Offspring Sex-ratio in Humans – Does it depend on population size?

Madhukar Shivajirao Dama

Correspondence to

Assistant Professor Institute of Wildlife Veterinary Research Doddaluvara, Thorenoor Post, Somwarpet Taluk, Kodagu District, Karnataka – 571232, India E-mail: madhukar262@gmail.com

Summary

Balanced sex ratio evolves by a process known as frequency-dependent selection of the minority sex. Efforts to test this theory have focused mainly on experimental populations. Heterogametic sex has greater influence over the sex of the offspring. We tested the prediction that a smaller human population should favor male offspring. Our findings reveal that size of the population has significant inverse correlation with male proportion. We also present evidence for frequency-dependent selection of the minority sex and evolution of balanced sex ratio in isolated human population.

Keywords

Sex ratio; Population size; Sex ratio adjustments

Fisher's principle explains the basis for 1:1 proportion of male and female individuals in natural populations.¹ The model is based on the presumption of equal investment in sons and daughters by parents. Every offspring is produced by equal genetic contribution of parents in sexually reproducing species. If one sex is rare, it will be overrepresented in subsequent generations until the sex ratio is balanced. This frequency-dependent model of selection is widely accepted. Fisher's theory accounts for widespread occurrence of sex-determining mechanisms, such as heterogamity, that ensures balanced sex ratio.² This phenomenon has been observed in Drosophila ³ and fish, ⁴ where populations with experimentally biased sex ratios evolved towards equal proportions of males and females over generations. The possibility that human populations may also exhibit frequency dependent selection has

In humans, male is the heterogametic sex, and offspring's sex is determined by whether an Xor Y-chromosome bearing spermatozoon fertilizes the ovum. Thus man may have greater control over the sex of the progenies. As population has an innate tendency to grow, ⁵ a smaller human population may produce male biased progenies to achieve higher growth rate. This is true otherwise also, since men are always fertile while women have limited fertility. Males of most mammalian species can father children throughout their life while females can produce limited number of offspring in the similar time period. This complies with Trivers and Willard hypothesis for sex allocation which predicts that parents should increase the production of offspring sex with higher fitness benefits.⁶ Here the ability of male to regulate population growth can be considered as fitness trait. Given better fitness of male when it comes to population growth, we tested the hypothesis that the smaller human populations may be male biased.

It is difficult to analyze every human population for sex ratio trends as multitude of factors have been implicated to play role in population sex ratios.⁷ Nevertheless, an isolated population existing away from the modern world can be considered a good sample for evaluation. To test our hypothesis, we analyzed the population trends on the Andaman Islands for one hundred years (1901-2001).⁸ These islands are not connected with Indian mainland and are home to some of the most primitive tribes in the world, and recent studies indicate that these tribes are the very first descendents of the modern humans migrated out of Africa. Andamanese populations is isolated from main lands since 50-60 thousand years, and genetically resembles African population more than Asian populations.⁹

The population data for Andamanese was obtained from Directorate of Economics and Statistics, Andaman and Nicobar administration, Port Blair, and for mainland populations from Office of the Registrar General and Census Commissioner, Government of India.

The Andaman population was 18138 in 1901 which increased to 314084 in 2001 (Table1). The proportion of males was 84% in 1901 which steadily declined to 54% in 2001. There was a significant inverse correlation between total population size and proportion of males (squared correlation coefficient $r^2 = 0.61$, p = 0.0021).

During initial five decades (1901-1951), the proportion of males declined steadily from 84% to 67%, whereas the population size increase was negligible (1.2%), which can be attributed to disproportionately low number of females. However, during next five decades (1951-2001), the proportion of males continued to decrease further from 67% to 54%, approaching 1:1 ratio, with a concurrent large increase in population size (Table. 1). Beginning from the year 1901, a steady increase in population size and concurrent evolution of balanced sex ratio can be observed (Figure. 1). The proportion of males was 54% during 2001 and it will be interesting to see the results of next population census that will be conducted in 2011.

