
MEASURING COMPLEXITY BY USING REDUCTION TOSOLVE P VS NP AND NC & PHKOBAYASHI KOJI1. AbstratThis artile prove that NC and PH is proper (espeially P is not NP) by usingredution di�erene. We an prove that NC is proper by using AL0 is not NC. Thismeans L is not P. We an prove P is not NP by using redution di�erene betweenL and P. And we an also prove that PH is proper by using P is not NP.2. NC is properWe use iruit problem as follows;De�nition 1. We will use the term �ACi�, �NCi� as eah omplexity deisionproblems lasses. �FACi� as funtion problems lass of ACi. These omplexitylasses also use uniform iruits family set that ompute target omplexity lassesproblems. �f ◦ g� as omposite iruit that output of g are input of f . In thisase, we also use omplexity lasses to show target iruit. For example, A ◦ BBwhen A is iruits family and BB is iruits family set mean that a ◦ b | a ∈ A, b ∈
B ∈ BB. �R (A)� as subset of reversible NC that inlude A. Reversible mean that
(

R (A) ◦ (R (A))−1
)

(x) = x. Ciruits family uniformity is that these iruits anompute FAC0.Theorem 2. NL ≤AC0 NC2Proof. Mentioned [1℄ Theorem 10.40, all NC2 are losed by FL redution. Thisredution is validity of (c1, c2) transition funtion. Transition funtion hange O (1)memory and keep another memory. Therefore this validity an ompute AC0 andwe an replae FL to FAC0. �Theorem 3. ACi has Universal Ciruits Family that an emulate all ACi iruitsfamily. That is, every ACi has ACi − Complete under FAC0.Proof. To prove this theorem by making universal iruit family Ai ∈ ACi thatemulate iruit family {Cj} ∈ ACi by using �depth iruit tableau�. Universaliruit Uj ∈ Ai have partial iruit uk,d that emulate all Cj gates gk∈n (inludeinput value) and partial iruit vp−q,d that emulate all wires wp−q from gp outputto gq input in every depth d. Uj use three value {⊤,⊥, ∅}. ∅ is speial value thatall gk ignore this value. All gate in a depth d is ud, all wires that input onneted
k in a depth d is vk−,d, output onneted k in a depth d is v−k,d.

vp−q,d input onneted eah up,d output and wp−q. vp−q,d output onneted eah
uq,d+1 input. If wp−q does not exist, vp−q,d output ∅. Else if wp−q have negativethen vp−q,d output uk,d negative value. Else vp−q,d output uk,d positive value.1
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uk,d input onneted eah v−k,d−1 output and gk. uk,d output onneted eah

vk−,d input. If gk is one of Cj input value, uk,d output the input value. Else (gk isAnd / Or gate) uk,d output the gate value that ompute from all v−k,d−1 outputvalues. In this omputation, uk,d ignore all ∅. If all value are ∅, uk,d output ∅.This Uj that onsists of u, v emulate Cj . We an make every u, v in FAC0beause Cj is uniform iruit1. Therefore, Ai in ACi and this theorem was shown.
�Theorem 4. NCi = NCi+1 → NCi − Complete = ACi − Complete = NCi+1 −

Complete.Proof. If NCi = NCi+1, all NCi−Complete, ACi−Complete,NCi+1−Completean redue eah other and NCi −Complete, ACi −Complete,NCi+1 − Completein NCi. Therefore, this theorem was shown. �Theorem 5. nc ( nc ◦NC1 | nc ⊂ NCiProof. To prove it using redution to absurdity. We assume that nc = nc ◦NC1 |
nc ⊂ NC. It is trivial that nc = NCi = ACi = NCi+1 = ACi+1 = · · · .Beause nc = nc ◦ NC1 and mentioned above 4, R

(

FACi − Complete
)

=

FACi − Complete. Therefore
nc = nc ◦NC1 → ∀A,B ∈ R

(

FACi − Complete
)

∃C ∈ FAC0 (A ◦B = A ◦ C)

