MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH

KOBAYASHI KOJI

1. ABSTRACT

This article prove that NC and PH is proper (especially P is not NP) by using reduction difference. We can prove that NC is proper by using AL0 is not NC. This means L is not P. We can prove P is not NP by using reduction difference between L and P. And we can also prove that PH is proper by using P is not NP.

2. NC is proper

We use circuit problem as follows;

Definition 1. We will use the term " $ACⁱ$ ", " $NCⁱ$ " as each complexity decision problems classes. " FAC^{iv} as function problems class of AC^i . These complexity classes also use uniform circuits family set that compute target complexity classes problems. " $f \circ q''$ as composite circuit that output of g are input of f. In this case, we also use complexity classes to show target circuit. For example, $A \circ BB$ when A is circuits family and BB is circuits family set mean that $a \circ b \mid a \in A, b \in \mathbb{R}$ $B \in BB$. " $R(A)$ " as subset of reversible NC that include A. Reversible mean that $(R(A) \circ (R(A))^{-1})(x) = x$. Circuits family uniformity is that these circuits can compute FAC^0 .

Theorem 2. $NL \leq_{AC^0} NC^2$

Proof. Mentioned [1] Theorem 10.40, all NC^2 are closed by FL reduction. This reduction is validity of (c_1, c_2) transition function. Transition function change $O(1)$ memory and keep another memory. Therefore this validity can compute AC^0 and we can replace FL to $FAC⁰$. .

Theorem 3. ACⁱ has Universal Circuits Family that can emulate all ACⁱ circuits $family.$ That is, every AC^i has AC^i – Complete under FAC^0 .

Proof. To prove this theorem by making universal circuit family $A^i \in AC^i$ that emulate circuit family $\{C_i\} \in AC^i$ by using "depth circuit tableau". Universal circuit $U_i \in A^i$ have partial circuit $u_{k,d}$ that emulate all C_j gates $g_{k \in n}$ (include input value) and partial circuit $v_{p-q,d}$ that emulate all wires w_{p-q} from g_p output to g_q input in every depth d. U_j use three value $\{\top, \bot, \emptyset\}$. Ø is special value that all g_k ignore this value. All gate in a depth d is u_d , all wires that input connected k in a depth d is $v_{k-,d}$, output connected k in a depth d is $v_{-k,d}$.

 $v_{p-q,d}$ input connected each $u_{p,d}$ output and w_{p-q} . $v_{p-q,d}$ output connected each $u_{q,d+1}$ input. If w_{p-q} does not exist, $v_{p-q,d}$ output \emptyset . Else if w_{p-q} have negative then $v_{p-q,d}$ output $u_{k,d}$ negative value. Else $v_{p-q,d}$ output $u_{k,d}$ positive value.

 $u_{k,d}$ input connected each $v_{-k,d-1}$ output and g_k . $u_{k,d}$ output connected each $v_{k-,d}$ input. If g_k is one of C_j input value, $u_{k,d}$ output the input value. Else (g_k) is And / Or gate) $u_{k,d}$ output the gate value that compute from all $v_{-k,d-1}$ output values. In this computation, $u_{k,d}$ ignore all \emptyset . If all value are \emptyset , $u_{k,d}$ output \emptyset .

This U_j that consists of u, v emulate C_j . We can make every u, v in FAC^0 because C_j is uniform circuit1. Therefore, A^i in AC^i and this theorem was shown. \Box

Theorem 4. $NC^i = NC^{i+1} \rightarrow NC^i - Complete = AC^i - Complete = NC^{i+1}$ Complete.

Proof. If $NC^i = NC^{i+1}$, all NC^i – $Complete, AC^i$ – $Complete, NC^{i+1}$ – $Complete$ can reduce each other and NC^i – $Complete, AC^i$ – $Complete, NC^{i+1}$ – $Complete$ in NC^i . Therefore, this theorem was shown.

Theorem 5. $nc \subsetneq nc \circ NC^1 \mid nc \subset NC^i$

Proof. To prove it using reduction to absurdity. We assume that $nc = nc \circ NC^1$ $nc \subset NC$. It is trivial that $nc = NC^{i} = AC^{i} = NC^{i+1} = AC^{i+1} = \cdots$.

Because $nc = nc \circ NC^1$ and mentioned above 4, $R (FAC^i - Complete)$ = $FACⁱ - Complete$. Therefore

 $nc = nc \circ NC^1 \rightarrow \forall A, B \in R \left(FAC^i - Complete \right) \exists C \in FAC^0 \left(A \circ B = A \circ C \right)$ A is reversible circuits family. Therefore A have A^{-1} . $nc = nc \circ NC^1$

 $\rightarrow \forall A, B \in R \left(FAC^i - Complete \right) \exists C \in FAC^0 \left(A^{-1} \circ A \circ B = A^{-1} \circ A \circ C \right)$ $\rightarrow \forall B \in R \left(FAC^i - Complete \right) \exists C \in FAC^0 \left(B = C \right)$

This means $FAC^0 = FAC^i$. But this contradict $AC^0 \subsetneq NC^1 \subset AC^i$.