Looking at the trends in Andamanese, we analyzed the mainland populations of India to strengthen our findings. The key challenge was to select a population where we can be sure of no prevalence of sex specific abortion.¹⁰ The abortions have been correlated with economic status and literacy in India.¹¹ However, there is a large tribal population (8% of Indian population) spread all over India which still lives isolated, and away from urban communities (92% are in rural areas).¹² The mainland tribes are classified under the category of scheduled tribes. The habitats of these tribes are declared as scheduled areas and rank lowest on all the socioeconomic scales.¹⁶ Hence we assumed the effect on sex ratio due to sex specific abortion in these areas to be negligible. Tribal population limited to 135 areas spread across India (districts/blocks) was analyzed. Data collected from 2001 Indian population census was analyzed for scheduled areas (Table 2). For these areas, the population data was not available for previous decades. This data is not temporal and cannot be compared with Andamanese; however a comparison can be made between smaller and larger populations. Total population in scheduled areas was 2.6 million and ranged from mere 1094 to as big as 1.25 million. As

observed in Andamanese, a smaller population can be expected to have higher proportion of males, and as population size increases shift towards equal sex proportions may occur. As expected, we observed a similar trend in proportion of males and total population in scheduled areas. The proportion of males was higher in smaller populations and a steady decline was seen with increase in total population size (fig. 2).

This is the first evidence for Fisher's frequency dependent balancing of sex ratio in human populations. Extreme skew towards heterogametic sex (male in mammals, female in birds) has been observed in numerous declining and endangered mammalian and bird populations.^{13,14,15} Analogous to this situation, the smaller tribes of Himalayan tracts have been documented to favor male births.¹⁶ This skewing to favor heterogametic offspring seems like a strategy employed to reverse the population decline / prevent extinction. These phenomenons are in agreement with our hypothesis of production of male biased offspring in an effort to increase population size. A minor effect, if any, on sex ratio due to other environmental factors may exist, however, evolution of balanced sex ratio by frequency dependent selection seems to be the strongest factor.

The obvious question now will be 'how selective fertilization is given effect in humans? Various factors ranging from physiological to environmental have been shown to affect secondary sex ratio,¹⁷ however, it would be interesting to explore physiological factors that may favor adjustment in sex ratio in human population, pre-fertilization or post-fertilization.

Conflict of interest statement

We declare that we have no conflict of interest.

References

- 1. R. A. Fisher, The Genetical Theory of Natural Selection
- (Oxford Univ. Press, Oxford, 1930).
- 2. J. J. Bull and E. L. Charnov, in Oxford Surveys in

Evolutionary Biology, P. H. Harvey and L. Partridge,

Eds. (Oxford Univ. Press, Oxford, 1988), vol. 5.

3. Carvalho AB, Sampaio MC, Varandas FR, Klaczko LB. An experimental demonstration of Fisher's principle: evolution of sexual proportion by natural selection. Gene*tics 1998*;148(**2**):719-31.

4. Conover DO, Van Voorhees DA. Evolution of a Balanced Sex Ratio by Frequency-Dependent Selection in a Fish. Science 1990;250(4987):1556-1558.

5. T. R. Malthus. An Essay on Principal of Population (Kessinger Publishing, LLC, 2004)

6. Trivers RL, Willard DE. Natural selection of parental ability to vary the sex ratio of offspring. Science 1973;179(68):90-2.

7. Hesketh T, Xing ZW. Abnormal sex ratios in human populations: causes and consequences. Proc *Natl Acad Sci U S A 2006*;103(**36**):13271-5.

8. Directorate of economics and statistics Andaman and Nicobar administration Port Blair. Statistical handbook on Andaman district and Nicobar district 2005-2006. <u>http://www.and.nic.in/Know%20Andaman/stats/glance20007.htm</u> (accessed Oct 1, 2008).

9. Thangaraj K, Chaubey G, Kivisild T, et al. Reconstructing the origin of Andaman Islanders. Scie*nce 2005*;308(**572**4):996.

10. Jha P, Kumar R, Vasa P, Dhingra N, Thiruchelvam D, Moineddin R. Low female[corrected]-to-male [corrected] sex ratio of children born in India: national survey of 1.1 million households. Lanc*et 2006*;367(**950**6):211-8.

11. Bose S, Trent K. Socio-demographic determinants of abortion in India: a north-South comparison. J Biosoc Sci 2006;38(2):261-82.

12. Office of the Registrar General and Census Commissioner, India. Census of India 2001. http://www.censusindia.gov.in/default.aspx (accessed Sep 25, 2008)

13. Martin JF, Willard DK. Reproductive performance of female key deer. J Wildl Manage 1998'; 55: 386-90.

14. Wegge P. Distorted sex ratio among small broods in a declining Capercaillie population.Ornis Scandinavica 1980'; 11:106-09.

15. John GE, Rohan HC, Emma M, Rebecca LB, Ross HC, Michael FC. Primary sex ratio bias in an endangered cooperatively breeding bird, the black-eared miner, and its implications for conservation. Biological Conservation 2001'; 101: 137-45.

