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System, Apparatus, Method and Energy Product-by-Process for Resonantly-Catalyzing Nuclear Fusion Energy Release, 

and the Underlying Scientific Foundation 

Background of the Invention 

Cross reference to related applications and information disclosure of related publications 

This application claims benefit of pending US provisional application 61/747,488 filed December 31, 2012.  This 5 

provisional application 61/747,488 was later published in preprint form through several revisions at [15], and then by a 

peer-reviewed journal at [16].  US 61/747,488 as well as these documents [15] and [16] included scientific findings 

regarding the binding and fusion energies of the 2H, 3H, 3He and 4He nuclides, and technological disclosures of how 

so-called “resonant fusion” discovered and disclosed by applicant in US 61/747,488 can be used to catalyze the 

1 1 2
1 1 1H H H Energye ν++ → + + + , 2 1 3

1 1 2H H He Energy+ → +  and 3 3 4 1 1
2 2 2 1 1He He He H H Energy+ → + + +  nuclear 10 

fusion reactions which are the component reactions of the solar fusion cycle.  These same findings were later 

summarized in consolidated form in [17]. 

In two subsequent preprints applicant also developed scientific findings regarding binding energies and fusion 

reactions for a number of heavier nuclides.  In [18], the scientific findings of US 61/747,488 were expanded to 

encompass 6Li, 7Li, 7Be and 8Be, and in [19] these scientific findings were further expanded to encompass 10B, 9Be, 10Be, 15 
11B, 11C, 12C and 14N.  This application incorporates the scientific findings of [18] and [19], and then for the first time, 

applies the technological disclosures of applicant’s “resonant fusion” technology to specific fusion reactions involving all 

of these heavier nuclides 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N.   

All papers referenced in the reference list following section 14, are hereby incorporated by reference.  

1. Introduction: Summary Review of the Thesis that Baryons Are Yang-Mills Magnetic Monopoles with Binding 20 

Energies Based on Their Current Quark Masses 

In an earlier paper [1], and in a more recent preprint [26] refining and expanding [1], the author developed the thesis that 

magnetic monopole densities which come into existence in a non-Abelian Yang-Mills gauge theory of non-commuting 

vector gauge boson fields Gµ  are synonymous with baryon densities. That is, baryons, including the protons and 

neutrons which form the vast preponderance of matter in the universe, are Yang-Mills magnetic monopoles. Conversely, 25 

magnetic monopoles, long pursued since the time of Maxwell, have always been hiding in plain sight, in Yang-Mills 

incarnation, as baryons, and especially, as protons and neutrons. 

Maxwell’s equations themselves provide the theoretical foundation for this thesis, because if one starts with the 

classical electric charge and magnetic monopole field equations (respectively, (2.1) and (2.2) of [1]): 

( )[ ]J F D G g D D Gν µν µ ν µν σ µ ν
µ µ σ µ= ∂ = ∂ = ∂ − ∂  (1.1) 30 

P F F Fσµν σ µν µ νσ ν σµ= ∂ + ∂ + ∂ , (1.2) 

( )D iGµ µ µ≡ ∂ −  and combines the magnetic charge Equation (1.2) with a Yang-Mills (non-Abelian) field strength 

tensor F µν  which, like Gµ  is an NxN matrix for a simple gauge group SU(N) ((2.3) of [1]): 

[ ],F G G i G G D G D G D Gµν µ ν ν µ µ ν µ ν ν µ µ ν = ∂ − ∂ − = − =   (1.3) 

one immediately comes upon the non-vanishing magnetic monopole ((2.4) of [1]): 35 

( ), , ,P i G G G G G Gσµν σ µ ν µ ν σ ν σ µ     = − ∂ +∂ + ∂      . (1.4) 

The question then becomes whether such magnetic monopoles (1.4) actually do exist in the material universe, and if 

so, in what form. The thesis developed in [1] is not only that these magnetic monopoles do exist, but that they permeate 

the material universe in the form of baryons, especially as the protons and neutrons observed everywhere and anywhere 
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that matter exists. 

Of course, t’Hooft [2] and Polyakov [3] realized several decades ago that non-Abelian gauge theories lead to 

non-vanishing magnetic monopoles. But their monopoles have very high energies which make them not suitable for 

being baryons such as protons and neutrons. Following t’Hooft, the author in [1] does make use of the t’Hooft monopole 

Lagrangian from (2.1) of [2] to calculate the energies of these magnetic monopoles (1.4). But whereas t’Hooft introduces 5 

an ansatz about the radial behavior of the gauge bosons Gµ , the author instead makes use of a Gaussian ansatz 

borrowed from Equation (14) of Ohanian’s [4] for the radial behavior of fermions. Moreover, the fermions for which this 

ansatz is employed enter on the very solid foundation of taking the inverse G I J σ
ν σν≡  of Maxell’s charge Equation 

(1.1) (essentially calculating the configuration space inverse ( ) 1
g D Dµν σ µ ν

σ
−

∂ − ∂ ), and then combining this with the 

relationship J µ µψγ ψ=  that emerges from satisfying the charge conservation (continuity) equation 0J µ
µ∂ =  in 10 

Dirac theory. Specifically, it was found that in the low-perturbation limit, magnetic monopoles (1.4) can be re-expressed 

as a three-fermion system ((3.12) of [1]): 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 2 2 3 3

1 1 2 2 3 3

2
" " " " " "

P
m m m

µ ν ν σ σ µ
σµν σ µ ν

ψ σ ψ ψ σ ψ ψ σ ψ
ρ ρ ρ

∨ ∨ ∨ 
 = − ∂ +∂ + ∂
 − − −/ / 

. (1.5) 

Above, ( ) ; 1,2,3i iψ =  are three distinct Dirac spinor wavefunctions which emerge following three distinct 

substitutions of G I J Iσ σ
ν σν σνψγ ψ= = —which captures the inverse of Maxwell’s charge Equation (1.1) combined with 15 

Dirac theory—into the (1.4) magnetic monopole which utilizes the Yang-Mills field strength (1.3) in combination with 

Maxwell’s magnetic monopole Equation (1.2). The detailed derivation of (1.5) from (1.4) also makes use of Sections 6.2, 

6.14 and 5.5 of [5] pertaining to Compton scattering and the fermion completeness relation, and carefully accounts for 

mass degrees of freedom as between fermions and bosons. The quoted denominators ( ) ( )" "i imρ −/  and “quasi 

commutators” 
2

iµ ν µ νσ γ γ∨
∨ ≡    in the above make use of a compact notation developed and explained in Section 3 of 20 

[1], see specifically (3.9) and (3.10) therein. 

Then, via Fermi-Dirac Exclusion, the author employed the QCD color group SU(3)C to require that each of the three 

( )iψ  be SU(3)C vectors in distinct quantum color eigenstates R, G, B, which then leads in (5.5) of [1] to a magnetic 

monopole: 

Tr 2
" " " " " "

G GR R B B

R R G G B B

P
m m m

ν σµ ν σ µ
σµν σ µ νψ σ ψψ σ ψ ψ σ ψ

ρ ρ ρ

∨∨ ∨ 
= − ∂ +∂ + ∂  − − −/ / / 

. (1.6) 25 

This is similar to (1.5) but for the emergence of the trace. Associating each color with the spacetime index in the 

related σ∂  operator, i.e., ,R Gσ µ∼ ∼  and Bν ∼ , and keeping in mind that Tr Pσµν  is antisymmetric in all 

spacetime indexes, we express this antisymmetry with wedge products as R G Bσ µ ν∧ ∧ ∼ ∧ ∧ . So the natural 

antisymmetry of a magnetic monopole Pσµν  leads straight to the required antisymmetric color singlet wavefunction 

[ ] [ ] [ ], , ,R G B G B R B R G+ +  for a baryon. Indeed, in hindsight, this antisymmetry together with three vector indexes to 30 

accommodate three vector current densities and the three additive terms in the Pσµν  of (1.2) should have been a tip-off 

that magnetic monopoles would naturally make good baryons. Further, upon integration over a closed surface via 

Gauss’/Stokes’ theorem, magnetic monopole (1.6) is shown to emit and absorb color singlets with the symmetric color 

wavefunction RR + GG BB+  expected of a meson. And, in Section 1 of [1], it was shown how magnetic monopoles 
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naturally contain their gauge fields in non-Abelian gauge theory via the differential forms relationship dd=0 for precisely 

the same reasons rooted in spacetime geometry that magnetic monopoles do not exist at all in Abelian gauge theory. 

Thus, QCD itself deductively emerges from the thesis that baryons are Yang-Mills magnetic monopoles, and we began to 

associate monopole (1.6) with a baryon. 

It was then shown in Sections 6 through 8 of [1] that these SU(3) monopoles may be made topologically stable by 5 

symmetry breaking from larger SU(4) gauge groups which yield the baryon and electric charge quantum numbers of a 

proton and neutron. Specifically, the topological stability of these magnetic monopoles was established in Sections 6 and 

8 of [1] based on Cheng and Li [6] at 472-473 and Weinberg [7] at 442. The proton and neutron are developed as 

particular types of magnetic monopole in Section 7 of [1] making use of SU(4) gauge groups for baryon minus lepton 

number B L−  based on Volovok’s [8], Section 12.2.2. The spontaneous symmetry breaking of these SU(4) gauge 10 

groups is then fashioned on Georgi-Glashow’s SU(5) GUT model [9] reviewed in detail in Section 8 of [1]. 

By then employing the earlier-referenced “Gaussian ansatz” from Ohanian’s [4], namely ((9.9) of [1]): 

( ) ( ) ( ) ( )23
02 4

2

1
π exp

2

r r
r u pψ λ

−  −
 = −
 
 �

 (1.7) 

for the radial behavior of the fermion wavefunctions, together with the t’Hooft monopole Lagrangian from (2.1) of [2] 

(see (9.2) of [1]) it became possible to analytically calculate the energies of these Yang-Mills magnetic monopoles (1.6) 15 

following their development into topologically stable protons and neutrons. 

Specifically, in Sections 11 and 12 of [1], the author used the pure gauge field terms gaugeL  of the t’Hooft monopole 

Lagrangian to specify the energy of the Yang-Mills magnetic monopoles, exclusive of the vacuum Φ , via (11.7) of [1]: 

3 3
gauge

1
d Tr d

2
E x F F xµν

µν= − =∫∫∫ ∫∫∫L . (1.8) 

We then made use in (1.8) of field strength tensors for protons and neutrons developed via Gauss’/Stokes’ theorem 20 

from (1.6) in (11.3) and (11.4) of [1], respectively: 

PTr 2
" " " "

d d u u

d d u u

F i
m m

µ ν µ ν
µν

ψ γ γ ψ ψ γ γ ψ
ρ ρ

∨ ∨
        = − +
 − −/ / 

 (1.9) 

NTr 2
" " " "

u u d d

u u d d

F i
m m

µ ν µ ν
µν

ψ γ γ ψ ψ γ γ ψ
ρ ρ

∨ ∨
        = − +
 − −/ / 

 (1.10) 

where uψ and dψ  are Dirac wavefunctions for up and down quarks, to deduce three relationships which yielded 

remarkable concurrence with empirical data. 25 

First, we found in (11.22) of [1] that the electron mass is related to up and down quark masses according to: 

( ) ( )
3

20.510998928 MeV 3 2πe d um m m= = − , (1.11) 

where the divisor ( )
3

22π  results as a natural consequence of the three-dimensional integration (1.8) when the Gaussian 

ansatz for fermions is specified as in (1.7), and where the wavelengths in (1.7) are taken to be related to the quark masses 

via the de Broglie relation mc=� � . 30 

Second and third, we found in (12.12) and (12.13) of [1] that if one postulates the current mass of the up quark to be 

equal to the deuteron (2H nucleus) binding energy based on 1) empirical concurrence within experimental errors and 2) 

regarding nucleons to be resonant cavities with binding energies determined in relation to their up and down current 

quark masses, then the proton and neutron each possess respective intrinsic, latent binding energies B (i.e., energies 
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intrinsically available for nuclear binding): 

( ) ( )
3

2
PB 2 4 4 2π 7.640679 MeVu d d u d um m m m m m= + − + + =  (1.12) 

( ) ( )
3

2
NB 2 4 4 2π 9.812358 MeVd u u u d dm m m m m m= + − + + = . (1.13) 

So for a nucleus with an equal number of protons and neutrons, the average binding energy per nucleon is predicted to 

be 8.726519 MeV. Not only does this explain why a typical nucleus beyond the very lightest (which we shall be studying 5 

in detail here) has a binding energy in exactly this vicinity (see Figure 1), but when this is applied to 56Fe with 26 

protons and 30 neutrons— which has the distinction of using a higher percentage of this available binding energy than 

any other nuclide—we see that the latent available binding energy is predicted to be ((12.14) of [1]): 

( )56B Fe 26 7.640679 MeV 30 9.812358 MeV 493.028394 MeV= × + × =  (1.14) 

This contrasts remarkably with the observed 56Fe binding energy of 492.253892 MeV. That is, precisely 99.8429093% 10 

of the available binding energy predicted by this model of nucleons as Yang-Mills magnetic monopoles goes into 

binding together the 56Fe nucleus, with a small 0.1570907% balance reserved for confining quarks within each nucleon. 

