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Radial monopoles and dipole dark energy for Hubble

expansion with acceleration

I.E. Bulyzhenkov1

Moscow Institute of Physics & Technology, 1 Klimentovskiy per., Moscow, Russia

Abstract

Extended carriers of mass-energy with r−4 radial densities correspond to ob-

servable particles obeying Newtonian attractions in weak fields but repulsions in

strong ones. Space interference of such overlapping radial monopoles maintains

unobservable r−2 × r−2 dipole formations of dark mass-energy which conserves

the metric energy integral of the material space continuum. The Newton fall

attraction followed by strong field gravitational repulsion in such a continuum

can quantitatively explain the Hubble expansion rate rHo, with calculated ac-

celeration r(Ho)
2, and qualitatively comply with Penrose’s cyclic cosmology.

Laboratory tests with precise clocks may justify in principle the non-empty,

material space paradigm for nonlocal physical reality of everywhere overlapping

continuous bodies.
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1. Metric theorem from GR energy definition

Einstein’s metric theory of gravitational fields is to be revised in a self-

contained form in order to avoid the conceptual shortage of the Newton attrac-

tion of spatially separated point masses. A self-contained theory would unlikely

reiterate infinite negative potentials at vanishing interaction distances as one5
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might infer for a moment from Newtonian gravitation. While Newton employed

the formal model of point masses in empty space, material sources in the Ein-

stein Equation are stress-energy tensor densities but not scalar mass invariants.

Energy density type of source is more suitable for a continuous distribution

of the extended elementary mass rather than for a point mass singularity. In10

other words, Newtonian empty-space references cannot be accepted in princi-

ple (or by default) by Einstein’s metric gravitation of overlapping mass-energy

distributions or for extended energy-charges.

Again, it is essential to employ metric references for General Relativity (GR)

not on the basis of the Newton empty space theory, but on a self-contained basis15

like the Special Relativity (SR) limit for GR energy of a probe body. In favor of

coherent self-references, Einstein’s metric formalism uniquely relates the forth

component [1],

Po ≡ mcgoµ
dxµ

ds
≡ mc(gooV

o + goiV
i) ≡ mc

√
goo√

1− v2c−2
≡ (K + U)

c
, (1)

of the covariant four-momentum Pµ ≡ mcgµνdx
ν/ds of the probe scalar mass

m to its full relativistic energy E = K + U containing positive kinetic energy20

K = mc2/
√
1− v2c−2 and negative potential energy U associated with gravi-

tational interactions. One can use the GR energy definition E ≡ cPo > 0 in

order to rewrite the metric component goo in terms of the negative gravitational

potential U/cPo for GR energy-charge E, which is the only measure of inertia

(and gravity) of the probe mass m:25

√
goo ≡ (K + U)

√
1− v2c−2

mc2
≡ 1 +

U
√
goo

E
≡ 1

[1− (U/E)]
. (2)

Basing on identical algebra operations in (2), one can formulate the follow-

ing goo-theorem: “Time-time component of the pseudo-Riemann metric tensor

in Einstein’s GR is defined by a gravitational field potential ϕ = U/E exactly

as goo = (1 − ϕ)−2, which has no peculiarities for −∞ < ϕ ≤ 0”. It is follow-

ing from (2) that Schwarzschild [2] and Droste [3] empty-space metrics (where30

goo = [1−(2GM/c2r)] was extrapolated for strong fields from the Newton weak-

field reference) do not match the goo−theorem and, consequently, the Einstein

2
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energy definition in General Relativity. An ultimate reason for this strong-field

misconduct is the conceptual fact that Newton’s point mass gravitation is not

a true limit for weak-field gravitation of overlapping energy-charges, which are35

continuously distributed over spatial structures of their own fields contrary to

unstructured point charges.