Therefore, this theorem was shown than reduction to absurdity. \Box

Corollary 6. $NC^i \subset NC^{i+1}$

Theorem 7. $AC^i \subseteq AC^{i+1}$

Proof. If $AC^i = AC^{i+1}$ then $AC^i = NC^{i+1} = AC^{i+1} = NC^{i+2} = AC^{i+2}$ and contradict mentioned above 5 $NC^i \subsetneq NC^{i+1}$. Therefore, this theorem was shown than reduction to absurdity.

Theorem 8. $NC = AC \subseteq P$

Proof. To prove it using reduction to absurdity. We assume that $NC = P$. It is trivial that we can reduce some $A \in P$ – Complete to $B \in NC$. But B is also in $NCⁱ$. Therefore, this mean that $NCⁱ = NCⁱ$ and contradict mentioned above 5 $NC^i \subsetneq NC^{i+1}$. Therefore, this theorem was shown than reduction to absurdity. \square

Corollary 9. $L \subseteq P$

3. PH is proper

Definition 10. We will use the term " L ", " P ", " $P - Complete$ ", " NP ", " $NP -$ Complete", " FL ", " FP " as each complexity classes. These complexity classes also use Turing Ma
hine (TM) set that ompute target omplexity lasses problems. We will use the term " Δ_k ", " Σ_k ", " Π_k " as each Polynomial hierarchy classes. " $f \circ g$ " as composite problem that output of g are input of f. " $R(A)$ " as "reversible TM" that equal A. Reversible mean that $(R(A) \circ (R(A))^{-1})(x) = x$.

Theorem 11. $R(\Sigma_k) \subset \Sigma_k$, $R(\Pi_k) \subset \Pi_k$.

Proof. We can reduce Σ_k and Π_k to another Σ_k and Π_k that have tree graph of computation history. (if all configuration keep input, computation history become tree graph.) These Σ_k , Π_k are $R(\Sigma_k)$, $R(\Pi_k)$ because each computation history of each output only reach one input. Therefore $(R(A) \circ (R(A))^{-1})(x) = x$. We can compute these reduction in FP. Therefore, this theorem was shown.

Theorem 12. $R(\Sigma_k - Complete) \subset \Sigma_k - Complete$

Proof. Mentioned above 11, it takes at most $O(n)$ times and spaces to reduce Σ_k into $R(\Sigma_k)$. Therefore this theorem was shown.

Theorem 13. $P \subseteq NP$

Proof. To prove it using reduction to absurdity. We assume that $P = NP$.

As we all know that if $P = NP$ then all NP can reduce $P - Complete$ under $FL.$ And all $NP \circ FP \subset NP.$ Therefore

 $P = NP \rightarrow \forall A \in NP - Complete\forall B \in FP\exists C \in FL(A \circ B = A \circ C)$ Mentioned above11, $R(NP - Complete) \subset NP - Complete$. Therefore $P = NP \rightarrow \forall D \in R \ (NP - Complete) \ \forall B \in FP \exists C \in FL \ (D \circ B = D \circ C)$ D is reversible function. Therefore D have D^{-1} . $P = NP$ $\rightarrow \forall D \in R(P - Complete) \forall B \in FP\exists C \in FL (D^{-1} \circ D \circ B = D^{-1} \circ D \circ C)$ $\rightarrow \forall D \in R(P - Complete) \forall B \in FP\exists C \in FL(B = C)$

This means $FP = FL$. But this contradict $FL \subseteq FP$ mentioned above 5. Therefore, this theorem was shown than reduction to absurdity. \square

Theorem 14. $\sigma_k \subsetneq \sigma_k \circ \Sigma_1 \mid \sigma_k \subset \Sigma_k$

Proof. To prove it using reduction to absurdity. We assume that $\sigma_k = \sigma_k \circ \Sigma_1$. Mentioned [2] Theorem 6.26, we can reduce all σ_k to Σ_k – *Complete* under FP. Because mentioned above 12, $R(\Sigma_k) \subset \Sigma_k$. Therefore

 $\sigma_k = \sigma_k \circ \Sigma_1 \to \exists A \in R \left(\Sigma_k - Complete \right) \forall B \in \Sigma_1 \exists C \in FP \left(A \circ B = A \circ C \right)$ A is reversible function. Therefore A have A^{-1} . $\sigma_k = \sigma_k \circ \Sigma_1$ $\rightarrow \exists A \in R$ $(\Sigma_k - Complete) \forall B \in \Sigma_1 \exists C \in FP$ $(A^{-1} \circ A \circ B = A^{-1} \circ A \circ C)$ $\rightarrow \forall B \in \Sigma_1 \exists C \in FP(B = C)$

This means $\Sigma_1 = FP$. But this contradict mentioned above 13. Therefore, this theorem was shown than reduction to absurdity. \square