This means while quarks are very much freer in the nucleons of 56Fe than in free nucleons (which also appears to explain 

the “first EMC effect” [10]), their confinement is never fully overcome. Confinement bends but never breaks. Quarks 

step back from the brink of becoming de-confined in 56Fe as one moves to even heavier nuclides, and remain confined no 15 

matter what the nuclide. Iron-56 thus sits at the theoretical crossroads of fission, fusion and confinement. 

This thesis that protons and neutrons are resonant cavities which emit and absorb energies that directly manifest their 

current quark masses will be central to the development of this paper. The foregoing (1.12) through (1.14) provide strong 

preliminary confirmation of this thesis, as well as of the underlying thesis that baryons are Yang-Mills magnetic 

monopoles. In this paper, we shall show how the observed binding energies of the 1s nuclides, namely of 2H, 3H, 3He and 20 
4He, as well as the observed neutron minus proton mass difference, provide further compelling confirmation of the thesis 

that baryons are Yang-Mills magnetic monopoles which bind at energies which directly reflect the current quark masses 

they contain. 

In simple summation: with a non-Abelian Yang-Mills field strength (1.3), Yang Mills magnetic monopole baryons 

result from simply combining Maxwell’ s classical electric (1.1) and magnetic (1.2) charge equations together into a 25 

single equation, making use of Dirac’s J µ µψγ ψ=  based on charge continuity, and imposing Fermi-Dirac SU(3)C 

Exclusion on the fermions of the resulting three-fermion monopole system. No further ingredients or assumptions are 

required, and all of these ingredients being so-combined in novel fashion are among the undisputed, uncontroversial 

bedrock foundations of modern physics. The Gaussian ansatz (1.7) enables the energy (1.8) to be analytically calculated, 

the mass relation (1.11) naturally emerges, and once we further apply the resonant cavity thesis, the resulting energies 30 

turn out to match up remarkably well with nuclear binding energies. 

In even simpler summation: Maxwell’ s Equations (1.1), (1.2) themselves, combined together into one equation using 

non-Abelian gauge fields (1.3), taken together with Dirac theory and Fermi-Dirac Exclusion, are the governing 

equations of nuclear physics, insofar as nuclear physics centers around the study of protons and neutrons and how they 

bind and interact, and given that we were able to show in [1] that protons and neutrons are particular types of Yang-Mills 35 

magnetic monopoles. This theory is thus extremely conservative, based on combining together unquestionable 

foundational physics principles. 

In essence, the purpose of this paper is to further develop the results from [1] into a theory of nuclear binding which 

we confirm by predicting the binding energies of the 1s nuclides as well as the neutron minus proton mass difference 
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with very high precision, each on the order of parts per million.  This in turn leads to resonant fusion technology. 

 

Summary of the Invention 

In an earlier paper, the author employed the thesis that baryons are Yang-Mills magnetic monopoles and that proton 

and neutron binding energies are determined based on their up and down current quark masses to predict a relationship 5 

among the electron and up and down quark masses within experimental errors and to obtain a very accurate relationship 

for nuclear binding energies generally and for the binding of 56Fe in particular. The free proton and neutron were 

understood to each contain intrinsic binding energies which confine their quarks, wherein some or most (never all) of this 

energy is released for binding when they are fused into composite nuclides. The purpose of this paper is to further 

advance this thesis by seeing whether it can explain the specific empirical binding energies of the light 1s nuclides, 10 

namely, 2H, 3H, 3He and 4He, with high precision. As the method to achieve this, we show how these 1s binding energies 

are in fact the components of inner and outer tensor products of Yang-Mills matrices which are implicit in the 

expressions for these intrinsic binding energies. The result is that the binding energies for the 4He, 3He and 3H nucleons 

are respectively, independently, explained to less than four parts in one million, four parts in 100,000, and seven parts in 

one million, all in AMU. Further, we are able to exactly relate the neutron minus proton mass difference to a function of 15 

the up and down current quark masses, which in turn enables us to explain the 2H binding energy most precisely of all, to 

just over 8 parts in ten million. These energies have never before been theoretically explained with such accuracy, which 

leads to the conclusion that the underlying thesis provides the strongest theoretical explanation to date of what baryons 

are, and of how protons and neutrons confine their quarks and bind together into composite nuclides. As is also reviewed 

in Section 9, these results may lay the foundation for more easily catalyzing nuclear fusion energy release.  Sections 13 20 

and 14 expand this to the catalyzing of fusion energy release for reactions involving 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 
11C, 12C and 14N. 

 

Brief Description of the Drawings 

Figure 1 is a well-known graph which shows the empirical binding energy per nucleon of various nuclides. 25 

Figure 2 is a table showing the empirical nuclear weights ( )A
Z M  of the 1s nuclides, in AMU. 

Figure 3 is a table showing the empirical binding energies ( )A
Z 0B  of the 1s nuclides, in AMU. 

Figure 4 is a table showing the theoretically available binding energies ( )A
Z B  of the 1s nuclides, in AMU. 

Figure 5 is a table showing the used-to-available binding energies ( )( )%A A
Z Z0B B  of the 1s nuclides as a percentage 

(%). 30 

Figure 6 is a table showing the unused latent binding energies ( )A
Z U of the 1s nuclides, in AMU.  

Figure 7 is a table showing the empirical binding energies ( )A
Z 0B  of selected 1s and 2s nuclides, in AMU. 

Figure 8 is a table showing a comparison of the alpha-subtracted 2s binding energies, with the 1s binding energies, in 

AMU. 

Figure 9 is a table showing the theoretical binding energies ( )A
Z 0B  of the 1s nuclides.  35 

Figure 10 is a table showing the predicted binding energies( )A
Z 0B  of the 1s nuclides, in AMU 

Figure 11 is a table showing the predicted minus observed binding energies ( )A
Z 0B  of the 1s nuclides, in AMU. 

Figure 12 is a graph showing retrodicted per-nucleon binding energies (B) per nucleon (A=Z+N) for 1s and 2s shells. 
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Detailed Description 

2. Structured Outline of the Contents of This Patent Application 

  In deriving the empirically-accurate binding energy relationships (1.12) through (1.14) there is an aspect of (1.8) 

which, when carefully considered, requires us to amend the Lagrangian in (1.8) in a slight but important way. This 5 

amendment, developed in Section 3, will reveal that the latent binding energies (1.12) and (1.13) actually employ the 

inner and outer tensor products of two 3 × 3 SU(3) matrices, one for protons, and one for neutrons. These matrices, and 

their inner and outer products, will be critical to the methodological development thereafter. 

In section 4 we lay the foundation for being able to derive the binding energies of the 1s nuclides using the 

earlier-discussed postulate that the mass of the up quark is equal to the deuteron (2H nucleus) binding energy, and the 10 

thesis extrapolated from this that the binding energies of nuclides generally are direct functions of the current quark 

masses which their nucleons contain. Specifically, in (4.9) through (4.11) infra, we develop two tensor outer products and 

their components which will be critical ingredients for expressing 1s binding energies as functions of up and down 

current quark masses. 

Section 5 shows how this binding energy thesis leads directly to a theoretical expression for the 4He alpha binding 15 

energy which matches empirical data to less than 3 parts in 1 million AMU. Exploring the meaning of this result, we see 

that this binding energy together with that of the 2H deuteron are actually components of a (3 × 3) × (3 × 3) fourth rank 

Yang Mills tensor of which the 2H and 4He binding energies merely two samples. Thus, we are motivated to think about 

binding energies generally as components of Yang-Mills tensors. So the method for characterizing binding energies is 

one of trying to match up empirical binding energies with various expressions which emerge from, or are components of, 20 

these Yang- Mills tensors. In Section 6, we similarly obtain a theoretical expression for 3He helion binding to just under 4 

parts in 100,000 AMU as well as its characterization in terms of these Yang-Mills tensors. 

Developing a similar expression for the 3H triton to what ends up being just over three parts in one million AMU turns 

out to be less straightforward than for any of 2H, 3He and 4He, and requires us to work with mass excess rather than 

binding energy. However, a bonus is that in the process, we are also motivated to derive an expression for the neutron 25 

minus proton mass difference accurate to just over 7 parts in ten million AMU. To maintain clarity and focus on the 

underlying research ideas, these results are summarized in Section 7, while their detailed derivation is presented in the 

Appendix. 

Section 8 aggregates the results of Sections 5 through 7, and couches them all in terms of mass excess rather than 

binding energy. In this form, it becomes more straightforward to study nuclear fusion processes involving these 1s 30 

nuclides. 

Section 9 makes use of the mass excess results from Section 8, and shows how these can be combined to express the 

approximately 26.73 MeV of energy known to be released during the solar fusion cycle 1
14 H 2e−⋅ + →  

4
2He 2 Energyν+ +  entirely in terms of the up, down and electron fermion masses. This highlights not only the accuracy 

of the results for 2H, 3H, 3He and 4He binding energies and the neutron minus proton mass difference, but it establishes 35 

the approach one would use to do the same for other types of nuclear fusion, and for fission reactions. And, it vividly 

confirms the thesis that fusion and fission and binding energies are directly based on the masses of the quarks which are 

contained in protons and neutrons, regarded as resonant cavities. 

But perhaps the most important consequence of the development in Section 9 is technological, because the possibility 

is developed via this “resonant cavity” analysis that by bathing a fuel store of hydrogen (or another suitable nuclear fuel) 40 

in gamma radiation at certain specified, discrete frequencies which are also defined functions of the up and down quark 
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masses, one can catalyze nuclear fusion and perhaps develop more effective ways to practically exploit the promise of 

nuclear fusion energy release. 

In Section 10, we take a closer look at experimental errors that still do reside in the results for 3H, 3He and 4He binding 

and the neutron minus proton mass difference, generally at parts per 105, 106 or 107 AMU. We explain why the original 

postulate identifying the up quark mass exactly with the 2H deuteron binding energy should be modified into the 5 

substitute postulate that the theoretical neutron minus proton mass difference is an exact relationship, and why the 

equality of the up quark mass and the deuteron binding energy is simply a very close approximation (to just over 8 parts 

in ten million) rather than an exact relationship. We then are required to adjust (recalibrate) all of the prior numeric mass 

and energy calculations accordingly, by about parts per million. As a by-product, the up and down quark masses become 

known with the same degree of experimental precision as the electron rest mass and the neutron minus proton mass 10 

difference, to ten decimal places in AMU. 

Section 11 concludes by summarizing and consolidating these results for 2H, 3H, 3He and 4He and the neutron minus 

proton mass difference, laying out most compactly in Figure 11, how the thesis that baryons are Yang-Mills magnetic 

monopoles which fuse at binding energies reflective of their current quark masses can be used to predict the binding 

energies of the 4He alpha to less than four parts in one million, of the 3He helion to less than four parts in 100,000, and of 15 

the 3H triton to less than seven parts in one million, all in AMU. And of special import, by exactly relating the neutron 

minus proton mass difference to a function of the up and down quark masses, we are enabled to predict the binding 

energy for the 2H deuteron most precisely of all, to just over 8 parts in ten million. 

Section 12 shows how all of the foregoing results can be equivalently and independently derived using mass matrices 

based on the Koide mass formula [20], [21].  Section 13 uses this insight to extend the development of resonant nuclear 20 

fusion to reactions involving 6Li, 7Li, 7Be and 8Be.  Section 13 proceeds apace to further extend this insight to fusion 

reactions involving 10B, 9Be, 10Be, 11B, 11C, 12C and 14N. 

