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Abstract: For two vertices u and v in a graph G = (V, E), the distance d(u,v) and detour
distance D(u,v) are the length of a shortest or longest u — v path in G, respectively, and
the Smarandache distance d(u,v) is the length d(u, v) +i(u,v) of a u — v path in G, where
0 < i(u,v) < D(u,v) — d(u,v). A u— v path of length d(u,v), if it exists, is called a
Smarandachely v — v i-detour. A set S C V is called a Smarandachely i-detour set if every
edge in G has both its ends in S or it lies on a Smarandachely i-detour joining a pair of vertices
in S. In particular, if i(u,v) = 0, then d(u,v) = d(u,v); and if i(u,v) = D(u,v) — d(u,v),
then d%(u,v) = D(u,v). For i(u,v) = D(u,v) — d(u,v), such a Smarandachely i-detour
set is called a weak edge detour set in G. The weak edge detour number dn.(G) of G is
the minimum order of its weak edge detour sets and any weak edge detour set of order
dn(G) is a weak edge detour basis of G. For any weak edge detour basis S of G, a subset
T C S is called a forcing subset for S if S is the unique weak edge detour basis containing
T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The
forcing weak edge detour number of S, denoted by fdn.(S), is the cardinality of a minimum
forcing subset for S. The forcing weak edge detour number of G, denoted by fdn.(G), is
fdne (G) = min{ fdn.(S)}, where the minimum is taken over all weak edge detour bases S
in G. The forcing weak edge detour numbers of certain classes of graphs are determined. It
is proved that for each pair a,b of integers with 0 < a < b and b > 2, there is a connected
graph G with fdn.(G) = a and dn.,(G) = b.
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§1. Introduction

For vertices u and v in a connected graph G, the distance d(u,v) is the length of a shortest
u—v path in G. A u—v path of length d(u,v) is called a u—v geodesic. For a vertex v of G,
the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum
eccentricity among the vertices of G is the radius, radG and the maximum eccentricity among

the vertices of G is its diameter, diamG of G. Two vertices u and v of G are antipodal if d(u,v)
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= diam@. For vertices u and v in a connected graph G, the detour distance D(u,v) is the
length of a longest u—v path in G. A u—v path of length D(u,v) is called a u—v detour. It
is known that the distance and the detour distance are metrics on the vertex set V(G). The
detour eccentricity ep(v) of a vertex v in G is the maximum detour distance from v to a vertex
of G. The detour radius, radpG of G is the minimum detour eccentricity among the vertices
of GG, while the detour diameter, diampG of G is the maximum detour eccentricity among the
vertices of G. These concepts were studied by Chartrand et al. [2].

A vertex x is said to lie on a u—v detour P if x is a vertex of P including the vertices u
and v. A set S CV is called a detour set if every vertex v in G lies on a detour joining a pair
of vertices of S. The detour number dn(G) of G is the minimum order of a detour set and any
detour set of order dn(QG) is called a detour basis of G. A vertex v that belongs to every detour
basis of G is a detour vertexr in G. If G has a unique detour basis S, then every vertex in S is
a detour vertex in G. These concepts were studied by Chartrand et al. [3].

In general, there are graphs G for which there exist edges which do not lie on a detour
joining any pair of vertices of V. For the graph G given in Figure 1.1, the edge v1v2 does not
lie on a detour joining any pair of vertices of V. This motivated us to introduce the concept of

weak edge detour set of a graph [5].

Figure 1: G

The Smarandache distance di(u,v) is the length d(u,v) + i(u,v) of a uw — v path in G,
where 0 < i(u,v) < D(u,v) — d(u,v). A u— v path of length d%(u,v), if it exists, is called a
Smarandachely u—v i-detour. A set S C V is called a Smarandachely i-detour set if every edge
in G has both its ends in S or it lies on a Smarandachely i-detour joining a pair of vertices in
S. In particular, if i(u,v) = 0, then di(u,v) = d(u,v) and if i(u,v) = D(u,v) — d(u,v), then
dis(u,v) = D(u,v). For i(u,v) = D(u,v) — d(u,v), such a Smarandachely i-detour set is called
a weak edge detour set in G. The weak edge detour number dn,(G) of G is the minimum order
of its weak edge detour sets and any weak edge detour set of order dn,,(G) is called a weak edge
detour basis of G. A vertex v in a graph G is a weak edge detour vertex if v belongs to every
weak edge detour basis of G. If G has a unique weak edge detour basis S, then every vertex
in S is a weak edge detour vertex of G. These concepts were studied by A. P. Santhakumaran
and S. Athisayanathan [5].