2. Metric energy conservation for united non-empty space of observ-

able monopoles and dark dipoles

In 1939 Einstein characterized Schwarzschild’s metric with singularities as40

‘not relevant to physical reality’ [4]. GR metric solutions without singularities

correspond to non-empty space relativistic physics of continuous particles, for

example [5, 6], rather than to point matter in empty space. New physics of ge-

ometrized, field-like continuous particles describes [7] main relativistic tests and

observations much more self-consistently than the point particle physics which is45

enable to interpret the scalar Ricci curvature as the scalar mass density. Below

we demonstrate further advantages of non-empty (material) space by its appli-

cation to the many-body system. Exact compensations of Newtonian potential

energy by interference energy of dark dipole formations in joint and united ma-

terial space will be derived. The non-empty space paradigm for gravitation50

assumes overlapping continuous masses with local energy exchanges (applied

to correlated electrons’ densities in condensed matter physics) or interference

(applied to wave densities in optics and quantum mechanics). Principally new,

inertial kind of interference energy (called dipole dark energy) can be justified

only in the non-empty space paradigm. Indeed, spatial material overlaps can-55

not be introduced and satisfactorily described in the Newton scheme, where

absolute empty space is considered as an arena for spatially separated masses.

The many-body metric solution for static non-empty space of overlapping

mass-energies has been already found [6], while empty space has not provided

yet an exact metric solution for the many-body gravitating system. Mechanical60

(inertial or passive, µpc
2) and gravitational (potential or active, µac

2) energy

3
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densities of such a continuous material space comply with the Einstein Principle

of Equivalence for scalar mass densities,

µp(x) ≡
[∇W (x)]2

4πGc2
=

∇2W (x)

4πG
≡ µa(x), (3)

which depend in static systems on the same metric potential or the metric stress,

W (x) ≡ −c2ln
1

√

goo(x)
= −c2ln

(

1 +
r1

|x− a1|
+

r2
|x− a2|

+ ...+
rn

|x− an|

)

.

(4)

Here ri ≡ GEi/c
4 = Gmi/c

2 is Schwarzschild-type coordinate scale of the ele-65

mentary energy-charge Ei (distributed everywhere but mainly in the vicinity of

ai). The non-empty space metric goo in (4) corresponds to the equality (2) and

the aforementioned goo-theorem.

The inhomogeneous local stress (4) fits to strict conservations of active (po-

tential) and passive (inertial) metric space energies,
∫

d3xµpc
2 =

∫

d3xµac
2 =70

Emetric, of the united material continuum of n overlapping energy-charges:

Emetric ≡
c4

4πG

∫

d3x





(x−a1)r1
|x−a1|3

+ (x−a2)r2
|x−a2|3

+ ...+ (x−an)rn
|x−an|3

1 + r1
|x−a1|

+ r2
|x−a2|

+ ...+ rn
|x−an|





2

(5)

= (m1 +m2 + ...+mn)c
2 = const.

It can be tested by numerical computations that the system mass Emetric/c
2

= Mmetric, originated from the consolidated metric stress (4) of continuous

mass-energies mic
2, is independent from spatial positions ai in (5). Such a

universal mass-energy conservation for a system of overlapping particles un-75

der negative gravitational potentials can take place due to hidden (from direct

observations) energy contributions into paired, dipole formations of material

densities in (5), where Emetric ≡ Emonopoles + Edipoles.

If all elementary energies are centered at one point, a1 = a2 = ... = an,

than the metric mass-energy integral (5) can be taken analytically. Spatial dis-80

placements of initially centered mass-energies mic
2 and mkc

2 split their den-

sities in (5) into radial monopole, ∝ r2i |x − ai|−4, and interference dipole,

∝ 2rirk|x−ai|−2|x−ak|−2, fractions of gravitating matter. Again, despite nega-

4
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tive potential energy shifts take place for observable radial elements in (5), met-

ric mass of the many-body system stays steady,
∑

mi = const, due to compen-85

sating deposits from dipole positive energies. This keeps scalar masses of many-

particle bodies in spite of mutual internal interactions of material elements. If

centers of overlapping elementary masses are separated into infinite distances

than both positive interference contributions and negative potential shifts van-

ish. Analytical integration in (5) yields c2
∑

mi for remote radial particles,90

which can be observed separately due to the existence of radial waves in prac-

tice. When radial centers are separated into finite distances, than n-body metric

energy c2
∑

mi contains both directly observable (radial) and non-observable

(dipole, dark) fractions of gravitational/inertial mass-energy. The minimal part

of directly observable energy in the n-body system is
∑

m2
i /(

∑

mi)
2, while the95

maximum part of dark energy is [(
∑

mi)
2 −∑

m2
i ]/(

∑

mi)
2.