What renders this work novel is 1) that the 1s light nuclide binding energies and the neutron minus proton mass 

difference do not appear to have ever before been theoretically explained with such accuracy; 2) the degree to which this 

accuracy confirms that baryons are Yang- Mills magnetic monopoles with binding energies which are components of a 25 

Yang-Mills tensor and which are directly related to current quark masses contained in these baryons; 3) the finding that 

nuclear physics appears to be grounded in unquestionable conservative physics principles, governed by simply combining 

Maxwell’s two classical equations into one equation using Yang-Mills gauge fields in view of Dirac theory and 

Fermi-Dirac Exclusion for fermions; and 4) the prospect of perhaps improving nuclear fusion technology by applying 

suitably-chosen resonances of gamma radiation for catalysis. 30 

3. The Lagrangian of Nuclear Binding Energies 

The t’Hooft magnetic monopole Lagrangian used in (1.8), because of suppression of the Yang-Mills matrix indexes, 

actually has an ambiguous mathematical meaning, and can be either an ordinary (inner product) matrix multiplication, or 

a tensor (outer) product. The outer product is the most general bilinear operation that can be performed on F F µν
µν , 

while the inner product represents a contraction of the outer product which reduces the Yang-Mills rank by 2. When 35 

carefully considered, this provides an opportunity for developing a nuclear Lagrangian based on the t’Hooft’s original 

development [2] of Yang-Mills magnetic monopoles. 

If we know that 
1 1

4 2a aF F F Fµν µν
µν µν=  as we do from the terms in (11.7) of [1] omitted from (1.8) above,  

and given that 
1

Tr
2

i j ijT T δ= , then with explicit indexes , , , 1, 2,3A B C D =  for the 3 × 3 Yang-Mills matrices of the 
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( )3
C

SU ′  isospin-modified color group developed in Section 8 of [1], an explicit appearance of Yang-Mills indexes 

would cause (1.8) to be written as: 

3 3 3 3 3
gauge

1 1 1 1
d Tr d Tr d Tr d d

2 2 2 2AB BD AB BD AB BAE x F F x F F x F F x F F xµν µν
µν µν= − = = = ⋅ = ⋅∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫L  (3.1) 

where F F F F µν
µν⋅ ≡  suppresses spacetime indexes to focus attention on contractions of Yang-Mills indexes. In the 

fourth and fifth terms above, there is a contraction over the inner “B” index, which means that AB BDF F⋅  is an inner 5 

product formed with ordinary matrix multiplication, and is a contraction over inner indexes of the fourth rank (3 × 3 × 3 

× 3) outer product F F µν
µν ⊗ =  AB CDF F⋅  down to rank two. In the sixth, final term, we write Tr AB BD AB BAF F F F⋅ = ⋅  

via a second “A” index contraction. 

We point this out because (1.12) through (1.14) which successfully match empirical nuclear binding data, embody not 

only (3.1), but also an outer product AB CDF F⋅ , that is, (carefully contrast Yang-Mills indexes between the final terms in 10 

(3.1), (3.2)): 

3 3 3 3 3
gauge

1 1 1 1
d Tr d Tr d Tr d d

2 2 2 2AB CD AB CD AA BBE x F F x F F x F F x F F xµν µν
µν µν= − = ⊗ = = ⋅ = ⋅∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫L  (3.2) 

here, in the final terms, we use Tr AB CD AA BBF F F F⋅ = ⋅ , as opposed toTr AB BD AB BAF F F F⋅ = ⋅ . This highlights the 

notational ambiguity in (1.8) as well as the difference between the outer ⊗  and inner matrix products. 

Now, in general, the trace of a product of two square matrices is not the product of traces. The only circumstance in 15 

which “trace of a product” equals “product of traces” is when one forms a tensor outer product using: 

( ) ( ) ( )Tr Tr TrA B A B⊗ = . (3.3) 

Specifically, to obtain the terms 4 4d u d um m m m+ +  and 4 4u u d dm m m m+ +  in (1.12) and (1.13) (and also (12.4) 

and (12.5) of [1] which erroneously applied (3.2), (3.3) rather than (3.1) because of this ambiguity), we must use (3.2), 

while to obtain 2 u dm m+  and 2 d um m+  in (1.12) and (1.13), we instead must use (3.1). So (1.12) and (1.13) are formed 20 

by a linear combination of both inner and outer products. And because (1.12) and (1.13) predict binding energies per 

nucleon in the range of 8.7 MeV and yield an extremely close match to 56Fe binding energies, nature herself appears to be 

telling us that we need to combine inner and outer products in this way in order to match up with empirical data. This, in 

turn, gives us important feedback for how to construct our Lagrangian to match the empirical data. 

To see this most vividly, we start with (11.8) and (11.9) from [1]: 25 

3
P

1
2 2 d

2 " " " " " " " "

d d u u d d u u

d d u u d d u u

E x
m m m m

µ ν µ ν
µ ν µ νψ γ γ ψ ψ γ γ ψ ψ γ γ ψ ψ γ γ ψ

ρ ρ ρ ρ
∨ ∨ ∨ ∨

                    = − + × +
  − − − −/ / / /  

∫∫∫  (3.4) 

3
N

1
2 2 d

2 " " " " " " " "

u u d d u u d d

u u d d u u d d

E x
m m m m

µ ν µ ν
µ ν µ νψ γ γ ψ ψ γ γ ψ ψ γ γ ψ ψ γ γ ψ

ρ ρ ρ ρ
∨ ∨ ∨ ∨

                    = − + × +
  − − − −/ / / /  

∫∫∫ . (3.5) 

Using these in (3.1) and (3.2) following the development in Section 11 and (12.12) and (12.13) of [1], we can 

reproduce Equations (1.12) and (1.13) for the empirically-accurate latent binding energies of a proton and neutron using 

linear combinations of inner and outer Yang-Mills matrix products, respectively, as follows: 30 
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( ) ( )

( )
( )

( )

3 3
3 32 2

P P P P P P P P P P P

3
32

P P P P 3

2

1 1
B Tr 2π d Tr 2π d

2 2

1 1
2π d 2 4 4

2 2π

0 0 0 0

Tr 0 0 0 0

0 0 0 0

µν µν

µν µν AB BD AB CD

AB BA AA BB u d d u d u

d d

u u

u u

ΣE E F F F F x F F F F x

F F F F x m m m m m m

m m

m m

m m

   = − = − ⊗ = ⋅ − ⋅   
   

 = ⋅ − ⋅ = + − + + 
 

  
  
  =
 
 
  

∫∫∫ ∫∫∫

∫∫∫

( )
3

2

0 0 0 0
1

0 0 0 0
2π 0 0 0 0

9.356376 MeV 1.715697 MeV 7.640679 MeV

d d

u u

u u

m m

m m

m m

    
    
    − ⊗
     

         

= − =

 (3.6) 

( ) ( )

( )
( )

( )

3 3
3 32 2

N N N N N N N N N N N

3
32

N N N N 3
2

1 1
B Tr 2π d Tr 2π d

2 2

1 1
2π d 2 4 4

2 2π

0 0 0 0

Tr 0 0 0 0

0 0 0 0

µν µν

µν µν AB BD AB CD

AB BA AA BB d u u u d d

u u

d d

d d

E E F F F F x F F F F x

F F F F x m m m m m m

m m

m m

m m

   = Σ − = − ⊗ = ⋅ − ⋅   
   

 = ⋅ − ⋅ = + − + + 
 

  
  
  =
 
 
  

∫∫∫ ∫∫∫

∫∫∫

( )
3
2

0 0 0 0
1

0 0 0 0
2π 0 0 0 0

12.039054 MeV 2.226696 MeV 9.812358 MeV

u u

d d

d d

m m

m m

m m

    
    
    − ⊗
     

         

= − =

. (3.7) 

These now provide matrix expressions for intrinsic, latent binding energies of the proton and neutron, contracted down 

to scalar energy numbers which specify these binding energies and match the empirical data very well. And it is from 

these, that we learn how to amend the Lagrangian in (1.8) to lay a foundation for considering nuclear binding energies in 5 

general. 

Contrasting (3.6) and (3.7) with (3.1) and (3.2), we see that in order to match up with the empirical data, the general 

form of a Lagrangian for the latent binding energy of a nucleon, rather than (1.8), needs to be: 

( ) ( ) ( )
3 3 3

2 2 2
binding

1 1 1
Tr 2π Tr 2π 2π

2 2 2
µν µν

µν µν AB BD AB CD AB BA AA BBF F F F F F F F F F F F
     = − ⊗ = ⋅ − ⋅ = ⋅ − ⋅     
     

L . (3.8) 

Using this, we now start to amend the t’Hooft Lagrangian (9.2) of [1], reproduced below: 10 

( )221 1 1 1

4 2 2 8
a a a a

a a a aF F D Dµν µ
µν µφ φ µ φ φ λ φ φ= − − − −L . (3.9) 

First, we apply 
1

Tr ,
2

i j ij i
iT T F T Fµν µνδ= =  and a

aT φΦ =  to rewrite (3.9) in the Yang-Mills matrix form: 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

22

22

22

1 1
Tr Tr Tr Tr

2 2
1 1

Tr Tr Tr Tr
2 2
1 1

2 2

AB BD AB BD AB BDAB BD

AB BA AB BA AB BAAB BA

F F D D

F F D D

F F D D

µν µ
µν µ

µν µ
µν µ

µν µ
µν µ

µ λ

µ λ

µ λ

= − − Φ Φ − ΦΦ − ΦΦ

= − − Φ Φ − Φ Φ − Φ Φ

= − − Φ Φ − Φ Φ − Φ Φ

L

 (3.10) 

with (9.4) of [1] also written in compacted matrix form: 

( ) ( ),ABAB AB
D i Gµ µ µ Φ = ∂ Φ − Φ  . (3.11) 15 

Now, we compare (3.10) closely with (3.8), especially comparing 
1

2 AB BAF F µν
µν−  in (3.10) with ( )

3

2
1

2π
2 AB BAF F⋅  in 

(3.8). Based on this, we reconstruct the t’Hooft Lagrangian so the pure gauge terms specify the latent nuclear binding 
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energies, that is, we choose to make ( )
3

2
1

2π
2 AB BA AA BBF F F F
 ⋅ − ⋅ 
 

 the pure gauge Lagrangian term, because we know 

from (3.6) and (3.7) that this yields latent binding energies very much in accord with those empirically observed in 

nuclear physics. Thus, we take (3.10), introduce a factor of ( )
3

22π−  in front of all the ordinary matrix products, subtract 

off a term AA BBF F⋅ , introduce similarly-contracted terms everywhere else, and so fashion the Lagrangian: 

( ) ( ) ( ) ( )

( ) ( ) ( )

3
222

22

1 1
2π

2 2

1 1
  

2 2

AB BA AB BA AB BAAB BA

AA BB AA BB AA BBAA BB

F F D D

F F D D

µν µ
µν µ

µν µ
µν µ

µ λ

µ λ

 = + Φ Φ + Φ Φ + Φ Φ 
 

− − Φ Φ − Φ Φ − Φ Φ

L

. (3.12) 5 

It is readily seen that the pure gauge terms F F µν
µν  in the above are identical to (3.8), which means these terms now 

represent the empirically-observed latent nuclear binding energies. However, in constructing this Lagrangian, we carry 

the same index structure and ( )
3

22π  coefficients forward to all remaining terms and thus extend this understanding to 

the vacuum terms. 

The benefit of all of this can be seen by now considering a nucleus with Z protons and N neutrons, which therefore has 10 

A = Z + N nucleons. With (3.6) and (3.7), we may write the intrinsic, available, latent binding energy BA
Z  of any such 

nuclide as: 

( ) ( )
3 3

3 32 2
P P P P N N N N

1 1
B 2π d 2π d

2 2

7.640679 MeV 9.812358 MeV

A
Z AB BA AA BB AB BA AA BBZ F F F F x N F F F F x

Z N

   = ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅   
   

= ⋅ + ⋅

∫∫∫ ∫∫∫ . (3.13) 

This simply restates the results found in Sections 11 and 12 of [1] in more formal terms. But, it ties formal theoretical 

expressions based on a Lagrangian ( )1
Tr

2
F F∝ − ⋅L  and an energy 3dE x= −∫∫∫L  to a very practical formula for 15 

deriving real, numeric, empirically-accurate nuclear binding energies. A good example is (1.14) for 56
26B , the latent 

binding energy of 56Fe. 

