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the Mangoldt function, and give an interesting hybrid mean value formula for it.

Keywords: the Smarandche function; the Mangoldt function; Mean value.

§1. Introduction
For any positive integer n, let S(n) denotes the Smarandache function, then

S(n) is defined as the smallest m ∈ N+ with n|m!. From the definition of
S(n), one can easily deduce that if n = pα1

1 pα2
2 · · · pαk

k is the prime power
factorization of n, then

S(n) = max
1≤i≤k

S(pαi
i ).

About the arithmetical properties of S(n), many people had studied it before
(see reference [2]). In this paper, we study the asymptotic property of a hybrid
mean value of the Smarandache function and the Mangoldt function, and give
an interesting hybrid mean value formula for it. That is, we shall prove the
following:

Theorem. For any real number x ≥ 1, we have the asymptotic formula

∑

n≤x

∧(n)S(n) =
x2

4
+ O

(
x2 log log x

log x

)
,

where ∧(n) is the Mangoldt function defined by

∧(n) =
{

log p, if n = pα(α ≥ 1);
0, otherwise.

§2. Proof of the theorem
In this section, we shall complete the proof of the theorem. Firstly, we need

following:
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Lemma. For any prime p and any positive integer α, we have

S(pα) = (p− 1)α + O

(
p log α

log p

)
.

Proof. From Theorem 1.4 of reference [3], we can obtain the estimate.
Now we use the above Lemma to complete the proof of the theorem. From

the definition of ∧(n), we have
∑

n≤x

∧(n)S(n)

=
∑

pα≤x

S(pα) log p

=
∑

p≤x

∑

α≤ log x
log p

log p

(
(p− 1)α + O

(
p log α

log p

))

=
∑

p≤x

(p− 1) log p
∑

α≤ log x
log p

α + O




∑

p≤x

p
∑

α≤ log x
log p

log α


 .

Applying Euler’s summation formula, we can get

∑

α≤ log x
log p

α =
1
2

log2 x

log2 p
+ O

(
log x

log p

)
,

and ∑

α≤ log x
log p

log α =
log x

log p
log

log x

log p
− log x

log p
+ O

(
log

log x

log p

)
.

Therefore we have

∑

n≤x

∧(n)S(n) =
1
2

log2 x
∑

p≤x

p

log p
+ O


log x log log x

∑

p≤x

p

log p


 . (1)

If x > 0 let π(x) denote the number of primes not exceeding x, and let

a(n) =
{

1, if n is a prime;
0, otherwise.

then π(x) =
∑

p≤x

a(n). Note the asymptotic formula

π(x) =
x

log x
+ O

(
x

log2 x

)
,
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and from Abel’s identity, we have
∑

p≤x

p

log p

=
∑

n≤x

a(n)
n

log n

= π(x)
x

log x
− π(2)

2
log 2

−
∫ x

2
π(t)d

(
t

log t

)

=
x

log x

(
x

log x
+ O

(
x

log2 x

))
−

∫ x

2

(
t

log t
+ O

(
t

log2 t

))
d

(
t

log t

)

=
1
2

x2

log2 x
+ O

(
x2

log3 x

)
. (2)

Combining (1) and (2), we have
∑

n≤x

∧(n)S(n)

=
1
4
x2 + O

(
x2

log x

)
+ O

(
log x log log x

x2

log2 x

)

=
1
4
x2 + O

(
x2 log log x

log x

)
.

This completes the proof of the theorem.
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