A is reversible iruits family. Therefore A have A−1.
nc = nc ◦NC1

→ ∀A,B ∈ R
(

FACi − Complete
)

∃C ∈ FAC0
(

A−1 ◦A ◦B = A−1 ◦A ◦ C
)

→ ∀B ∈ R
(

FACi − Complete
)

∃C ∈ FAC0 (B = C)This means FAC0 = FACi. But this ontradit AC0 ( NC1 ⊂ ACi.Therefore, this theorem was shown than redution to absurdity. �Corollary 6. NCi ( NCi+1Theorem 7. ACi ( ACi+1Proof. If ACi = ACi+1 then ACi = NCi+1 = ACi+1 = NCi+2 = ACi+2 andontradit mentioned above 5 NCi ( NCi+1. Therefore, this theorem was shownthan redution to absurdity. �Theorem 8. NC = AC ( PProof. To prove it using redution to absurdity. We assume that NC = P . It istrivial that we an redue some A ∈ P − Complete to B ∈ NC. But B is also in
NCi. Therefore, this mean that NCi = NCi and ontradit mentioned above 5
NCi ( NCi+1. Therefore, this theorem was shown than redution to absurdity. �Corollary 9. L ( P 3. PH is properDe�nition 10. We will use the term �L�, �P �, �P − Complete�, �NP �, �NP −
Complete�, �FL�, �FP � as eah omplexity lasses. These omplexity lasses alsouse Turing Mahine (TM) set that ompute target omplexity lasses problems.We will use the term �∆k�, �Σk�, �Πk� as eah Polynomial hierarhy lasses. �f ◦ g�as omposite problem that output of g are input of f . �R (A)� as �reversible TM�that equal A. Reversible mean that (R (A) ◦ (R (A))

−1
)

(x) = x.



MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH 3Theorem 11. R (Σk) ⊂ Σk, R (Πk) ⊂ Πk.Proof. We an redue Σk and Πk to another Σk and Πk that have tree graph ofomputation history. (if all on�guration keep input, omputation history beometree graph.) These Σk,Πk are R (Σk), R (Πk) beause eah omputation history ofeah output only reah one input. Therefore (

R (A) ◦ (R (A))
−1

)

(x) = x. We anompute these redution in FP . Therefore, this theorem was shown. �Theorem 12. R (Σk − Complete) ⊂ Σk − CompleteProof. Mentioned above11, it takes atmost O (n) times and spaes to redue Σkinto R (Σk). Therefore this theorem was shown. �Theorem 13. P ( NPProof. To prove it using redution to absurdity. We assume that P = NP .As we all know that if P = NP then all NP an redue P − Complete under
FL. And all NP ◦ FP ⊂ NP . Therefore

P = NP → ∀A ∈ NP − Complete∀B ∈ FP∃C ∈ FL (A ◦B = A ◦ C)Mentioned above11, R (NP − Complete) ⊂ NP − Complete. Therefore
P = NP → ∀D ∈ R (NP − Complete)∀B ∈ FP∃C ∈ FL (D ◦B = D ◦ C)
D is reversible funtion. Therefore D have D−1.
P = NP

→ ∀D ∈ R (P − Complete)∀B ∈ FP∃C ∈ FL
(

D−1 ◦D ◦B = D−1 ◦D ◦ C
)

→ ∀D ∈ R (P − Complete)∀B ∈ FP∃C ∈ FL (B = C)This means FP = FL. But this ontradit FL ( FP mentioned above5. There-fore, this theorem was shown than redution to absurdity. �Theorem 14. σk ( σk ◦ Σ1 | σk ⊂ ΣkProof. To prove it using redution to absurdity. We assume that σk = σk ◦ Σ1.Mentioned [2℄ Theorem 6.26, we an redue all σk to Σk −Complete under FP .Beause mentioned above 12, R (Σk) ⊂ Σk. Therefore
σk = σk ◦ Σ1 → ∃A ∈ R (Σk − Complete)∀B ∈ Σ1∃C ∈ FP (A ◦B = A ◦ C)
A is reversible funtion. Therefore A have A−1.
σk = σk ◦ Σ1