On the foregoing basis, we now show how to derive not only the latent, available binding energies (designated B) via 

(3.13), but also the observed binding energies (which will be designated throughout as 0B  with a “0” subscript) for 

several basic light nuclides. Specifically, we now lay the foundation for deriving 31 0B  for the 3H triton, 3
2 0B  for the 20 

3He helion, and most importantly given that it is a fundamental building block of the larger nuclei and many decay 

process, 42 0B  for the 4He alpha, all extremely closely to the empirical data. 

4. Foundation for Deriving Observed Binding Energies of the 1s Nuclides 

Our goal is to derive the observed, empirical binding energies for all nuclides with 2; 2Z N≤ ≤  on a totally 

theoretical basis. We thereby embark on the undertaking set forth at the end of [1], to understand in detail, how 25 

collections of Yang-Mills magnetic monopoles—which monopole collections we now understand to be nuclei when the 

monopoles are protons and neutrons—organize and structure themselves. 

The empirical nuclear weights (masses A
Z M ) of the 1s nuclides are set forth in Figure 2 (again, A = Z + N). Because 

we wish to do very precise calculations, and because nuclide masses are known much more precisely in u (atomic mass 

units, AMU) than in MeV due to the “relatively poorly known electronic charge” [11], we shall work in AMU. When 30 

helpful for illustration, we shall convert over to MeV via 1u = 931.494061(21) MeV/c2, but only after a calculation is 
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complete. The data for these nuclides (and the electron mass below) is from [11] and/or [12], and is generally known to 

ten-digit precision in AMU with experimental errors at the eleventh and twelfth digits. For other nuclides not listed at 

these sources, we make use of a very helpful online compilation of atomic weights and isotopes at [13]. Vertical columns 

list isotopes, horizontal rows list isotones, and diagonal lines link isobars of like-A. The nuclides with border frames are 

stable nuclides. The mass of the neutron is ( ) 1
0 1 008664916000M n M . u= =  and the mass of the proton is 5 

( ) 1
1 1 007276466812M p M . u= = . 

The observed binding energies B0 are readily calculated from the above via 1 1
0 1 0BA A

Z ZZ M N M M= ⋅ + ⋅ −  using the 

proton and neutron masses ( ) 1
1M p M=  and ( ) 1

0M n M= , and are summarized in Figure 3 (again, the observed 

binding energies will be denoted throughout as 0B  with a “0”  subscript, while latent, theoretically-available binding 

energies denoted simply B will omit this subscript). 10 

Now let’s get down to business. We already showed in (12.9) of [1] and discussed in the introduction here, that by 

identifying the mass of the up quark with the deuteron binding energy via the postulate that ( )2
0B Hum ≡ =  

2.224566 MeV, we not only can establish very precise masses for the up and down quarks but also can explain the 

confluence of confinement and fission and fusion at 56Fe in a very profound way, wherein 99.8429093% of the available 

binding energy goes into binding the 56Fe nucleus and only the remaining 0.1570907% is unused for nucleon binding and 15 

so instead confines quarks. And, we extrapolated this to the thesis to be further confirmed here, that nucleons in general 

are resonant cavities fusing at energies reflective of their current quark masses. 

So we now write this postulate identifying (defining) the up quark mass um  with the observed deuteron binding 

energy 2
1 0B , in notations to be employed here, in AMU, as: 

2
1 0B 0 002388170100um . u≡ = . (4.1) 20 

In AMU, the electron mass, which we shall also need, is: 

0 000548579909em . u= .   (4.2) 

We then use (1.11) (see also (12.10) of [1]) with (4.1) and (4.2) to obtain the down quark mass: 

( )
3

22π 3 0 005268143299d e um m m . u= + = . (4.3) 

It will also be helpful in the discussion following to use: 25 

0 003547001876u dm m . u=  (4.4) 

see, e.g., (1.12) and (1.13) in which this first arises. 

We then use the foregoing in (1.12) and (1.13) to calculate the latent, available binding energy of the proton and 

neutron, designated B without the “0” subscript: 

( ) ( ) ( )
3

1 2
1B B 2 4 4 2π 0 008202607332u d d u d up m m m m m m . u= = + − + + =  (4.5) 30 

( ) ( ) ( )
3

1 2
0B B 2 4 4 2π 0 010534000622d u u u d dn m m m m m m . u= = + − + + = . (4.6) 

Via (3.13), (4.5) and (4.6) may then be used to calculate generally, the latent, available binding energy: 

( ) ( )
3 3

2 2

4 4 4 4
B 2 2

2π 2π

0 008202607332 0 010534000622

d u d u u u d dA
Z u d d u

m m m m m m m m
Z m m N m m

Z . u N . u

   + + + +   = ⋅ + − + ⋅ + −
      
   

= ⋅ + ⋅

 (4.7) 
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for any nuclide of given Z, N. For the nuclides in Figures 2 and 3, this theoretically-available, latent binding energy B, is 

predicted to be: see Figure 4. 

Taking the ratio of the empirical values in Figure 3 over the theoretical values in Figure 4 and expressing these as 

percentages then yields: see Figure 5. 

So we see, for example, that the 4He alpha nucleus uses about 81.06% of its total available latent binding energy to 5 

bind itself together, with the remaining 18.94% retained to confine the quarks inside each nucleon. The deuteron releases 

about 12.74% of it latent binding energy for nuclear binding, while the isobars with A = 3 release about 31% of this latent 

energy for nuclear binding with the balance reserved for quark confinement. The free proton and neutron, of course, 

retain 100% of this latent energy to bind their quarks and release nothing. So one may think of the latent binding energy 

as an energy that “see-saws” between confining quarks and binding together nucleons into nuclides, with the exact 10 

percentage of latent energy reserved for quark confinement versus released for nuclear binding dependent on the 

particular nuclide in question. 

As a point of comparison, we return to 56Fe which has the highest percentage of used-to-available binding energy of 

any nuclide. Its nuclear weight 56
26 55 92067442M . u=  (cf. Figure 2), its empirical, observed binding energy 

56
26 0B 0 52846119. u=  (cf. Figure 3), its latent binding energy 56

26B 0 52928781. u=  (cf. Figure 4), and its 15 

used-to-available percentage ( )56 56
26 0 26B B 99 843825% . %=  (cf. Figure 5). No nuclide has a higher such percentage 

than 56Fe. While 62Ni has a larger empirical binding energy per-nucleon, its used-to- available percentage is lower, 

because the calculation in (4.7) literally and figuratively weights the neutrons more heavily than the protons by a ratio of: 

( )
( )

1
0
1
1

B B 0 010534000622
1 284225880325

B 0 008202607332B

n . u
.

p . u
= = = . (4.8) 

The above ratio explains the long-observed phenomenon why heavier nuclides tend to have a greater number of 20 

neutrons than protons: For heavier nuclides, because the neutrons carry an energy available for binding which is about 

28.42% larger than that of the proton, neutrons will in general find it easier to bind into a heavy nucleus by a factor of 

28.42%. Simply put: neutrons bring more available binding energy to the table than protons and so are more welcome at 

the table. The nuclides running from 31Ga to 48Cd tend to have stable isotopes with neutron-to-proton number ratios (N/Z) 

roughly in the range of (4.8). Additionally, and likely for the same reason, this is the range in which, beginning with 41Nb 25 

and 42Mo, and as the N/Z ratio grows even larger than (4.8), one begins to see nuclides which become theoretically 

unstable with regard to spontaneous fission. 

Next, we subtract Figure 3 from Figure 4, to obtain the unused (U) binding energy 0
A A A
Z Z ZU B B= −  for each nuclide. 

These unused binding energies represent the amount of the latent binding energies reserved for and channeled into 

intra-nucleon quark confinement, rather than released and used for inter-nucleon binding. Of course, for the proton and 30 

neutron, all of this energy is unused; it is fully reserved and channeled into confining the quarks. These unused, 

reserved-for-confinement energies are: see Figure 6. 

Finally, to lay the groundwork for predicting the observed binding energies B0 in Figure 3, let us refer to (3.6) and 

(3.7), remove the trace, and specify two (3 × 3) × (3 × 3) outer product matrices, one for the proton, PABCDE , and one for 

the neutron, N ABCDE , according to: 35 

( ) ( )
3 3

32 2
P P P

0 0 0 0
1

2π 2π d 0 0 0 0
2

0 0 0 0

d d

ABCD AB CD u u

u u

m m

E F F x m m

m m

   
   
   = ⋅ = ⊗
   
   
   

∫∫∫  (4.9) 
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( ) ( )
3 3

32 2
N N N

0 0 0 0
1

2π 2π d 0 0 0 0
2

0 0 0 0

u u

ABCD AB CD d d

d d

m m

E F F x m m

m m

    
    
    = ⋅ = ⊗
    
        

∫∫∫ . (4.10) 

From the above, one can readily obtain the eighteen non-zero diagonal outer product components (nine for the proton 

and nine for the neutron), with P NABCD ABCDE E=  0=  otherwise: 

( )

( )

( )

3

2
N1111 P2222 P3333 P2233 P3322

3

2
P1111 N2222 N3333 N2233 N3322

3

2
P1122 P1133 P2211 P3311 N1122 N1133 N2211 N3311

2π

2π

2π

u

d

u d

E E E E E m

E E E E E m

E E E E E E E E m m

= = = = =

= = = = =

= = = = = = = =

. (4.11) 

This is why (4.1), (4.3) and (4.4) will be of interest in the development following. With the “toolkit” (4.9) to (4.11) we 5 

now have all ingredients needed to closely deduce the empirical binding energies in Figure 3 on totally theoretical 

grounds. We start with the alpha, 4He. 

5. Prediction of the Alpha Nuclide Binding Energy to 3 Parts in One Million, and How Binding Energies Are Yang-Mills 

Tensor Components 

The alpha particle is the 4He nucleus. It is highly stable, with fully saturated 1s shells for protons and neutrons, and is 10 

central to many aspects of nuclear physics including the decay of nuclides into more stable states via so-called alpha 

decay. In this way, it is a bedrock building block of nuclear physics. 

The unused binding energy in Figure 6 for the alpha is 42 0 007096629409U . u= . Looking over the toolkit (4.11),  

we see 2 0 007094003752u dm m . u= , so 4
2U  is very close to being twice the value of u dm m  in (4.4). In fact, these 

energies are equal to about 2.26 parts per million! Might this be an indication that the alpha uses all its latent binding 15 

energy less 2 u dm m  for nuclear binding, with the 2 u dm m  balance reserved on the other side of the “see saw” to 

confine quarks within each of its four nucleons? First, let’s look at the numbers, then examine theoretical reasons why 

this may make sense. 

If in fact this numerical coincidence is not just a coincidence but has real physical meaning, this would mean the 

empirical binding energy 42 0B  of the alpha is predicted to be (4.7) for 42B , less 2 u dm m , that is: 20 

( ) ( )
4
2 0Predicted 3 3

2 2

4 4 4 4
B 2 2 2 2 2

2π 2π

0.030379212155

d u d u u u d d
u d d u u d

m m m m m m m m
m m m m m m

u

   + + + +   = ⋅ + − + ⋅ + − −
      
   

=

 (5.1) 

where we calculate using ,u dm m from (4.1), (4.3), and u dm m  from (4.4). In contrast, the empirical 4
2 0B =   

0.030376586499u  in Figure 3. The difference: 

4 4
2 0Predicted 2 0B B 0.030379212155 0.030376586499 0.000002625656u u u− = − =  (5.2) 

is extremely small, with these two values, as noted just above for the reserved energy, differing from one another by less 25 

than 3 parts in 1 million AMU! So, let us regard (5.1) to be a correct prediction of the alpha binding energy to 3 parts per 

million. Now, let’s discuss the theoretical reasons why this makes sense. 

In [1], a key postulate was to identify the mass of the down quark with the deuteron binding energy, see (4.1) here in 

which we again reviewed that identification. Beyond the numerical concurrence, a theoretical explanation is that in some 

fashion the nucleons are resonant cavities, so the energies they release (or reserve) during fusion will be very closely tied 30 

to the masses/wavelengths of the contents of these cavities. But, of course, these “cavities” contain up quarks and down 
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quarks, and their masses are given in (4.1) and (4.3) together with the u dm m  construct in (4.4), and so these will 

specify preferred “harmonics” to determine the precise energies which these cavities resonantly release for nuclear 

binding, or hold in reserve for quark confinement. 