To illustrate these concepts, we consider the graph G given in Figure 1.2. The sets S; =
{u,z}, So = {u,y} and S3 = {u, z} are the detour bases of G so that dn(G) = 2 and the sets
S4 = {u,v,y} and S5 = {u,z, 2z} are the weak edge detour bases of G so that dn,,(G) = 3. The

vertex u is a detour vertex and also a weak edge detour vertex of G.
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Figure 2: G

The following theorems are used in the sequel.

Theorem 1.1([5]) For any graph G of order p > 2, 2 < dn,(G) < p.

Theorem 1.2([5]) Fuvery end-vertex of a non-trivial connected graph G belongs to every weak
edge detour set of G. Also if the set S of all end-vertices of G is a weak edge detour set, then

S is the unique weak edge detour basis for G.
Theorem 1.3([5]) If T is a tree with k end-vertices, then dn,(T) = k.

Theorem 1.4([5]) Let G be a connected graph with cut-vertices and S a weak edge detour set

of G. Then for any cut-vertex v of G, every component of G — v contains an element of S.

Throughout this paper G denotes a connected graph with at least two vertices.

§2. Forcing Weak Edge Detour Number of a Graph

First we determine the weak edge detour numbers of some standard classes of graphs so that

their forcing weak edge detour numbers will be determined.

Theorem 2.1 Let G be the complete graph K, (p > 3) or the complete bipartite graph K, » (2 <
m < n). Then a set S CV is a weak edge detour basis of G if and only if S consists of any

two vertices of G.

Proof Let G be the complete graph K,(p > 3) and S = {u,v} be any set of two vertices
of G. It is clear that D(u,v) = p — 1. Let zy € E. If xy = ww, then both its ends are in S.
Let xy # wv. If x # u and y # v, then the edge xy lies on the u—v detour P : u,x,y,...,v of
length p— 1. If x = v and y # v, then the edge zy lies on the u—v detour P : u = z,y,...,v of
length p — 1. Hence S is a weak edge detour set of G. Since |S| = 2, S is a weak edge detour
basis of G.

Now, let S be a weak edge detour basis of G. Let S’ be any set consisting of two vertices
of G. Then as in the first part of this theorem S’ is a weak edge detour basis of G. Hence
|S| = |S'| = 2 and it follows that S consists of any two vertices of G.

Let G be the complete bipartite graph K, » (2 < m < n). Let X and Y be the bipartite
sets of G with | X| =m and |Y| =n. Let S = {u,v} be any set of two vertices of G.

Case 1l Letue X and v € Y. It is clear that D(u,v) = 2m — 1. Let zy € E. If xy = uv, then
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both of its ends are in S. Let xy # uv be such that x € X and y € Y. If x # w and y # v, then
the edge zy lies on the u—v detour P : u,y,z,...,v of length 2m — 1. If x = v and y # v, then
the edge xy lies on the u—v detour P : uw = z,y,...,v of length 2m — 1. Hence S is a weak edge
detour set of G.

Case 2 Let u,v € X. It is clear that D(u,v) = 2m — 2. Let 2y € F be such that x € X and
y € Y. If x # u, then the edge zy lies on the u—v detour P : u,y,z,...,v of length 2m — 2. If
x = u, then the edge xy lies on the u—v detour P : u = z,y,...,v of length 2m — 2. Hence S

is a weak edge detour set of G.

Case 3 Let u,v € Y. It is clear that D(u,v) = 2m. Then, as in Case 2, S is a weak edge
detour set of G. Since |S| = 2, it follows that S is a weak edge detour basis of G.

Now, let S be a weak edge detour basis of G. Let S’ be any set consisting of two vertices
of G. Then as in the first part of the proof of K, ,, S’ is a weak edge detour basis of G. Hence

|S| =1S’| = 2 and it follows that S consists of any two vertices adjacent or not. O

Theorem 2.2 Let G be an odd cycle of order p > 3. Then a set S CV is a weak edge detour

basis of G if and only if S consists of any two adjacent vertices of G.

Proof Let S = {u, v} be any set of two adjacent vertices of G. It is clear that D(u,v) = p—1.
Then every edge e # uv of G lies on the u—v detour and both the ends of the edge uv belong to
S so that S is a weak edge detour set of G. Since |S| =2, S is a weak edge detour basis of G.

Now, assume that S is a weak edge detour basis of G. Let S’ be any set of two adjacent
vertices of G. Then as in the first part of this theorem S’ is a weak edge detour basis of G.
Hence |S| = |S’] = 2. Let S = {u,v}. If v and v are not adjacent, then since G is an odd
cycle, the edges of u—v geodesic do not lie on the u—v detour in G so that S is not a weak edge

detour set of G, which is a contradiction. Thus S consists of any two adjacent vertices of G.