16. Nadeem Hasnain. Tribal India (Palaka Prakashan, Delhi, 2007).

17. Rosenfeld CS, Roberts RM. Maternal diet and other factors affecting offspring sex ratio: a review. Biol *Reprod 2004*;71(4):1063-70.

Year	Population	Females	Males	% males
1901	18138	2985	15153	84
1911	17641	2903	14738	84
1921	17814	2269	15545	87
1931	19223	4963	14260	74
1941	21316	6441	14875	70
1951	18962	6227	12735	67
1961	48985	17463	31522	64
1971	93468	35593	57875	62
1981	158287	67837	90450	57
1991	241453	108348	133105	55
2001	314084	143756	170328	54

Table 1. Andaman population over a period of 100 years

	State	District	Block	Total population	Femal es	Male s	Per cent males
1	Andhra Pradesh	Mehboobnagar	Achempeth	15652	7534	8118	51.87
2	Andhra pradesh	Adilabad	Adilabad	20761	10544	1021 7	49.21
3	Andhra Pradesh	Adilabad	Boath	13116	6498	6618	50.45
4	Andhra Pradesh	Adilabad	Utnoor	25594	12435	1315 9	51.41
5	Andhra Pradesh	Adilabad	Asifabad	8996	4652	4344	48.29
6	Andhra Pradesh	Adilabad	Sirpur	19219	9681	9538	49.63
7	Andhra Pradesh	Warangal	Muluq	12995	6290	6705	51.60
8	Andhra Pradesh	Warangal	Narsampet	8239	4090	4149	50.35
9	Andhra pradesh	Khammam	Yellandu	34607	17492	1711 5	49.46
10	Andhra Pradesh	Khammam	Palwancha	24598	11780	1281 8	52.11
11	Andhra Pradesh	Vishakapatnam	-	557572	27920 4	2783 68	49.93
12	Andhra pradesh	East godavari	-	191561	96304	9525 7	49.73
13	Andhra Pradesh	West godavari	-	96659	48761	4789 8	49.55
14	Jharkhand	Ranchi	-	1164624	57909 2	5855 32	50.28
15	Jharkhand	Palamu	Latehar	44478	22361	2211 7	49.73
16	Jharkhand	Palamu	Garu	20532	10083	1044 9	50.89
17	Jharkhand	East singhbum	-	1111322	55732 3	5539 99	49.85
18	Jharkhand	West singhbum	-	552187	27400 7	2781 80	50.38
19	Jharkhand	Dumka	-	701903	34954 2	3523 61	50.20
20	Gujarat	Surat	Uchchal	71084	35911	3517 3	49.48
21	Gujarat	Surat	Vyara	211611	10654 1	1050 70	49.65
22	Gujarat	Surat	Mahuva	112655	55759	5689 6	50.51
23	Gujarat	Surat	Mandvi	140800	70470	7033 0	49.95
24	Gujarat	Surat	Songadh	170464	85529	8493 5	49.83

Table. 2. Population of scheduled tribes in scheduled areas from 2001 national census

25	Gujarat	Surat	Valod	64112	31895	3221 7	50.25
26	Gujarat	Surat	Mangrol	90370	44543	4582 7	50.71
27	Gujarat	Surat	Bardoli	99213	49607	4960 7	50.00
28	Gujarat	Narmada	Dediapada	137553	67800	6975 3	50.71
29	Gujarat	Narmada	Sagbara	74980	38189	3679 1	49.07
30	Gujarat	Bharuch	Valia	96179	47481	4869 8	50.63
31	Gujarat	Narmada	Nandod	159443	77129	8231 4	51.63
32	Gujarat	Bharuch	Jhagadia	115458	56188	5927 0	51.33
33	Gujarat	The dang	The dang	175079	87320	8775 9	50.13
34	Gujarat	Valsad	Dharmpur	165662	82582	8308 0	50.15
35	Gujarat	Navasari	Chikhli	205275	10181 0	1034 65	50.40
36	Gujarat	Valsad	Pardi	158786	78994	7979 2	50.25
37	Gujarat	Valsad	Umbergaon	115392	59213	5617 9	48.69
38	Gujarat	Dohad	Jhalod	319443	15843 3	1610 10	50.40
39	Gujarat	Dohad	Dohad	273469	13646 0	1370 09	50.10
40	Gujarat	Panchmahals	Santrampur	1688	769	919	54.44
41	Gujarat	Dohad	Limkheda	146764	73382	7338 2	50.00
42	Gujarat	Dohad	Devgadbaria	48185	23837	2434 8	50.53
43	Gujarat	Vadodara	Chotta udaipur	175480	87255	8822 5	50.28
44	Gujarat	Vadodara	Nasvadi	107547	52816	5473 1	50.89
45	Gujarat	Narmada	Tilakwada	29678	14229	1544 9	52.06
46	Gujarat	Sabarkantha	Khedbrahma	153704	75840	7786 4	50.66
47	Gujarat	Sabarkantha	Bhiloda	114007	57484	5652 3	49.58
48	Gujarat	Sabarkantha	Meghraj	51612	25832	2578 0	49.95
49	Gujarat	Sabarkantha	Vijayanagar	68545	34845	3370 0	49.16
50	Himachal Pradesh	Kinnaur	-	56268	28686	2758 2	49.02
51	Himachal Pradesh	Lahaul and spiti	-	24238	12286	1195 2	49.31
52	Himachal	Chamba	Pangi	15337	7649	7688	50.13