We also see that components of the outer products ( ) ( )
3 3

32 2
1

2π 2π d
2ABCD AB CDE F F x= ⋅∫∫∫  in (4.9) and (4.10) take on 

one of three non-zero values: ,u dm m , or u dm m , see (4.11). So, in trying to make a theoretical fit to empirical binding 5 

data we require that empirical binding energies be calculated only from these outer products 31
d

2ABCD AB CDE F F x= ⋅∫∫∫  

(4.9), (4.10) using only some combination of 1) the components of these outer products and 2) index contractions of these 

outer products. So the ingredients we shall use to do this numerical fitting will be restricted to 1) the latent nuclide 

binding energies calculated from (4.7); 2) the three energies ,u dm m , u dm m  of (4.11) and quantized multiples thereof; 

and 3) any of the foregoing with a ( )
3
22π  coefficient or divisor, as suitable; we also permit 4) the rest mass of the 10 

electron em  which is related to the up and down masses via (1.11). The method of this fitting is trial and error, at least 

for now, and involves essentially poring over the empirical nuclear binding energy data and seeing if it can be arrived at 

closely using only the foregoing ingredients. 

For the alpha, (5.1) meets all these criteria. In fact, rewritten with (3.6), (3.7) and (4.9) through (4.11), we find (5.1) 

can be expressed entirely in terms of the outer product 31
d

2ABCD AB CDE F F x= ⋅∫∫∫  as just discussed, as: 15 

( ) ( ) ( ) ( )

( ) ( )

3 3 3
4 2 2 2
2 0Predicted P P N N P1122 N1122

3 3

2 2

B 2 2π 2 2π 2π

4 4 4 4
2 2 2 2 2

2π 2π

ABBA AABB ABBA AABB

d u d u u u d d
u d d u u d

E E E E E E

m m m m m m m m
m m m m m m

   = ⋅ − + ⋅ − − +   
   

   + + + +   = ⋅ + − + ⋅ + − −
      
   

. (5.3) 

This totally theoretical Yang-Mills tensor expression yields the alpha binding energy to 2.26 parts per million. 

In this form, (5.3) tells us that the alpha binding energy is actually the 11 22 component of a (3 × 3) × (3 × 3) outer 

product ABCDE , in linear combination with traces of ABCDE . That is, this binding energy is a component of a Yang-Mills 

tensor! 20 

This is reminiscent, for example, of the Maxwell Tensor 
1

4π
4

T F F F Fµν µα ν µν αβ
α αβη− = − , which provides a suitable 

analogy. The on-diagonal components of the Maxwell tensor contain both a component term and a trace term just like 

(5.3). For example, for the 00 term 00 0 0 1
4π

4
T F F F Fα αβ

α αβ− = − , we analogize 0 0F Fα
α  to the 1122E  and F Fαβ

αβ  to 

the ( )
3
22π ABBA AABBE E−  in (5.3). The off-diagonal components of the Maxwell tensor, however, do not include a trace 

term. For example, for the 01 term in Maxwell, if we consider 01 0 1 01 0 11
4π 0

4
T F F F F F Fα αβ α

α αβ αη− = − = + , the 25 

Minkowski metric µνη  filters out the trace. This latter, off-diagonal analogy allows us to represent (4.1) for the 

deuteron as a tensor component without a trace term, for example, as (see (4.11)): 

( )
3

2 2
1 0Predicted N1111B 2π 0um E= = + . (5.4) 

So we now start to think about individual observed nuclear binding energies as components of a fourth rank Yang 
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Mills tensor of which (5.3) and (5.4) are merely two samples. Thus, as we proceed to examine many different nuclides, 

we will want to see what patterns may be discerned for how each nuclide fits into this tensor. 

Physically, the alpha particle contains two protons and two neutrons, in terms of quarks, six up quarks and six down 

quarks. It is seen that the up quarks enter (5.3) in a completely symmetric fashion relative to the down quarks, i.e., that 

(5.3) is invariant under the interchange u dm m↔ . The factor of 2 in front of u dm m  of course means that two 5 

components of the outer product are also involved. So we have preliminarily associated 2 u dm m =  P1122 N1122E E+  so that 

the neutron pair and the proton pair each contribute 1 u dm m  to (5.3), and (5.3) thereby remains absolutely symmetric 

not only under u d↔ , but also under p n↔  interchange. 

We do note that there is some flexibility in these assignments of energy numbers to tensor components, because each 

of ,u dm m , u dm m  in the (4.11) toolkit is associated with several different components of the outer product. So the 10 

choice of 1122E  in (5.3) (while requiring p n↔  symmetry) and of N1111E  in (5.4) is flexible versus the other 

available possibilities in (4.11), and should be revisited once we study other nuclides not yet considered and seek to 

understand the more general Yang-Mills tensor structure of which the individual nuclide binding energies are 

components. 

One other physical observation is also very noteworthy, and to facilitate this discussion we include the well-known 15 

“per-nucleon” binding graph as Figure 1. One perplexing mystery of nuclear physics is why there is such a large 

“chasm” between binding energies for the 2H, 3H and 3He nuclides, and the biding energy of the 4He nuclide which we 

have now predicted to within parts per million. Contrasting (5.3) for 4He with (5.4) for 2H, we see that for the latter 

deuteron, we “start at the bottom” with 1
1 0B 0=  for 1H (the free proton), and then “add” 2

1 0B 0 um= + worth of energy 

to bind the proton and the neutron together into 2H. Conversely, for the alpha we “start at the top” with the total latent 20 

binding energy 4
2B 0 037473215908. u= , and then subtract off 2 u dm m , to match the empirical data with  

4
2 0B 0 037473215908 2 u d. u m m= − . But as we learned in Section 12 of [1] and have reiterated here, any time we do not 

use some of the latent energy for nuclear binding, that unused energy remains behind in reserve to confine the quarks in a 

type of nuclear see-saw. 

So what we learn is that for the alpha particle, a total of 2 0 007094004u dm m . u= is held in reserve to confine the 25 

quarks, while the majority balance is released to bind the nucleons to one another. In contrast, for the deuteron, a total of 

2
1 0B 0 002388170100um . u≡ =  is released for inter-nucleon binding while the majority balance is held in reserve to 

confine the quarks. 

Now to the point: for some nuclides (e.g. the deuteron) the question is: how much energy is released from quark 

confinement to bind nucleons? This is a “bottom to top” nuclide. For other nuclides (e.g., the alpha) the question is: how 30 

much energy is reserved out of the theoretical maximum available, to confine quarks. This is a “top to bottom” nuclide. 

For top to bottom nuclides, there is a scalar trace in the Yang-Mills tensors. For bottom to top nuclides there is not. Using 

the Maxwell tensor analogy, one may suppose that somewhere there is a Kronecker delta ABδ  and/or AB
CDδ  which filters 

out the trace from “off-diagonal” terms and leaves the trace intact for “on-diagonal” terms. In this way, the “bottom to 

top” nuclides are “off-diagonal” tensor components and the “top to bottom” nuclides are “on diagonal” components. In 35 

either case, however, the “resonance” for nuclear binding is established by the components of the N ABCDE , which are 

,u dm m , u dm m  in some combination and/or integer multiple. And, as regards Figure 1, the chasm between the lighter 
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nuclides and 4He is explained on the basis that each of 2H, 3H and 3He are “bottom to top” “off-diagonal” nuclides, while 
4He, which happens to fill the 1s shells, is the lightest “top to bottom” “on-diagonal” nuclide. 2H, 3H and 3He start at the 

bottom of the nuclear see-saw and move up; 4He starts at the top of the see-saw and moves down. 

To amplify this point, in Figure 7 we peek ahead at some heavier nuclides, namely, 3Li and 4Be. Using a nuclear shell 

model similar to that used for electron structure, all nucleons in the 4He alpha are in 1s shells. The two protons are spin 5 

up and down each with 1s, as are the two neutrons. As soon as we add one more nucleon, by Exclusion, we must jump up 

to the 2s shell, which admits four more nucleons and can reach up to 84Be before we must make an incursion into the 2p 

shell. 

We note immediately from the above—which has been noticed by others before—that the binding energy 

8
4 0B 0 060654752. u=  of 8Be is almost twice as large as that of the alpha particle, to just under one part in ten thousand 10 

AMU. Specifically: 

4 8
2 0 4 02 B B 2 0 030376586499 0 060654752 0.000098421. u . u u⋅ − = × − = . (5.5) 

This is part of why 8Be is unstable and invariably decays almost immediately into two alpha particles (9Be is the stable 

Be isotope). But of particular interest here, is to subtract off the alpha 42 0B 0 030376586499. u=  from each of the Li and 

Be isotopes, and compare them side by side with the non-zero binding energies from H and He. The result of this 15 

exercise is in Figure 8. 

Equation (5.5) is represented above by the fact that 8 4 4
4 0 2 0 2B B B− ≅ . The table on the left is a “1s square” and the 

table on the right is a “2s square.” But they are both “s-squares.” What is of interest is that the remaining three nuclides in 

the 2s square are not dissimilar in pattern from the other three nuclides in the 1s square. This means that three of the four 

nuclides in the 2s square start “at the bottom” “off-diagonal” just as in 1s, and the fourth, 8Be, starts “on diagonal” “at the 20 

top.” But, in the 2s square, the “bottom” is the alpha particle’s 42 0B =  0 030376586499. u . So the filled 1s shell provides 

a “platform” below the 2s shell; a non-zero minimum energy underpinning binding in the 2s square. And it appears at 

least from the 1s and 2s examples that nuclides with full shells are “diagonal” tensor components and all others are off 

diagonal. The see-saw for 2s is elevated so its bottom is at the top of the 1s see-saw. 

It is also important to note that as we consider much heavier nuclides—and 56Fe is the best example—even more of the 25 

energy that binds quarks together is released from all the nucleons. For 56Fe, calculating from the discussion prior to 

(4.8), the unused U binding energy contributed by all 56 nucleons totals only 0.00082662u. But in Figure 6 we saw that 

0.00709663u of the 4He binding energy is unused. Much of this, therefore, is clearly used by the time one arrives at 56Fe. 

So, almost all the binding energy that is reserved for quark confinement for lighter nuclides becomes released to bind 

together heavier nuclides, with peak utilization at 56Fe. That is, by the time an 56Fe nuclide has been fused together, much 30 

of the binding energy previously reserved in the 1s and 2s shells to confine quarks has been released, and this contributes 

to overall binding for the heavier nuclides. One may thus think of the unused binding energy in lighter nuclides as a 

“reservoir” of energy that will be called upon for binding together heavier nuclides. For nuclides heavier than 56Fe, the 

used-to-available percentage, cf. Figure 1, tacks downwards again, and more energy is channeled back into quark 

confinement and less into nuclear binding. So while quark confinement is “bent” to the limit at 56Fe, with almost all 35 

latent binding energies see-sawed into nucleon binding rather than quark confinement, quark confinement can never be 

“broken.” 

Finally, before turning to 3He in the next section, let us comment briefly on experimental errors. The prediction of 

4
2 0PredictedB 0.030379212155u=  for the alpha in (5.1), in contrast to 4

2 0B 0.030376586499u=  from the empirical data, is 

an exact match in AMU through the fifth decimal place, but is still not within experimental errors. Specifically, the alpha 40 
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mass listed in [12] and shown in Figure 2 is 4.001506179125(62)u, which is accurate to ten decimal places in AMU. 

Similarly, the proton mass 1.007276466812(90)u and the neutron mass 1.00866491600(43)u used to calculate 42 0B  are 

accurate to ten and nine decimal places respectively in AMU. So the match between 4
2 0PredictedB  and the empirical 42 0B  

to under 3 parts per million is still not within the experimental errors beyond five decimal places, because this energy is 

known to at least nine decimal places in AMU. Consequently, (5.1) must be regarded as a very close, but still 5 

approximate relationship for the observed alpha binding energy. Additionally, because (5.1) is based on (4.1), wherein 

the mass of the up quark is identified with 2
1 0B 0 002388170100um . u≡ =  which is the deuteron binding energy, the 

question must be considered whether this identification (4.1), while very close, is also still approximate. 

Specifically, it is possible to make (5.1) for the alpha into an exact relationship, within experimental errors, if we 

reduce the up quark mass by exactly ε = 0.000000351251415u (in the seventh decimal place), such that: 10 

2
1 00.002387818849 B 0.002388170100um u u= ≅ =  (5.6) 

That is, we can make (5.1) for the alpha into an exact relationship if we make (4.1) for the up quark into an approximate 

relationship, or vice versa, but not both. So, should we do this? 