3. Dark energy deposits into dipole formations

Now we derive from (5) GR energies of observable probe monopoles in ex-

ternal gravitational potentials. For the most of weak-field applications one can

use |ak − ai| ≡ Rik >> ri + rk = G(mi +mk)/c
2 for distances between centers100

of radial particles in (5),

Emonopoles ≈
c4

4πG

∫

d3x
r21

|x|4(1 + r1
|x| +

r2
|a1−a2|

+ ...+ rn
|a1−an|

)2
(6)

+
c4

4πG

∫

d3x
r22

|x|4(1 + r1
|a2−a1|

+ r2
|x| + ...+ rn

|a2−an|
)2

+...+
c4

4πG

∫

d3x
r2n

|x|4(1 + r1
|an−a1|

+ r2
|an−a2|

+ ...+ rn
|x|)

2
=

c2
n
∑

i=1

mi

√

g 6=i
oo (ai) ≈

n
∑

i=1

mi



c2 −
n
∑

k 6=i

Gmk

Rik



 > 0

Here items for static monopole mass-energies, like E2 ≡ c2m2

√

g 6=2
oo (a2) ≡

c2m2/
(

1 + r1
|a2−a1|

+ r3
|a2−a3|

+ ...+ rn
|a2−an|

)

, for example, contain negative shifts,

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

associated with paired Newtonian interactions within the united material space.

Negative Newtonian potentials for energy of monopoles (6) do not mean decrease105

of the system metric energy (5), because paired gravitational interactions are

always accompanied by interference, dark deposits in a form of dipole energy

formations,

Edipoles =
c4

4πG

n
∑

i=1

n
∑

k 6=i

∫ 2π

0

dϕ

∫ ∞

0

r2dr

∫ π

0

rirk
(

r2 −Rikrcosθ
)

sinθdθ

r3(R2
ik + r2 − 2Rikrcosθ)3/2

≈
n
∑

i=1

n
∑

k 6=i

Gmimk

Rik
> 0. (7)

It is worth to recall that only non-empty space paradigm for GR may reveal

the positive interference energy (7), while GR metric gravitation for point par-110

ticles (without spatial overlaps of gravitating matter) is free from local material

overlaps or energy interference. One may say from (6) and (7) that paired at-

tractions of radial mass-energy monopoles generate dipole fields with positive

energy borrowed from the very interaction partners. In this way, there are no

negative energy gravitational fields at all. Gravitational attractions of positive115

energy bodies are always accompanied by positive energy of interference (dipole)

fields. In fact, gravitation is not a formal decrease of negative potential energy

of Newtonian field (which without host radial particles does not exist in (6) as

a self-maintained field), but the universal tendency of a free mechanical system

toward distribution of its total energy between all physical degrees of freedom.120

Equipartition distributions of mechanical energy between observable monopoles

and dark dipoles may be expected, in principle, for an equilibrium gravitational

system. But how might gravitational equilibrium of extended particles take

place instead of the gravitational collapse in the theory of point particles?

4. Radial fall toward gravitational repulsion125

The concept of extended radial particles and positive mass-energy fields in

united material continuum [5, 6] not only confirms all known GR tests [7], but

also predicts that the empty-space paradigm can be verified by precise clocks.

6
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Indeed, fine measurements of the gravitational time dilation in the Earth-Sun-

Moon system with the time varying Newton potential ϕ can directly distinguish130

the empty space paradigm with the Schwarzschild dilation [2] (dτ − dt)/dt ≡
√
goo−1 ≈ ϕ(1−ϕ/2c2)/c2 from the non-empty space paradigm with

√
goo−1 ≈

ϕ(1 + ϕ/2c2)/c2 from (4).

Material space continuum in Einstein’s GR metric formalism always keeps

Euclidean 3D section of curved 4D space-time due to inherent symmetries [5] of135

the real world geometry. GR geodesic equations of motions in pseudo-Riemann

space-time with 0 ≤ goo ≤ 1 and flat 3D intervals, goigojg
−1
oo − gij = δij , have

been derived [7] for strong static fields,






































































goodt/dp = 1, dp/ds = goodt/ds = Em/m = const

r2dϕ/dp = Jϕ = const, r2dϕ/ds = JϕEm/m ≡ L = const

(dr/dp)2 + (Jϕ/r)
2 − g−1

oo = const (= −m2/E2
m)

(dr/ds)2 + (rdϕ/ds)2 − E2
m/m2goo = −1,

(8)

wherem = const is the probe scalar mass, while energy Em = const and angular

momentum Jϕ = const are the first integrals of relativistic motion. For the pure140

radial fall from infinity, when Em/m ≡ c2
√
goo/

√
1− v2c−2 = const ⇒ 1 and

dϕ/ds = 0, ds =
√
goocdt

√
1− v2c−2, v2 = (dr/

√
goodt)