→ ∃A ∈ R (Σk − Complete)∀B ∈ Σ1∃C ∈ FP
(

A−1 ◦A ◦B = A−1 ◦A ◦ C
)

→ ∀B ∈ Σ1∃C ∈ FP (B = C)This means Σ1 = FP . But this ontradit mentioned above13. Therefore, thistheorem was shown than redution to absurdity. �Corollary 15. Πk ( Πk+1,Σk ( Σk+1Theorem 16. ∆k ( Σk,Σk 6= ΠkProof. Mentioned [2℄ Theorem 6.12,
Σk = Πk → Σk = Πk = PH

∆k = Σk → ∆k = Σk = Πk = PHThis ontraposition is,
(Σk ( PH) ∨ (Πk ( PH) → Σk 6= Πk

(∆k ( PH) ∨ (Σk ( PH) ∨ (Πk ( PH) → ∆k 6= ΣkFrom mentioned above 14,
Σk ( Πk+1 ⊂ PH
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Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore, ∆k ( Σk,Σk 6= Πk . �Theorem 17. Πk 6⊂ Σk,Σk 6⊂ ΠkProof. To prove it using redution to absurdity. We assume that Πk ⊂ Σk. Thismeans that all Σk = Πk is also Σk.
Πk ⊂ Σk → ∀A ∈ Σk

(

A ∈ Πk ⊂ Σk

)Mentioned [2℄ Theorem 6.21, all Σk are losed under polynomial time onjuntiveredution. We an emulate these redution by using Π1. That is,
∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C)Therefore,
Πk ⊂ Σk

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1∀A ∈ Σk (B ◦D = C) ∧
(

A ∈ Πk ⊂ Σk

)

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧
(

B ∈ Σk

)

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧ (B ∈ Πk)Therefore Σk ⊂ Πk beause B◦D ∈ Πk. But this means Σk = Πk and ontradit
Σk 6= Πk mentioned above 16. Therefore Πk 6⊂ Σk.We an prove Σk 6⊂ Πklike this.Therefore, this theorem was shown than redution to absurdity. �Theorem 18. ∆k ( ΠkProof. To prove it using redution to absurdity. We assume that ∆k = Πk.Mentioned [2℄ Theorem 6.10,

Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore
∆k = Πk

→ ∆k = Πk ⊂ (Σk ∩ Πk) ⊂ Σk ⊂ (Σk ∪ Πk) ⊂ ∆k+1

→ Πk ⊂ ΣkBut this result ontradit mentioned above 17.Therefore, this theorem was shown than redution to absurdity. �Theorem 19. Σk ( ∆k+1,Πk ( ∆k+1Proof. To prove it using redution to absurdity. We assume that Σk = ∆k+1.Mentioned [2℄ Theorem 6.10,
∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore
Σk = ∆k+1

→ ∆k ⊂ (Σk ∩Πk) ⊂ Πk ⊂ (Σk ∪ Πk) ⊂ Σk = ∆k+1

→ Πk ⊂ ΣkBut this result ontradit mentioned above 17. Therefore Σk ( ∆k+1.We an prove Πk ( ∆k+1 like this.Therefore, this theorem was shown than redution to absurdity. �Theorem 20. PH ( PSPACEProof. To prove it using redution to absurdity. We assume that PH = PSPACE.It is trivial that we an redue some A ∈ PSPACE − Complete to B ∈ PH . But
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B is also in ∆k. Therefore, this mean that ∆k = ∆k+1 and ontradit mentionedabove 1819 ∆k ( ∆k+1 . Therefore, this theorem was shown than redution toabsurdity. �Referenes[1℄ Mihael Sipser, (translation) OHTA Kazuo, TANAKAKeisuke, ABEMasayuki, UEDA Hiroki,FUJIOKA Atsushi, WATANABE Osamu, Introdution to the Theory of COMPUTATIONSeond Edition, 2008[2℄ OGIHARA Mitsunori, Hierarhies in Complexity Theory, 2006[3℄ MORITA Kenihi, Reversible Computing, 2012