A further clue is provided by (5.5), whereby the empirical 8 4
4 0 2 0B B 2≅  is a close, but still approximate relationship. 

This close but not exact ratio is not a comparison between a theoretical prediction and empirical observation; it is a 15 

comparison between two empirical data points. So this seems to suggest, as one adds more nucleons to a system and 

makes empirical predictions such as (5.1) based on the up and down quark masses, that higher order corrections (at the 

sixth decimal place in AMU for alpha and the fifth decimal place in AMU for 84 0B ) will still be needed. So because 

two-body systems such as the deuteron can generally be modeled nearly-exactly, and because a deuteron will suffer less 

from “large A = Z + N corrections” than any other nuclide, it makes sense absent evidence to the contrary to regard (4.1) 20 

identifying the up quark mass with the deuteron binding energy to be an exact relationship, and to regard (5.1) for the 

alpha to be an approximate relationship that still requires some tiny correction in the sixth decimal place. Similarly, as we 

develop other relationships which, in light of experimental errors, are also close but still approximate, we shall take the 

view that these relationships too, especially given (5.5), will require higher order corrections. Thus, for the moment, we 

leave (4.1) intact as an exact relationship. 25 

In section 10, however, we shall show why (4.1) is actually not an exact relationship but is only approximate to about 

8 parts per ten million AMU. But this will be due not to the closeness of the predicted-versus-observed energies for the 

alpha particle, but due to our being able to develop a theoretical expression for the difference ( ) ( )M n M p−  between 

the observed masses of the free neutron and the free proton to better than one part per million AMU. 

6. Prediction of the Helion Nuclide Binding Energy to 4 Parts in 100,000 30 

Now, we turn to the 32He nucleus, also referred to as the helion. In contrast with the alpha and the deuteron already 

examined which are integer-spin bosons, this nucleon is a half-integer spin fermion. Knowing as pointed out after (5.4) 

that we will “start at the bottom” of the see-saw for this nuclide, and knowing that our toolkit for constructing binding 

energy predictions is , ,u d u dm m m m , it turns out after some trial and error exercises strictly with these energies that we 

can make a fairly close prediction by setting: 35 

( )3 3
0 2 0PredictedPredicted

B He B 2 0.008323342076u u dm m m u= ≅ + = . (6.1) 

The empirical energy from Figure 3, in comparison, is 32 0B 0.008285602824u= , so that: 

3 3
2 0Predicted 2 0B B 0 008323342076 0 008285602824 0.000037739252. u . u u− = − = . (6.2) 
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While not quite as close as (5.2) for the alpha particle, this is still a very close match to just under 4 parts in 100,000 

AMU. But does this make sense in light of the outer products (4.9), (4.10)? 

If we wish to write (6.1) in the manner of (5.3) and (5.4) in terms of the components of an outer tensor product ABBAE , 

then referring to (4.9), we find that: 

( ) ( )3
3 2
2 0Predicted P33B 2π 2 2AA u u d u d uE m m m m m m= = + = + . (6.3) 5 

So the expression 2 u u dm m m+  in (6.1) in fact has a very natural formulation which utilizes the trace 2d um m+  

(AA index summation) of one of the matrices in (4.9), times a um taken from the 33 (or possibly 22) diagonal 

component of the other matrix in (4.9). The use in (6.3) of PE  from (4.9) rather than of NE  from (4.10), draws from 

the fact that we need the AA trace to be 2d um m+ , and not 2u dm m+  as would otherwise occur if we used 

(4.10). So here, the empirical data clearly causes us to use PE  from the proton matrix in (4.9) rather than NE  from the 10 

neutron matrix in (4.10). We also note that physically, 3He has one more proton than neutron. This is a third data point in 

the Yang-Mills tensor for nuclear binding. 

7. Prediction of the Triton Nuclide Binding Energy to 3 Parts in One Million, and the Neutron minus Proton Mass 

Difference to 7 Parts in Ten Million 

Now we turn to the 31H  triton nuclide, which as shown in Figure 3, has a binding energy 3
1 0B 0 009105585412. u= , 15 

and as discussed following (5.4), is a “bottom to top” nuclide. As with the alpha and the helion, we use the energies from 

components of the outer products ABCDE , see again (4.9) to (4.11). However, following careful trial and error 

consideration of all possible combinations, there is no readily-apparent combination of , ,u dm m u dm m  together with 

em  and factors of ( )
3

22π  which yield a close match to well under 1 percent, to 3
1 0B 0 009105585412. u= , which is the 

observed 31H  binding energy. 20 

But all is not lost, and much more is found: When studying nuclear data, there are two interrelated ways to formulate 

that data. First, is to look at binding energies as we have done so far. Second, is to look at mass excess. The latter 

formulation, mass excess, is very helpful when studying nuclear fusion and fission processes, and as we shall now see, it 

is this approach that enables us to match up the empirical binding data for the triton to the , , ,u d u d em m m m m  and 

factors of ( )
3

22π  that we have already successfully employed for the deuteron, alpha, and helion. As a tremendous 25 

bonus, we will be able to derive a strictly theoretical expression for the observed, empirical difference: 

( ) ( ) 1 1
0 1 0.001388449188M n M p M M u− = − =  (7.1) 

between the free, unbound neutron mass ( )M n =  1 008664916000. u  and the free, unbound proton mass 

( ) 1 007276466812M p . u= , see Figure 2. 

The derivation of the 3He binding energy and the neutron minus proton mass difference is somewhat involved, and so 30 

is detailed in the Appendix. But the results are as follows: For the neutron minus proton mass difference, in (A15), also 

using (1.11), we obtain: 

( ) ( ) ( ) ( ) ( )
3 3

2 2
Predicted

2 2π 3 2 3 2π

0.001389166099

u e µ d u d µ d uM n M p m m m m m m m m m

u

− = − − = − + −  

=
 (7.2) 

which differs from the empirical (7.1) by a mere 0.000000716911u , or just over seven parts per ten million! And for the 
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3He binding energy in (A17), we use the above to help obtain: 

( ) ( )
3

3 3 2
0 1 0PredictedPredicted

B H B 4 2 2π 0.009102256308u µ dm m m u= = − =  (7.3) 

which differs from 3
1 0B 0.009105585412u= , the empirical value in Figure 3, by merely 0.000003329104u , or just 

over 3 parts per million. 

A theoretical tensor expression for (7.3) using components of an outer product ABBAE  as in (5.3), (5.4) and (6.3), may 5 

be written as: 

( ) ( ) ( )
3 3

3 2 2
1 0Predicted P2222 P2233 P3322 P3333 P1122 P11332π 4 2 2πu µ dB E E E E E E m m m= + + + − − = −  (7.4) 

As earlier noted following (5.4), there will be some flexibility in these tensor component assignments until we develop 

a wider swathe of binding energies beyond the “1s square” and start to discern the wider patterns. 

With the foregoing, we have now reached our goal of deducing precise theoretical expressions for all of the 1s binding 10 

energies, solely as a function of elementary fermion masses. In the process, we have also deduced a like-expression for 

the neutron-proton mass difference! 

From here, after consolidating our binding energy results and expressing them as mass excess in Section 8, we 

examine the solar fusion cycle in Section 9, including possible technological implications of these results for catalyzing 

nuclear fusion. In Section 10 we again focus on experimental errors as we did at the end of Section 5, and explain why 15 

(7.2) should be taken as an exact theoretical relationship with the quark masses and binding energies then slightly 

recalibrated. 

8. Mass Excess Predictions 

Let us now aggregate some of the results so far, as well as those in the Appendix. First of all, let us draw on (A4), and 

use (A14) and the neutron minus proton mass difference (7.2) to rewrite (A4) as: 20 

( ) ( ) ( )
3

3 2
1 Predicted 2 4 2 2πu µ dM M p M n m m m= + − + . (8.1) 

Specifically, we have refashioned (A4) to include one proton mass and two neutron masses, because the 3
1H  triton 

nuclide in fact contains one proton and two neutrons. Thus, ( )
3

24 2 2πu µ dm m m− +  represents a theoretical value of 

the mass excess of two free neutrons and one free proton with ( ) ( )2M p M n+  over the mass they possess when fused 

into a triton, expressed via a negative number as a fusion mass loss. This is equal in magnitude and opposite in sign to 25 

binding energy (7.3). 

Similarly for helium nuclei, first we use (A5) to write: 

( ) ( )3 1 1 3 3
2 0 1 0 2 2B 2 2M M M M p M n M= ⋅ + − = + − . (8.2) 

We then place 32 M  on the left and use (6.1) to write: 

( ) ( )3
2 2 2 u u dM M p M n m m m= + − − . (8.3) 30 

Here, 2 u u dm m m− −  is the fusion mass loss for the helion, also equal and opposite to binding energy (6.1). 

Next, we again use (A5) to write: 

( ) ( )4 1 1 4 4
2 0 1 0 2 2B 2 2 2 2M M M M p M n M= ⋅ + ⋅ − = ⋅ + ⋅ − . (8.4) 

Combining this with (5.1) then yields: 

( ) ( ) ( ) ( )
3

4 2
2 2 2 6 6 10 10 16 2π 2u d d u u d u dM M p M n m m m m m m m m= + − − + + + + . (8.5) 35 
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The fusion mass loss for the alpha—much larger than for the other nuclides we have examined—is given by the lengthier 

terms after ( ) ( )2 2M p M n+ . Again, this is equal and opposite to the alpha binding energy in (5.1), with terms 

consolidated above. 

Finally, from (4.1), via (A5), it is easy to deduce for the deuteron, that: 

( ) ( )2
1 uM M p M n m≡ + − , (8.6) 5 

with a mass loss represented simply by um− , again, equal and opposite the binding energy (4.1). 

9. A Theoretical Review of the Solar Fusion Cycle, and a Possible Approach to Catalyzing Fusion Energy Release 

As a practical exercise, let us now use all of the foregoing results to theoretically examine the solar fusion cycle. The 

first step in this cycle is (A10) for the fusion of two protons into a deuteron. It is from (A10) that we determine that an 

energy (A11) is released in this fusion, which energy, in light of (A13), now becomes: 10 

( ) ( )
3

1 1 2 2
1 1 1Energy H H H Energy 2 2π 0 000451141003µ de m m . uν++ → + + + = = . (9.1) 

This equates to 0.420235 MeV which is a well-known energy in solar fusion as is noted in the Appendix. The positron 

annihilates with an electron e e γ γ+ −+ → +  to produce an additional 
em2  worth of energy as well. 

The second reaction in the solar fusion cycle is: 

2 1 3
1 1 2H H He Energy+ → +  (9.2) 15 

wherein deuterons produced in (9.1) fuse with protons to produce helions. We write this in terms of masses as: 

2 1 3
1 1 2Energy M M M= + − . (9.3) 

The proton mass is 11M , and these other two masses have already been found, respectively, in (8.6) and (8.3). Thus, 

(9.3) may be reduced to: 

( )2 1 3
1 1 2Energy H H He Energy 0 005935171976u u dm m m . u+ → + = + =  (9.4) 20 

which equates to 5.528577 MeV, also a well-known energy in the study of solar fusion. 

The final step in this cycle fuses two helions together to yield alpha particles plus protons, which protons then are 

available to repeat the cycle starting at (9.1): 

3 3 4 1 1
2 2 2 1 1He He He H H Energy+ → + + + . (9.5) 

The mass equivalent of this relationship is as follows: 25 

3 3 4 1 1
2 2 2 1 1Energy M M M M M= + − − − . (9.6) 

Here we again make use of ( )1
1M M p= , together with (8.3) and (8.5) to write: 

( ) ( ) ( )
3

3 3 4 1 1 2
2 2 2 1 1Energy He He He H H Energy 2 6 4 10 10 16 2π

0 013732528003

u d u d d u u dm m m m m m m m

. u

+ → + + + = + − − + +

=
. (9.7) 

This equates to 12.791768 MeV, which is also a well-known energy from solar fusion studies. 