	Pradesh						
53	Himachal Pradesh		Brahmaur	19089	9360	9729	50.97
54	Madhya Pradesh	Jhabua	-	1211116	60343 1	6076 85	50.18
55	Madhya Pradesh	Mandla	-	511798	25943 2	2523 66	49.31
56	Chattishgarh	Sarguja	-	1076669	53481 2	5418 57	50.33
57	Chattishgarh	Bastar	-	866488	43753 4	4289 54	49.50
58	Madhya Pradesh	Dhar	Sardarpur	128947	63657	6529 0	50.63
59	Madhya Pradesh	Dhar	Dhar	149197	72568	7662 9	51.36
60	Madhya Pradesh	Dhar	Kukshi	263145	13097 8	1321 67	50.23
61	Madhya Pradesh	Dhar	Manawar	159337	79469	7986 8	50.13
62	Madhya Pradesh	Barwani	Barwaha	188155	92645	9551 0	50.76
63	Madhya Pradesh	Barwani	Rajpur	116536	57798	5873 8	50.40
64	Madhya Pradesh	Barwani	Sendhwa	209337	10382 4	1055 13	50.40
65	Madhya Pradesh	West nimar	Bhikangaon	64686	31917	3276 9	50.66
66	Madhya Pradesh	West nimar	Khargone	46393	22626	2376 7	51.23
67	Madhya Pradesh	West nimar	Maheshwar	48463	23837	2462 6	50.81
68	Madhya Pradesh	East nimar	Khalwa of harshad	1094	510	584	53.39
69	Madhya Pradesh	East nimar	Khaknar of burhampur	1596	754	842	52.77
70	Madhya Pradesh	Ratlam	Sailana	80887	39994	4089 3	50.56
71	Madhya Pradesh	Betul	Betul	193913	96859	9705 4	50.05
72	Madhya Pradesh	Betul	Bhainsdehi	208021	10317 2	1048 49	50.40
73	Madhya Pradesh	Seoni	Lakhnadon	130512	65516	6499 6	49.80
74	Madhya Pradesh	Seoni	Kurai	49887	25397	2449 0	49.09
75	Madhya Pradesh	Balaghat	Baihar	181101	92759	8834 2	48.78
76	Madhya Pradesh	Hoshangabad	Hosangabad	9436	4401	5035	53.36
77	Madhya Pradesh	Shahdol	Puspharajgarh	149567	74896	7467 1	49.93
78	Madhya Pradesh	Shahdol	Sohagpur	186952	92770	9418 2	50.38
79	Madhya	Shahdol	Jaisinghnagar	80330	40165	4016	50.00