Theorem 2.3 Let G be an even cycle of order p > 4. Then a set S CV is a weak edge detour

basis of G if and only if S consists of any two adjacent vertices or two antipodal vertices of G.

Proof Let S = {u,v} be any set of two vertices of G. If u and v are adjacent, then
D(u,v) = p—1 and every edge e # uv of G lies on the u—v detour and both the ends of the
edge uv belong to S. If u and v are antipodal, then D(u,v) = p/2 and every edge e of G lies
on a u—v detour in G. Thus S is a weak edge detour set of G. Since |S| =2, S is a weak edge
detour basis of G.

Now, assume that S is a weak edge detour basis of G. Let S’ be any set of two adjacent
vertices or two antipodal vertices of G. Then as in the first part of this theorem S’ is a weak
edge detour basis of G. Hence |S| = |S/| = 2. Let S = {u,v}. If u and v are not adjacent and
u and v are not antipodal, then the edges of the u—v geodesic do not lie on the u—v detour in
G so that S is not a weak edge detour set of GG, which is a contradiction. Thus S consists of

any two adjacent vertices or two antipodal vertices of G. O

Corollary 2.4 If G is the complete graph K, (p > 3) or the complete bipartite graph K, » (2 <
m < n) or the cycle C, (p > 3), then dn,(G) = 2.



26 A.P.Santhakumaran and S.Athisayanathan

Proof This follows from Theorems 2.1, 2.2 and 2.3. O

Every connected graph contains a weak edge detour basis and some connected graphs may
contain several weak edge detour bases. For each weak edge detour basis S in a connected graph
G, there is always some subset T of S that uniquely determines S as the weak edge detour basis
containing T'. We call such subsets "forcing subsets” and we discuss their properties in this
section.

Definition 2.5 Let G be a connected graph and S a weak edge detour basis of G. A subset
T C S is called a forcing subset for S if S is the unique weak edge detour basis containing T.
A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing
weak edge detour number of S, denoted by fdn,(S), is the cardinality of a minimum forcing
subset for S. The forcing weak edge detour number of G, denoted by fdn,(G), is fdn,(G) =

min {fdn,(S)}, where the minimum is taken over all weak edge detour bases S in G.

Example 2.6 For the graph G given in Figure 2.1(a), S = {u,v,w} is the unique weak edge
detour basis so that fdn, (G) = 0. For the graph G given in Figure 2.1(b), S1 = {u,v,z},
Sy = {u,v,y} and S3 = {u,v,w} are the only weak edge detour bases so that fdn,(G) = 1.
For the graph G given in Figure 2.1(c), Sy = {u,w,x}, S5 = {u,w,y}, S¢ = {v,w,x} and
S7 = {v,w,y} are the four weak edge detour bases so that fdn,,(G) = 2.

Figure 3: G

The following theorem is clear from the definitions of weak edge detour number and forcing
weak edge detour number of a connected graph G.

Theorem 2.7 For every connected graph G, 0 < fdn,(G) < dny(G).

Remark 2.8 The bounds in Theorem 2.7 are sharp. For the graph G given in Figure 2.1(a),
fdn,(G) = 0. For the cycle Cs, fdn,,(Cs) = dn,(C3) = 2. Also, all the inequalities in Theorem
2.7 can be strict. For the graph G given in Figure 2.1(b), fdn,(G) = 1 and dn,(G) = 3 so
that 0 < fdn,(G) < dny(G).

The following two theorems are easy consequences of the definitions of the weak edge detour
number and the forcing weak edge detour number of a connected graph.

Theorem 2.9 Let G be a connected graph. Then

a) fdn,(G) =0 if and only if G has a unique weak edge detour basis,
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b) fdn.(G) =1 if and only if G has at least two weak edge detour bases, one of which is
a unique weak edge detour basis containing one of its elements, and
¢) fdn,(G) = dny(G) if and only if no weak edge detour basis of G is the unique weak

edge detour basis containing any of its proper subsets.

Theorem 2.10 Let G be a connected graph and let F be the set of relative complements of the
manimum forcing subsets in their respective weak edge detour bases in G. Then (\pc 5 F is the
set of weak edge detour vertices of G. In particular, if S is a weak edge detour basis of G, then

no weak edge detour vertexr of G belongs to any minimum forcing subset of S.

Theorem 2.11 Let G be a connected graph and W be the set of all weak edge detour vertices
of G. Then fdn,(G) < dny(G) — |W].