Now, as is well known (see, e.g. [14]), the reaction (9.4) must occur twice to produce the two 3
2He which are input to 30 

(9.7), and the reaction (9.1) must occur twice to produce the two 21H  which are in turn input to (9.4). So pulling this all 

together from (9.1), (9.4), (9.7) and e e γ γ+ −+ → + , we may express the entire solar fusion cycle in (9.8) below. In the 

top line below, we show in detail each energy release from largest to smallest, followed by the electron and neutrino 

emissions. In the second line we segregate in separate parenthesis, each contribution shown in the top line, including the 

neutrino mass which is virtually zero. In the third line, we consolidate terms. In the final line we use (1.11) to eliminate 35 
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the electron rest mass: 

( ) ( ) ( ) ( )( )

( )
( )

( )
( ) ( )

( ) ( )

1 4
1 2

3 3

2 2

3

2

Energy 4 H 2 He 12.79 MeV 2 5.52 MeV 2 0.42 MeV 4 2

10 10 16
2 6 4 2 2 2 4 2

2π 2π

4 6 4 2 10 10 12 2π

4 6 2 2 22

µ dd u u d
u d u d u u d e

u d e u d d u u d

u d u d d

e e

m mm m m m
m m m m m m m m m

m m m m m m m m m

m m m m m

ν

γ γ γ γ ν−⋅ + → + + + + +

   + +   = + − − + + + + +
      
   

= + + − − + +

= + − + −( ) ( )
3

212 2π 26 733389MeVu u dm m m .− =

. (9.8) 

The above shows at least two things. First, the total energy of approximately 26.73 MeV known to be released during 

solar fusion is expressed entirely in terms of a theoretical combination of the up and down (and optionally electron) 

masses, with nothing else added! This portends the ability to do the same for other types of fusion and fission, once the 5 

analysis of this paper is extended to larger nuclides Z > 2, N > 2. 

Secondly, because the results throughout this paper seem to validate modeling nucleons as resonant cavities with 

energies released or retained based on the masses of their quark contents, this tells us how to catalyze “resonant fusion” 

which may make fusion technology more practical, because (9.8) tells us the precise resonances that go into releasing 

the total 26.73 MeV of energy in the above. In particular, if one wanted to create an artificial “sun in a box,” one would 10 

be inclined to amass a fuel store of hydrogen, and subject that hydrogen fuel store to gamma radiation at or near the 

specified discrete energies that appear in (9.8), so as to facilitate resonant cavity vibrations at or near the energies 

required for fusion to occur. Specifically, one would bathe the hydrogen fuel store with gamma radiation at one or more 

of the following energies/frequencies in combination, some without, and some with, the Gaussian ( )
3

22π  divisor (we 

convert to wavelengths via ( )1F 1 197 MeV= ): 15 

( )

( )

( )

( )

6 29 44 MeV 6 69F

2 22 MeV 88 56F

2 harmonic 4 45 MeV 44 28F

4 harmonic 8 90 MeV 22 14F

3 30 MeV 59 62F

2 harmonic 6 61MeV 29 81F

4 harmonic 13 22 MeV 14 91F

d

u

u

u

u d

u d

u d

m . .

m . .

m . .

m . .

m m . .

m m . .

m m . .

= =

= =

= =

= =

= =

= =

= =

 (9.9) 

( )
( )
( )
( )

( )
( ) ( )
( ) ( )
( )

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

2 2π 0.62 MeV 316.15F

10 2π 3 12 MeV 63 23F

10 2π 1 41 MeV 139.47F

22 2π 3.10 MeV 63.40F

2 2π 0.42 MeV 469 53F

4 2π harmonic 0.84 MeV 234.77F

12 2π harmonic 2.52 MeV 78 26F

16 2π harmon

d

d

u

u

u d

u d

u d

u d

m

m . .

m .

m

m m .

m m

m m .

m m

= =

= =

= =

= =

= =

= =

= =

( )ic 3.36 MeV 58.69F= =

 (9.10) 
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In the above, we have explicitly shown each basic frequency/energy which appears in the second, third or fourth lines 

of (9.8) as well as harmonics that appear in (9.8). Also, one should consider frequencies based on the electron mass and 

its wavelength. 

So, what do we learn? If the nucleons are regarded as resonant cavities and the energies at which they fuse depend on 

the masses of their current quarks as is made very evident by (9.8), and given the particular energies and harmonics 5 

highlighted in (9.9) and (9.10), the idea for harmonic fusion is to subject a hydrogen fuel store to high-frequency gamma 

radiation proximate at least one of the resonant frequencies / energies / wavelengths (9.9), (9.10), with the view that these 

harmonic oscillations will catalyze fusion by perhaps reducing the amount of heat is required. In present-day approaches, 

fusion reactions are triggered using heat generated from a fission reaction, and one goal would be to reduce or eliminate 

this need for such high heat and especially the need for any fissile trigger. That is, we at least posit the 10 

possibility—subject to laboratory testing to confirm feasibility—that applying the harmonics (9.9), (9.10) to a hydrogen 

fuel store can catalyze fusion better than known methods, with less heat and ideally little or no fission trigger required. 

Of course, these energies in (9.9), (9.10) are very high, and aside from the need to produce this radiation via known 

methods such as, but not limited to, Compton backscattering and any other methods which are known at present or may 

become known in the future for producing gamma radiation, it would also be necessary to provide substantial shielding 15 

against the health effects of such radiation. The highest energy/smallest wavelength component, 

6 29 44MeV 6 69Fdm . .= = , is extremely energetic and would be very difficult to shield (and to produce), but this 

resonance arises from (9.8) which is for the final 3 3 4 1 1
2 2 2 1 1He He He H H Energy+ → + + +  portion of the solar fusion 

cycle. If one were to forego this portion of the fusion cycle and focus only on catalyzing 

1 1 2
1 1 1H H H Energye ν++ → + + +  to fuse protons into deuterons, then the only needed resonance is 20 

( )
3

22 2π 0.42MeV 469 53Fu dm m .= = . 

Not only is this easiest to produce because its energy is the lowest of all the harmonics in (9.9) and (9.10), but it is the 

easiest to shield and the least harmful to humans. 

Certainly, a safe, reliable and effective method and associated hardware for producing energy via fusing protons into 

deuterons via reaction (9.1), and perhaps further fusing protons and deuterons into helions as in (9.4), by introducing at 25 

least one of the harmonics (9.9), (9.10) into a hydrogen fuel store perhaps in combination with other known fusion 

methods, while insufficient to create the “artificial sun” modeled above if one foregoes the final alpha production in 

(9.7), would nonetheless represent a welcome, practical addition to sources of energy available for all forms of peaceful 

human endeavor. 

10. Recalibration of Masses and Binding Energies via an Exact Relationship for the Neutron minus Proton Mass 30 

Difference 

At the end of Section 5, we briefly commented on experimental errors. As between the alpha particle and the deuteron, 

we determined it was more sensible to associate the binding energy of the deuteron precisely with the mass of the up 

quark, thus making the theoretically-predicted alpha binding energy a close but not exact match to its empirically 

observed value, rather than vice versa. But the prediction in (7.2) for the neutron minus proton mass difference to just 35 

over 7 parts in ten million is a very different matter. This is even more precise by half an order of magnitude than the 

alpha mass prediction, and given the fundamental nature of the relationship for ( ) ( )M n M p−  which is central to 

beta-decay, we now argue why (7.2) should be taken as an exact relationship with all other relationships recalibrated 

accordingly, so that now the up quark mass will still be very close to the deuteron binding energy, but will no longer be 

exactly equal to this energy. 40 
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First of all, as just noted, the ( ) ( )M n M p−  mass difference is the most precisely predicted relationship of all the 

relationships developed above, to under one part per million AMU. Second, we have seen that all the other nuclear 

binding energies we have predicted are close approximations, but not exact, and would expect that this inexactitude will 

grow larger as we consider even heavier nuclides, see, for example, 8Be as discussed in Figures 7 and 8. So, rhetorically 

speaking, why should the deuteron be so “special,” as opposed to any other nuclide, such that it gets to have an “exact” 5 

relation to some combination of elementary fermion masses while all the other nuclides do not? Yes, the deuteron should 

come closest to the theoretical prediction (namely the up mass) of all nuclides, because it is the smallest composite 

nuclide. Closer than all other nuclides, but still not exact. After all, even the A = 2 deuteron should suffer from “large A = 

Z + N” effects even if only to the very slightest degree of parts per ten million. Surely it should suffer these effects more 

than the A = 1 proton or neutron. 10 

Third, if this is so, then we gain a new footing to be able to consider how the larger nuclides differ from the theoretical 

ideal, because even for this simplest A = 2 deuteron nuclide, we will already have a precisely-known deviation of the 

empirical data from the theoretical prediction, which we may perhaps be able to extrapolate to larger nuclides for which 

this deviation certainly becomes enhanced. That is, the deviations between predicted and empirical binding data for all 

nuclides becomes itself a new data set to be studied and hopefully explained, thus perhaps providing a foundation to 15 

theoretically eliminate even this remaining deviation. 

Fourth, in a basic sense, the deuteron, which is one proton fused to one neutron, has a mass which is a measure of 

“neutron plus proton,” while ( ) ( )M n M p−  is a measure of “neutron minus proton.” So we are really faced with a 

question of what gets to be exact and what must be only approximate: n + p, or n − p? Seen in this light, ( ) ( )M n M p−  

measures an energy feature of neutrons and protons in their native, unbound states, as separate and distinct entities, and 20 

thus characterizes these elemental nucleons in their purest form. In the deuteron, by contrast, we have a two-body system 

which is less-pure. So if we must choose between one or the other, we should choose ( ) ( )M n M p−  to be exact 

relationship, with the chips falling where they may for all other relationships, including the deuteron binding energy. 

Now, the deuteron binding energy is relegated to the same “approximate” status as that of all other compound 

poly-nuclides, and only the proton and neutron as distinct mono-nuclides get to enjoy “exact” status. 25 

Let us therefore do exactly that. Specifically, for the reasons given above, we now abandon our original postulate that 

the up quark mass is exactly equal to the deuteron binding energy, and in its place we substitute the postulate that (7.2) is 

an exact relationship, period. That is, we now define, by substitute postulate, that the exact relationship which drives all 

others, is: 

( ) ( ) ( ) ( ) ( ) ( )
3

2
Observed Predicted

0.001388449188 3 2 3 2πu d µ d uM n M p u m m m m m M n M p− = ≡ − + − = −       . (10.1) 30 

Then, we modify all the other relationships accordingly. 

The simplest way make this adjustment is to modify the original postulate (4.1) to read: 

2
1 0B 0 002388170100um . uε ε≡ + = + , (10.2) 

and to then substitute this into (10.1) with ε taken as very small but unknown. This is most easily solvable numerically, 

and it turns out that 0 000000830773ε . u= − , which is just over 8 parts in ten million u. That is, substituting 35 

0 000000830773ε . u= −  into (10.2), then using (1.11) to derive the down quark mass, then substituting all of that into 

(10.1), will make (10.1) exact through all twelve decimal places (noting that experimental errors are in the last two 

places). 

As a consequence, the following critical mass/energies developed earlier become nominally adjusted starting at the 
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sixth decimal place in AMU, and now become (contrast (4.1), (4.3), (4.4), (4.5) and (4.6) respectively): 

0 002387339327um . u= , (10.3) 

0 005267312526dm . u= , (10.4) 

0 003546105236u dm m . u= , (10.5) 

( ) ( )
3

2
P 2 4 4 2π 0 008200606481u d d u d uB m m m m m m . u= + − + + = , (10.6) 5 

( ) ( )
3

2
N 2 4 4 2π 0 010531999771d u u u d dB m m m m m m . u= + − + + = . (10.7) 

Additionally, this will slightly alter the binding energies that were predicted earlier. The new results are as follows 

(contrast (5.1), (6.1) and (7.3) respectively): 

4
2 0PredictedB 0 030373002032. u= , (10.8) 

3
2 0PredictedB 0 008320783890. u= , (10.9) 10 

3
1 0PredictedB 0 009099047078. u= , (10.10) 

and, via (10.3) and this adjustment of masses, 

2
1 0PredictedB 0 002387339327um . u= = . (10.11) 

In (10.11), we continue to regard the predicted deuteron binding energy 21 0PredictedB  to be equal to the mass of the up 

quark, but because the mass of the up quark has now been slightly changed because of our substitute postulate, the 15 

observed energy, which is 2
1 0 .00238817B 00 010 u= , will no longer be exactly equal to the predicted energy (10.11). 

Rather, we will now have 2 2
1 0 1 0PredictedB B≠ , with a difference of less than one part per million AMU. The precise, 

theoretical exactitude now belongs to the ( ) ( )M n M p−  difference in (10.1). As a bonus, the up and down quark 

masses now become known to ten-digit precision in AMU, with experimental errors in the 11th and 12th digits, which is 

inherited from the precision with which the electron, proton and neutron masses are known. 20 

One other point is very much worth noting. With an entirely theoretical, exact expression now developed for the 

neutron minus proton mass difference via (10.1), we start to target the full, dressed proton and neutron masses 

themselves. Specifically, it would be extremely desirable to be able to specify the proton and neutron masses as a 

function of the elementary up, down, and electron fermion masses, as we have here with binding energies. 

