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ABSTRACT

Triangular properties of associated Legendre functions are derived using the vecto-

rial addition theorem of spherical harmonics

1. Introduction

A triangular property of the associated Legendre functions was first introduced in
reference [1]. The triangular property is a relationship between associated Legendre
functions with the arguments being the cosines of angles in a triangle. This property
can be used to simplify the calculations of cross sections of electron-atom collisions.
This relation was also encountered in the analytical evaluation of infinte integrals over
spherical Bessel functions [2]. This paper arrives at the same result of reference [1] and

finds other properties using the vectorial addition theorem of spherical harmonics.

2. Deriving the Triangular Properties

Consider a triangle of sides k1, k3 and k3 such that ks = ki + ko. Application of

the vectorial addition theorem for spherical harmonics [3] results in
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where —\3 < M3 < A3 and —\ < M < \. Now let the triangle be in a plane belonging

to a specific azimuthal angle ¢, in the spherical polar system of coordinates. Hence,

using
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one arrives at
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It is easy to show that
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Hence, equation (2.3) reduces to
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Let El point in the z-direction, where cos 0];1 =1, cos 9,;2 = —cos~y and cos 0];3 =
cos 3. As in Fig. 1, o, # and = define the interior angles of the defined triangle. One

can then rewrite equation (2.5) using the interior angles of the triangle as
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using
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Pp(1) = dam,0 (2.8)

and
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An alternative form, which is the result of reference [2], can be obtained if the sum

is made over £ = A3 — X as follows
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where the sum is now restricted to A3 — M3 since P)]\‘fi ﬁ(cos ~) vanishes for M3 > \g—L.

Now let kg point along the z-axis, where cos 0];2 = 1, cos Hfﬁ = —cosvy and

cos; = cosa. Equation (2.5) reduces to
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Also, if Eg points in the z-direction, where cos 9,%3 =1, cos 9,%1 = cos 3 and cos 0];2 =

cos a, equation (2.5) becomes
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3. Conclusions

The vectorial addition theorem can be used to obtain triangular relationships
between associated Legendre functions, Pg\/l (), for =L < M < L. These relations,
amongst other applications, allow the simplification of expressions obtained in the

analytical evaluation of infinite integrals over spherical Bessel functions.
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Figure 1: Triangle of sides K;, K, and K5, where

—

K, points along the z-axis