	Pradesh					5	
80	Madhya Pradesh	Sidhi	Kusimi	41202	20330	2087 2	50.66
81	Chattisgarh	Jashpur	Jashpurnagar	89932	44921	4501 1	50.05
82	Chattisgarh	Raigarh	Kharsia	38098	19331	1876 7	49.26
83	Chattisgarh	Bilaspur	Gaurella	2989	1492	1497	50.08
84	Chattisgarh	Bilaspur	Kota	1880	888	992	52.77
85	Chattisgarh	Durg	Balod	2378	1198	1180	49.63
86	Chattisgarh	Rajnandagaon	Rajnandgaon	8219	4062	4157	50.58
87	Madhya Pradesh	Sheopur	Sheopur	33196	16242	1695 4	51.07
88	Madhya Pradesh	Chhindwara	Sausar	28823	14110	1471 3	51.05
89	Maharastra	Thane	Dahanu	215162	10917 1	1059 91	49.26
90	Maharastra	Thane	Talasari	107379	54665	5271 4	49.09
91	Maharastra	Thane	Jawahar	99932	50485	4944 7	49.48
92	Maharastra	Thane	Mokhada	60964	30283	3068 1	50.33
93	Maharastra	Thane	Shahapur	89997	44406	4559 1	50.66
94	Maharastra	Nasik	Peint	89926	44918	4500 8	50.05
95	Maharastra	Nasik	Surgana	137602	68629	6897 3	50.13
96	Maharastra	Nasik	Kalwan	108955	54478	5447 8	50.00
97	Maharastra	Nandurbar	Nawapur	203292	10195 0	1013 42	49.85
98	Maharastra	Nandurbar	Akkalkuwa	150654	76110	7454 4	49.48
99	Maharastra	Nandurbar	Akrani	129621	65229	6439 2	49.68
10 0	Maharastra	Chandrapur	Chandrapur	47303	22933	2437 0	51.52
10 1	Maharastra	Chandrapur	Rajura	34304	16855	1744 9	50.86
10 2	Maharastra	Jalgaon	Chopda	69893	33995	3589 8	51.36
10 3	Maharastra	Jalgaon	Yawal	51059	24848	2621 1	51.33
10 4	Maharastra	Nanded	Kinwat	58527	29013	2951 4	50.43
10 5	Orissa	Mayurbhanj	-	1258459	62733 6	6311 23	50.15
10 6	Orissa	Sundergarh	-	918903	46014 0	4587 63	49.93
10 7	Orissa	Koraput	-	585830	29552 8	2903 02	49.55
10	Orissa	Sambalpur	Kochinda	36108	17991	1811	50.18

8						7	
0 10 9	Orissa	Kendujhar	Kendujhar	74006	37058	3694 8	49.93
11 0	Orissa	Kendujhar	Telkoi	43895	21782	2211 3	50.38
11 1	Orissa	Kendujhar	Champua	53925	26841	2708 4	50.23
11 2	Orissa	Kendujhar	Barbil	36770	18246	1852 4	50.38
11 3	Orissa	Khandamal	-	336809	17056 6	1662 43	49.36
11 4	Orissa	Ganjam	-	90919	45070	4584 9	50.43
11 5	Orissa	Kalahandi	Thuamul rampur	37850	19305	1854 5	49.00
11 6	Orissa	Kalahandi	Lanjigarh	25638	13052	1258 6	49.09
11 7	Orissa	Baleshwar	Nilgiri	38270	19183	1908 7	49.88
11 8	Rajasthan	Banswara	-	1085272	53798 4	5472 88	50.43
11 9	Rajasthan	Dungarpur	-	721487	36572 4	3557 63	49.31
12 0	Rajasthan	Udaipur	Kherwara	202529	10151 7	1010 12	49.88
12 1	Rajasthan	Udaipur	Kotra	163903	81332	8257 1	50.38
12 2	Rajasthan	Udaipur	Sarada	138195	69270	6892 5	49.88
12 3	Rajasthan	Udaipur	Salumabr	111419	55876	5554 3	49.85
12 4	Rajasthan	Chittaurgarh	Pratapgarh	115636	56548	5908 8	51.10
12 5	Rajasthan	Sirohi	Abu road	84477	41420	4305 7	50.97
12 6	Assam	North cachar hill	-	128428	62466	6596 2	51.36
12 7	Assam	Mikir hills (karbi angalong)	-	452963	22197 7	2309 86	50.99
12 8	Meghalaya	East khasi hills	-	512152	26146 6	2506 86	48.95
12 9	Meghalaya	Jantia hills	-	287049	14445 1	1425 98	49.68
13 0	Meghalaya	East garo hills	-	241916	11955 1	1223 65	50.58
13 1	Meghalaya	West garo hill	-	397166	19718 3	1999 83	50.35
13 2	Meghalaya	South garo hills	-	96616	47597	4901 9	50.74
13 3	Tripura	North	-	150500	73439	7706 1	51.20
13 4	Tripura	South	-	289519	14344 5	1460 74	50.45
13	Tripura	West	-	387081	19099	1960	50.66

	5					1	90	
--	---	--	--	--	--	---	----	--

Figure 1: Relation between population size and proportion of males in Andaman tribes over a period of 100 years. Each open circle represents proportion of males for one decadal census beginning from 1901. With each decade an increase in population and subsequent decrease in male proportion is obvious.

Figure 2: Relation between proportion of males and total population of tribes in scheduled areas. Each open circle represents one scheduled area. Note the change of value of proportion of males towards 50:50 as population size is increasing.