Corollary 15. $\Pi_k \subsetneq \Pi_{k+1}, \Sigma_k \subsetneq \Sigma_{k+1}$

Theorem 16. $\Delta_k \subseteq \Sigma_k, \Sigma_k \neq \Pi_k$

Proof. Mentioned $[2]$ Theorem 6.12, $\Sigma_k = \Pi_k \rightarrow \Sigma_k = \Pi_k = PH$ $\Delta_k = \Sigma_k \to \Delta_k = \Sigma_k = \Pi_k = PH$ This ontraposition is, $(\Sigma_k \subsetneq PH) \vee (\Pi_k \subsetneq PH) \rightarrow \Sigma_k \neq \Pi_k$ $(\Delta_k \subsetneq PH) \vee (\Sigma_k \subsetneq PH) \vee (\Pi_k \subsetneq PH) \rightarrow \Delta_k \neq \Sigma_k$ From mentioned above 14, $\Sigma_k \subseteq \Pi_{k+1} \subset PH$

MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH 4

Therefore, $\Delta_k \neq \Sigma_k, \Sigma_k \neq \Pi_k$. Mentioned $[2]$ Theorem 6.10, $\Sigma_k \subset \Sigma_{k+1}, \Pi_k \subset \Pi_{k+1}, \forall k \geq 1 \left(\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1}\right)$ Therefore, $\Delta_k \subsetneq \Sigma_k, \Sigma_k \neq \Pi_k$.

Theorem 17. $\Pi_k \not\subset \Sigma_k, \Sigma_k \not\subset \Pi_k$

Proof. To prove it using reduction to absurdity. We assume that $\Pi_k \subset \Sigma_k$. This means that all $\overline{\Sigma_k} = \Pi_k$ is also Σ_k .

 $\Pi_k \subset \Sigma_k \to \forall A \in \Sigma_k \left(\overline{A} \in \Pi_k \subset \Sigma_k \right)$

Mentioned [2] Theorem 6.21, all Σ_k are closed under polynomial time conjunctive reduction. We can emulate these reduction by using Π_1 . That is,

 $\exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 (B \circ D = C)$ Therefore, $\Pi_k \subset \Sigma_k$ $\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 \forall A \in \Sigma_k (B \circ D = C) \wedge (\overline{A} \in \Pi_k \subset \Sigma_k)$

 $\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 (B \circ D = C) \wedge (\overline{B} \in \Sigma_k)$

 $\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 (B \circ D = C) \wedge (B \in \Pi_k)$

Therefore $\Sigma_k \subset \Pi_k$ because $B \circ D \in \Pi_k$. But this means $\Sigma_k = \Pi_k$ and contradict $\Sigma_k \neq \Pi_k$ mentioned above 16. Therefore $\Pi_k \not\subset \Sigma_k$.

We can prove $\Sigma_k \not\subset \Pi_k$ like this.

Therefore, this theorem was shown than reduction to absurdity. \Box

Theorem 18. $\Delta_k \subsetneq \Pi_k$

Proof. To prove it using reduction to absurdity. We assume that $\Delta_k = \Pi_k$. Mentioned $[2]$ Theorem 6.10, $\Sigma_k \subset \Sigma_{k+1}, \Pi_k \subset \Pi_{k+1}, \forall k \geq 1 \left(\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1}\right)$ Therefore $\Delta_k = \Pi_k$ $\rightarrow \Delta_k = \Pi_k \subset (\Sigma_k \cap \Pi_k) \subset \Sigma_k \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1}$ $\to \Pi_k \subset \Sigma_k$ But this result ontradi
t mentioned above 17.

Therefore, this theorem was shown than reduction to absurdity. \Box

Theorem 19. $\Sigma_k \subsetneq \Delta_{k+1}, \Pi_k \subsetneq \Delta_{k+1}$

Proof. To prove it using reduction to absurdity. We assume that $\Sigma_k = \Delta_{k+1}$. Mentioned $[2]$ Theorem 6.10, $\forall k \geq 1 \left(\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1}\right)$ Therefore $\Sigma_k = \Delta_{k+1}$ $\rightarrow \Delta_k \subset (\Sigma_k \cap \Pi_k) \subset \Pi_k \subset (\Sigma_k \cup \Pi_k) \subset \Sigma_k = \Delta_{k+1}$ $\to \Pi_k \subset \Sigma_k$ But this result contradict mentioned above 17. Therefore $\Sigma_k \subseteq \Delta_{k+1}$. We can prove $\Pi_k \subsetneq \Delta_{k+1}$ like this. Therefore, this theorem was shown than reduction to absurdity. \Box

Theorem 20. $PH \subseteq PSPACE$

Proof. To prove it using reduction to absurdity. We assume that $PH = PSPACE$. It is trivial that we can reduce some $A \in PSPACE - Complete$ to $B \in PH$. But B is also in Δ_k . Therefore, this mean that $\Delta_k = \Delta_{k+1}$ and contradict mentioned above 1819 $\Delta_k \subsetneq \Delta_{k+1}$. Therefore, this theorem was shown than reduction to absurdity. \Box

REFERENCES

- [1] Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COMPUTATION Second Edition, 2008
- [2] OGIHARA Mitsunori, Hierarchies in Complexity Theory, 2006
- [3] MORITA Kenichi, Reversible Computing, 2012