

X XX
dXs + 43 e 2X1 4, 22 3 Ay =0

X
dA; — 72(1 + XoX3)A A Ay + —Al AAy =0

2X1

X
dAy — & AlAA2+73A2AA3:o

—2X1

X2
dAS—TQGQ)(lAl/\AQ— ¢ AL NAz+ XA N A3 =0

6 Poisson-Lie sigma model of (s((2,C) @ sl(2,C)*, sl(2

,C)7,51(2,C))

a;T;

(5.25)

(5.26)

(5.27)

Now to obtain this Poisson Lie sigma model, we have to change T, — T% and T¢ — T} of the
previous model. And we can calculate the matrix of the adjoint actions as we do previously. With this

we can deduce the matrix P% for this model :

X1 X1
0 —2e1 X, 2e1 X3
Pio= | 2.k, 0 2~ Lo (4+ XpXs)
X
2T X3 2+ e T4+ XoX3) 0



Now, we can calculate the action (3.13) of the model

> X1 X1 1 x5
Sy = / Z dX; NA; +2e 2 XoA1 N Ay —2e 21 X3A1 N Az + (—2 + 56 2 (4 + X2X3))A2 A As (628)
Y=t

and the equations of motion (3.19) :

X X,
dXq1 —2e1 X9Ag +2e1 X3A3=0
P'e 1 x
dXo + 26T1X2A1 + (2 — 5671(4 + X2X3))A3 =0

1 x5
2

dXs3 — 26%X3A1 — (2 - 56 (4 + XQXg))AQ =0

X X 1
dAl — 72141 /\A2 + 73141 /\A3 - Z(4+X2X3)A2 /\A3 =0

X1 1 xq
dAy — 2e™4 Al/\A2—§€4 AsNA3 =0
X1
e2 Xo

dAg‘FQQ%Al ANAsz — 5

Ay NA3=0

7 Poisson-Lie sigma model of (s1(2,C),su(2,C),sb(2,C))

We can calculate the matrix of the adjoint actions as we do previously. With this we can deduce
the matrix P% for this model :

0 — cos X1 cos X3sin Xo+sin X1 sin X3 — cos X3 sin X7 sin Xo—cos X7 sin X3
PY = cos X1 cos X3 sin Xo—sin X4 sin X3 0 —14cos X5 cos X3
cos X3 sin X7 sin X3+cos X7 sin X3 1—cos X2 cos X3 0

Now, we can calculate the action (3.13) of the model

3
Sy = / Z dX; N A; — (— cos X cos X3 sin Xy + sin X sin X3)A; A Ag
=1
—(— cos X3 sin X sin Xy — cos X1 sin X3)A; A Az — (—1 + cos Xa cos X3)Aa A As (7.29)
and the equations of motion (3.19) :

dX1 4 (— cos X1 cos X3 sin Xo + sin X7 sin X3)As + (— cos X3 sin X sin Xy — cos X7 sin X3)A3 =0
dXsy + (cos X1 cos X3 sin Xo — sin X7 sin X3)A; 4+ (—1 + cos X5 cos X3)A3 =0

dX3 + (cos X3 sin X sin X3 + cos X sin X3)A;(1 — cos X2 cos X3)Az =0

dA71 + sin X341 A Ay — cos X3sin Xo A1 A A3 =0

dAy — cos Xjcos X3A1 N Ay —cos X3sin X141 AN A3 =0

dAs +sin X1 A1 AN Ay —cos X1A1 ANA3 =0



8 Poisson-Lie sigma model of (s[(2,C),sb(2,C),su(2,C))

We can calculate the matrix of the adjoint actions as we do previously. With this we can deduce
the matrix P¥ for this model :

) 0 —eX1 X3 —eX1 X,
P = [ XX 0 T(1—e2X(1+ X2+ X2))
M1 Xy F(—1+4e*1(1+ X3+ X3)) 0

Now, we can calculate the action (3.13) of the model

3

1

Sy = / Z dX; NA; + 6X1X3A1 AN Asg + 6X1X2A1 N Az — 5(1 - €2X1(1 + 2X22 + 2X32))A2 A Ag (830)
Y=t

and the equations of motion (3.19) :
dXy — X1 X345 — e X543 =0
1
dXo 4 X1 X341 + S = 1+ X3+ X2)A3=0
1
dXs + €X1X2A1 — 5(1 — €2X1(1 + X22 + X32))A2 =0

dA1 — X3A1 N Ay — X0 A1 N Az — (1—|—X22+X§)A2/\A3 =0
dAy — 6X1A1 ANA3 =0
dAs — 6X1A1 ANAs =0

9 Discussion

We gives here the Poisson-Lie sigma models of some Manin triples. Concerning the general formula
(9.32), we have to say that this is no problem when ¢;,? and c¢;? is zero because

-1 0122X1 12 0122X170121X2 -1 0121X2 12
C12 €12

which can be approximate by
1

2
P2 = (X4 A2 XD 4 ) e e N (x, + D2 X3y ), (9.32)

We tried to obtain the equivalent formula for n = 3 but the calculus was too hard.
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