SYMMETRY AS TURING MACHINE - APPROACH TO SOLVE
P VS NP

KOJI KOBAYASHI

1. ABSTRACT

This article describes about that P is not NP by using difference of symmetry.

Turing Machine (TM) change configuration by using transition functions. This
changing keep halting configuration. That is, TM classify these configuration into
equivalence class. The view of equivalence class, there are different between P and
coNP. Some coNP problem have over polynomial size totally order inputs. These
problem cannot reduce P because these totally order must keep. Therefore we
cannot reduce some coNP problem to P problem. This means P is not NP.

2. COMPUTATION FOREST

In this article, we will use words and theorems of References [1, 2, 3] in this
paper. About problem, we use description as follows;

Definition 1. We will use the term “Input” as data that Turing Machine compute,
“Output” as result that Turing Machine compute. “Problem” as set of all input that
same Turing Machine can compute same output.

To simplify TM ability, define computation list and computation forest.

Definition 2. We will use the term “Computation list” as lists of transition function
target value that appear computation history.

Theorem 3. Deterministic TM(DTM) configure directed forest graph of conputa-
tion list. Nondeterministic TM(NTM) configure Directed acyclic graph of compu-
tation list. The graph root is halting configuration and the leaves are start configu-
ration. Each vertex have O (1) degree.

Proof. This is trivial. All conputation list have anchor as halting configuration. TM
can generate this graph that have root as halting configuration by using transition
functions. Number of transition functions is O (1). Therefore degree of this graph
is O (1). O

Definition 4. We will use the term “Computation forest” as graph of computation
list of whole TM that roots are halting configurations. We will write tree structure
as nesting of leafs. That is, node that have A, B leaf is (A, B). And we will write
edge as —. That is, edge between A and (A, B) is A — (A, B).

That is, TM classify input by using transition functions. But TM have limitation
that transition functions can classify only O (1), TM necessary to take time to
classify some problems.



SYMMETRY AS TURING MACHINE - APPROACH TO SOLVE P VS NP 2

Theorem 5. Some TM have conputation forest that minimum graph is (((A, B),C), D).
That is, some TM have totally order of inputs.

Proof. To think computation list a = A — (((A4, B),C), D). This computation list
have 3 partical computation list

ap=A— (A, B)

az = (AvB) - ((A,B),C)

as = ((A,B),C) - (((A,B),C),D)

Each a1, as, a3 classify each configuration. If TM cannot use some of a,as, as,
TM cannot classify A and another input and TM is not equal. Therefore, TM must
use a1, asz,asz to classify A.

It is same that TM compute b = B — (((A4, B),C), D). This computation list
have 3 partical computation list

b1 =B — (A, B)

az = (AvB) - ((AaB) aO)

a3 = ((4,B),C) = (((4,B),C),D)

and b1, a2, a3 is necesarry to compute B.

It is same ¢ = C — (((A,B),C),D) and d = D — (((4,B),C),D). These
partical computation list are

co=C—= ((A,B),C)

a3 = ((4,B),C) — (((4,B),C),D)

and

ds=D — (((A,B),C),D)

Each ai,a2,as,b1,c2,ds cannot delete from computation forest. It is neces-
sary to classify each A, B,C, D to other inputs. Therefore computation forest is
(((A,B),C), D) and this theorem was shown. O

3. P 1s NOoT NP

Prove P # NP by using totally order of coNP inputs. Mentioned above 5, some
input have totally order defined by computation forest. This totally order must
keep when coNP problem reduce to P problem. But coNP problem have totally
order that become over O (n¢) size. Therefore we cannot reduce coNP problem to
P. This means P # NP.

Theorem 6. Some coNP problem have totally order inputs set that become over
O (n°) size.

Proof. To think coNP computation forest that compute 3SAT problem. NTM
compute forking phase that determine truth value set and verifying phase that
verify the truth value set make input formula true. This computation list depend
on formula’s Minimal Unsatisfiable Core(MUC). If MUC A,B,C,D description is

A=agNai Nas Aas

B:bo/\al/\ﬂg/\ag

O:CO/\Cl/\CLQ/\ag

D:do/\dl /\dz/\ag

then computation forest have totally order that correspond to (((4, B),C), D).
And we can make another MUC by permuting some clauses of the MUC. These
number of permuted fomula become over O (n€) size. Therefore this theorem was
shown. O

Theorem 7. P # NP



SYMMETRY AS TURING MACHINE - APPROACH TO SOLVE P VS NP 3

Proof. We prove it using reduction to absurdity. We assume that P = NP, there-
fore we can reduce all coNP problem to P problem in polynomial time.

But mentioned above 6, coNP have totally input order that become over O (n°)
size. And mentioned above 5, minimum computation forest must include this totally
input order. That is, computation forest have input that computation list become
over O (n¢) size and we cannot reduce coNP to P in polynomial time. Therefore,
this theorem was shown than reduction to absurdity. O

REFERENCES
[1

Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA Hiroki,
FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COMPUTATION
Second Edition, 2008

[2] OGIHARA Mitsunori, Hierarchies in Complexity Theory, 2006

[3] MORITA Kenichi, Reversible Computing, 2012

[4] TANAKA Kazuyuki, SUZUKI Toshio, Mathematical Logic and Set, 2003, p.58