Proof Let S be any weak edge detour basis S of G. Then dn,,(G) = |S|, W C S and S is
the unique weak edge detour basis containing S — W. Thus fdn,,(S) < |S—W| =S| - |[W|

Ol

Remark 2.12 The bound in Theorem 2.11 is sharp. For the graph G given in Figure 2.1(c),
dn,(G) = 3, [W| =1 and fdn,(G) = 2 as in Example 2.6. Also, the inequality in Theorem
2.11 can be strict. For the graph G given in Figure 2.2, the sets S; = {v1,v4} and Sy = {v2,v3}
are the two weak edge detour bases for G and W = 0 so that dn,(G) = 2, |W| = 0 and

fdn,(G) = 1. Thus fdnw(G)v<1 dn,(G) — |[W]. o

Figure 4: G
In the following we determine fdn,,(G) for certain graphs G.

Theorem 2.13 a) If G is the complete graph K, (p > 3) or the complete bipartite graph
Kpn (2 <m <n), then dny(G) = fdn,(G) = 2.

b) If G is the cycle Cp (p > 4), then dn,(G) = fdn,(G) = 2.

¢) If G is a tree of order p > 2 with k end-vertices, then dn,(G) =k, fdn,(G) =0.

Proof a) By Theorem 2.1, a set S of vertices is a weak edge detour basis if and only if S
consists of any two vertices of G. For each vertex v in G there are two or more vertices adjacent
with v. Thus the vertex v belongs to more than one weak edge detour basis of G. Hence it
follows that no set consisting of a single vertex is a forcing subset for any weak edge detour
basis of G. Thus the result follows.

b) By Theorems 2.2 and 2.3, a set S of two adjacent vertices of G is a weak edge detour

basis of G. For each vertex v in G there are two vertices adjacent with v. Thus the vertex v
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belongs to more than one weak edge detour basis of G. Hence it follows that no set consisting of
a single vertex is a forcing subset for any weak edge detour basis of G. Thus the result follows.

¢) By Theorem 1.3, dn,,(G) = k. Since the set of all end-vertices of a tree is the unique
weak edge detour basis, the result follows from Theorem 2.9(a). 0

The following theorem gives a realization result.

Theorem 2.14 For each pair a, b of integers with 0 < a < b and b > 2, there is a connected
graph G with fdn,(G) = a and dn,(G) =b.

Proof The proof is divided into two cases following.

Case 1: a = 0. For each b > 2, let G be a tree with b end-vertices. Then fdn,(G) = 0 and
dn,(G) = b by Theorem 2.13(c).

Case 2: a > 1. Foreach i (1 <i < a), let F; : u;,v;, w;, x;, u; be the cycle of order 4 and let
H = K7 _q be the star at v whose set of end-vertices is {21, 22, ..., 2p—q }. Let G be the graph
obtained by joining the central vertex v of H to both vertices u;, w; of each F; (1 < ¢ < a).
Clearly the graph G is connected and is shown in Figure 2.3.

Let W = {z1,22,...,2p—q} be the set of all (b — a) end-vertices of G. First, we show
that dn.,,(G) = b. By Theorems 1.2 and 1.4, every weak edge detour basis contains W and
at least one vertex from each F; (1 < i < a). Thus dn,,(G) = (b—a) + a = b. On the other
hand, since the set S;1 = W U {v1,va,...,0,} is a weak edge detour set of G, it follows that
dn,(G) < |S1| = b. Therefore dn,,(G) = b.

Next we show that fdn, (G) = a. It is clear that W is the set of all weak edge detour
vertices of G. Hence it follows from Theorem 2.11 that fdn,(G) < dn,(G)—|W| =b—(b—a) =
a. Now, since dn.,,(G) = b, it is easily seen that a set S is a weak edge detour basis of G if and
only if S is of the form S = W U {y1,y2,...,¥a}, where y; € {v;,x;} CV(F;) (1 <i<a). Let
T be a subset of S with |T'| < a. Then there is a vertex y; (1 < j < a) such that y; ¢ T. Let
sj € {vj,z;} C V(F;) distinct from y;. Then S’ = (S — {y;}) U {s;} is a weak edge detour
basis that contains 7. Thus S is not the unique weak edge detour basis containing 7. Thus
fdn,(S) > a. Since this is true for all weak edge detour basis of G, it follows that fdn,(G) > a

and so fdn,(G) = a. O
V2
U1 wy Uq Vg
u9 W o o o
U 1 T2 Tq Wq
v
L] L] L]
21 22 Zb—a

Figure 5: G
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