2, the last equation in

(8) results in

dr/dt = ±c
√

goo(1− goo) (9)

for the free radial motion with respect to the world (coordinate) time t of a

distant observer. Static metric field (4) with one gravitating center, goo = 1/[1+145

(ro/r)]
2, leads in (9) to (unstable) motionless states, dr/dt = 0, of small probe

masses at final stages of their radial falls. And probe mass reaches maximum

radial speed dr/dt = c/2 of the central field fall at r = ro(1 +
√
2) because

below this transition distance decelerating part of the fall takes place due to

gravitational repulsion of strong fields.150

7
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Coordinate acceleration d2r/dt2 can be derived from (9) by taking its time

derivative,

d2r/dt2 = −c2ror(r
2 − 2ror − r2o)/(r + ro)

5, (10)

which universally describes the Newton attraction −roc
2r/r3 for ro ≪ r and the

strong-field GR repulsion +rc2/r2o for r ≪ ro ≡ GM/c2. Attraction acceleration

in (10) takes its extreme value 9.2× 10−3c2/ro at 4.48ro, while repulsion accel-155

eration takes its maximum 0.12c2/ro at 0.35ro. According to the metric stress

presentation (4), both repulsion and attraction of free probe masses correspond

to their motion in always negative gravitational potentials.

5. Conclusions

Centers of massive objects in the Earth laboratory are always separated by160

huge distances compared to gravitational scales and, therefore, dark interfer-

ence or dipole energy deposits of laboratory bodies are very small compared

to their relativistic energies. Nonetheless, mechanical laboratory experiments

could verify, in principle, the constancy (5) of the system integral mass-energy

Emetric = const independently from mutual positions of interacting material165

elements.

Massive galaxies have detectable gravitational scales and contemporary ob-

servations of matter near a galaxy center can provide relevant data to elicit

dipole (dark) mass-energy deposits. Observed central area of dense matter in

our galaxy is larger than its gravitational scale. And diameters of neutron stars170

are always above their gravitational scales as is known. Gravitational equi-

librium can be assumed for these massive systems and the GR gravitational

repulsion in (10) may shed extra light on stability of extreme dense matter.

Nowadays the radial dimension of the Metagalaxy is less than its gravi-

tational scale Ro = GMMeta/c
2. According to (10), the dense Metagalaxy175

should repeal its material elements behind Ro(1 +
√
2). The strong-field limit

of (9), when r ≪ ro and dr/dt = cr/Ro ⇒ rHo, corresponds to the Hub-

ble law of expanding galaxies at Ro ⇒ c/Ho = 1, 3 × 1026m or at MMeta =

8
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Roc
2/G = 1.8 × 1053kg. The Universe expansion acceleration in this limit,

d2r/dt2 = c2r/R2
o ⇒ rH2

o , is proportional to the distance r like the Hubble180

expantion rate.

A mega system with gravitational repulsion of monopoles in common nega-

tive potential keeps due to (5) an exact metric energy conservation for all visible

matter and its dark dipole deposits. The Big Bang fragmentation of one radial

monopole into the system of expanding (with acceleration) radial monopoles185

and dark dipoles corresponds to (9)-(10) and to the aforementioned tendency

to equipartition distribution of energy between monopole and dipole degrees of

freedom. In this way, all Metagalaxy’s matter in whole is provisionally in the

phase of strong-field expansion with acceleration. One day a mature Universe

with constant metric mass-energy (5) of its continuous material space will enter190

into the contraction phase toward its configuration equilibrium next to equipar-

tition distribution of dark and observable energy contents within the united

material space. Numerical simulations may provide more details regarding the

global Universe pendulum with 80 billions of galaxies.

Simulations of nonempty space pulsations around its equilibrium material195

densities would be useful to compare with similar oscillating models of the empty

space Universe, including the recent Penrose’s construction for conformal cycling

cosmology [8]. In general, dynamics of the pulsating metric space should count

kinetic energy of mechanical translations and spins. Equipartition distribution

of energy between kinetic degrees of freedom of monopole and dipole fractions200

of matter may also be important for computations. Non-empty space with local

rotations of continuous material densities is the next challenge for nonlocal world

cosmology.
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