Fundamentally, by elementary algebraic principles, taking each of the proton and neutron masses as an unknown, we can 25 

deduce these masses if we have can find two independent equations, one of which contains an exact expression related to 

the sum of these masses, and the other which contains an exact expression related to the difference of these masses. 

Equation (10.1) achieves the first half of this objective: for the first time, we now have an exact theoretical expression for 

the difference between these masses. But we still lack an independent expression related to their sum. 

Every effort should now be undertaken to find another relationship related to the sum of these masses. In all likelihood, 30 

that relationship, which must inherently explain the natural ratio just shy of 1840 between the masses of the nucleons and 

the electron, and/or similar ratios of about 420 and 190 involving the up and down masses, will need to emerge from an 

examination of the amended t’Hooft Lagrangian terms in (3.10) which we have not yet explored, particularly those terms 

which involve the vacuum Φ . While analyzing binding energies and mass excess and nuclear reactions as we have done 

here is a very valuable exercise, the inherent limitation is that all of these analyses involve differences. What is needed to 35 

obtain the “second” of the desired two independent equations, are sums, not differences (Note: the author lays the GUT 

foundation for, and then tackles this very problem, in two separate papers published in this same special issue of JMP). 
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11. Summary and Conclusion for the 2H, 3H, 3He and 4He nuclides 

Summarizing our results here, we now have the following theoretical predictions for the binding energies in Figure 3, 

with isobar lines shown, and with equation numbers for result referenced for convenience: see Figure 9. 

The mass loss (negative mass excess) discussed in Section 8 which was very helpful to the exercise of examining the 

solar fusion cycle in Section 9, is simply the negative (positive) of what is shown in Figure 9. Having just considered the 5 

( ) ( )M n M p−  mass difference, it is useful to also look at the difference between the 3H and 3He isobars, A = 3 in the 

above. Given that 3He is the stable nuclide and that 3H undergoes β −  decay into 3He, we may calculate the predicted 

difference in binding energies to be: 

( )
3

3 3 2
2 0 1 0 Predicted
B B 2 1 2 / 2π 0.000778263189u u dm m m u

 
 − = − + + = −  

 
 (11.1) 

The empirical difference −0.000819982588 u differs from the predicted difference by 0.000041719399u. It is helpful 10 

to contrast the above to (the negative of) (10.1) which represents the most elementary β −  decay of a neutron into a 

proton. Similar calculations may be carried out as between the isotopes and isotones in Figure 9. 

The numerical values of these theoretical binding energies in Figure 9, in AMU, using the recalibrated (10.8) through 

(10.11), are now predicted to be: see Figure 10. 

These theoretical predictions should be carefully compared to the empirical values in Figure 3. Indeed, subtracting 15 

each entry in Figure 3 from each entry in Figure 10, we summarize our results for all of the 1s nuclides in Figure 11. 

Figure 11 shows how much each predicted binding energy differs from observed empirical binding energies. As has 

been reviewed, every one of these predictions is accurate to under four parts in 100,000 AMU (3He has the largest 

difference). Specifically: we have now used the thesis that baryons are resonant cavity Yang-Mills magnetic monopoles 

with binding energies reflective of their current quark masses to predict the binding energies of the 4He alpha to under 20 

four parts in one million, of the 3He helion to under four parts in 100,000 and of the 3H triton to under seven parts in one 

million. Of special import, we have exactly related the neutron minus proton mass difference—which is central to beta 

decay—to the up and down quark masses. This in turn enables us via the substitute postulate of Section 10 to predict the 

binding energy for the 2H deuteron most precisely of all, to just over 8 parts in ten million. 

These energies as well as the neutron minus proton mass difference do not appear to have ever before been 25 

theoretically explained with such accuracy, and each of the foregoing energy predictions is mutually-independent from 

all the others. So even if any one prediction is thought to be nothing more than coincidence, the odds against five 

independent predictions on the order of 1 part in 105 or better being mere coincidence exceed 1025 to 1. This is not mere 

coincidence! 

This leads to the conclusion that the underlying thesis that baryons generally, and neutrons and protons especially, are 30 

resonant cavity Yang-Mills magnetic monopoles with binding energies determined by their current quark masses, 

provides the strongest theoretical explanation to date of what baryons are, and of how protons and neutrons confine their 

quarks and bind together into composite nuclides. The theory of nuclear binding first developed in [1] and further 

amplified here, establishes a basis for finally “decoding” the abundance of known data regarding nuclear masses and 

binding energies, and by viewing the proton and neutron as resonant cavities, may lay the foundation for technologically 35 

realizing the theoretical promise of nuclear fusion. 

Finally, because nucleons are now understood to be non-Abelian magnetic monopoles, this also means that atoms 

themselves comprise core magnetic charges (nucleons) paired with orbital electric charges (electrons), with the periodic 

table itself thereby revealing an electric/magnetic symmetry of Maxwell’s equations which has heretofore gone 

unrecognized in the 140 years since Maxwell first published his Treatise on Electricity and Magnetism. 40 
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12.  Equivalent Development of the 2H, 3H, 3He and 4He Binding Energies and the Neutron Minus Proton Mass 

Difference using Koide Mass Matrices 

In the foregoing development, we have used the thesis that baryons are Yang-Mills magnetic monopoles to develop 

binding and fusion energies of the 2H, 3H, 3He and 4He nuclides and obtain the neutron minus proton mass difference.  

However, it is possible to employ the Koide mass formula [20], [21] to equivalently and independently derive the very 5 

same results.  The benefit of this is that this provides a path for similarly developing a scientific foundation for mapping 

binding and fusion energies for additional heavier nuclides, such as 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 
14N which will be developed here.  This will enable us to apply the technological disclosures in section 9 of applicant’s 

“resonant fusion” technology to specific fusion reactions involving all of these heavier nuclides. 

The Koide mass formula provides an extremely precise relationship among the electron (e), muon (µ) and tauon (τ) 10 

lepton masses, even though its origins are not fully understood even three decades later.  If one defines a diagonalized 

“Koide matrix” K as: 

1

2

3

0 0

0 0

0 0

AB

m

K m

m

 
 

≡  
 
 
 

 (12.1) 

and assigns 
1 em m= , 

2m mµ=  and 
3m mτ=  to this mass triplet, then Koide’s relationship may be written using 

products of traces ( )2
TrK  and traces of products 2TrK , as: 15 

( ) ( )
2

2

2

Tr 3

Tr 2

e AA BB

e AB BA

m m m K K K
R

m m m K K K

µ τ

µ τ

+ +
= = = ≅

+ +
. (12.2) 

Using 0.510998928 0.000000011em MeV= ± , 105.6583715 0.0000035m MeVµ = ±  and 1776.82 0.16m MeVτ = ±  from 

the 2012 PDG data [22], we find using mean experimental mass values that this ratio 1.500022828R = , which differs 

from 3/2 by just over two parts per hundred thousand. 

Protons and neutrons and other baryons are known to contain what is also a triplet of quarks, each of which is 20 

understood to have an associated “current quark mass.”  For the up (u) and down (d) quarks, PDG most recently values 

these masses at .7
.34.8  MeVdm +

−=  and .7
.52.3  MeVum +

−= . [23] 

In this section we shall now see how the Koide matrix (12.1) can also be used to formulate the earlier-presented 

relationships for the binding and related fusion-release energies of the 2H, 3H, 3He and 4He (1s shell) light nuclides as 

well as for the neutron (N) minus proton (P) mass difference which all comport extremely closely to what is observed 25 

experimentally, each independently, and all exclusively as a function of the up and down current quark masses.  In all 

cases, the accuracy attained is even better than that of Koide’s original relationship (12.2). 

To use a Koide matrix KP akin to (12.1) for a proton (duu), we simply assign the Koide masses to the quark masses via 

1 dm m= , 
2 3 um m m= = .  For the neutron (udd) we make a like assignment 

1 um m= , 
2 3 dm m m= =  to form a KN.  

Thus: 30 

0 0 0 0

0 0 ; 0 0

0 0 0 0

d u

P AB u N AB d

u d

m m

K m K m

m m

   
   

≡ ≡   
   
   
   

. (12.3) 

The non-zero components of the (3x3)(3x3) outer products 
P P P AB PCDK K K K⊗ =  and 

N N N AB N CDK K K K⊗ =  are 
um ,  

dm  and 
u dm m  .  It is easily deduced as well that the product of traces: 
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( )2
Tr 4 4P P AA P BB d u d uK K K m m m m= = + + , (12.4) 

( )2
Tr 4 4N N AA N BB u u d dK K K m m m m= = + + , (12.5) 

and also that the trace of the products: 

2Tr 2P P AB P BA d uK K K m m= = + , (12.6) 

2Tr 2N N AB N BA u dK K K m m= = + . (12.7) 5 

The latter (12.6) and (12.7) specify the sum of current quark masses inside a proton and a neutron and are akin to the 

denominator in Koide’s (12.2). The former (12.4) and (12.5) are akin to the numerator in (12.2).  The only difference is 

the index summation. 

It is fruitful to start by subtracting proton trace product (12.4) from neutron trace product (12.5), all divided by ( )1.5
2π , 

and to then substitute the PDG values  .7
.34.8  MeVdm +

−=  and .7
.52.3  MeVum +

−= .  We find: 10 

( ) ( )( ) ( ) ( ) ( )2 2 1.5 1.5 .228
.190Tr Tr / 2 3 / 2 0.476  MeVN P d uK K m mπ π +

−− = − = . (12.8) 

We see that the expression ( ) ( )1.5
3 / 2d um m π−  is the same as (1.11) for the electron rest mass 

em .  Indeed, the electron 

rest mass me = 0.510998928 MeV [22] differs from the above by only about 3%.  This is well within the wide 

experimental error bars which are just over 20% for the down mass and just over 50% for the up mass.  Also, the above 

expresses a difference between some energy number ( )2
Tr NK  associated with a neutron and a like-energy number 15 

( )2
Tr PK  associated with a proton.  Also, neutrons undergo β- decay into protons by emitting an electron and a 

virtually-massless antineutrino.  Given all of the foregoing, we now introduce a first postulate, with no claims attached 

for the moment, that (12.8) is actually an exact meaningful relationship among the electron, up and down masses, i.e., 

that (we also show me in atomic mass units (AMU)): 

( ) ( )1.5
0 000548579909 u0.510998928 MeV / 2= 3e d u. m m m π= ≡ − . (12.9) 20 

This is indeed the same as (1.11), but on the independent foundation of the Koide matrices.  We will now proceed to 

employ this postulate in other relationships which will offer it either contradiction or support. 

Next, we note that the lightest mass in the outer products 
P PK K⊗  and 

N NK K⊗  mentioned following (12.3) is 

MeVmu
7.
5.3.2 +

−= .  We simultaneously note that the deuteron binding energy B (calculated from nuclide masses in [25]) is 

( )2 2.224566 MeVB H = , which is equal to the up quark mass well within PDG’s .7
.5 MeV+

−
 error bars.  As a second 25 

postulate (also to be tested momentarily, making no present claims), just as we did after (1.11), we regard the up quark 

mass to be either identical to the deuteron binding energy, i.e.: 

( )2 2.224566 MeV=0 002388170100 uum B H .≡ = , (12.10) 

or to be very close thereto (we shall in the end show as in section 10 why these actually appear to differ, but by less than 

1 part per million AMU).  In making this postulate, we actually introduce a broader hypothesis that the binding energies 30 

of individual nuclides are directly related to the current masses of the quarks which they contain, and that these binding 

energies can be constructed solely and exclusively from the outer products 
P PK K⊗  and 

N NK K⊗ , and specifically, as 

in the (4.9) to (4.11) “toolkit,” from their traces (12.4) to (12.7), their components 
um ,  

dm  and 
u dm m , and in some 

instances a ( )1.5
2π  divisor. 

If both these postulates are true, then (12.9) and (12.10) may be combined to deduce a down quark mass valued at: 35 

( )
3
22 / 3 4.907244 MeV=0 005268143299 ud e um m m .π= + = ,   (12.11) 
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well within PDG’s .7
.34.8  MeVdm +

−=  error bars.  This is the same as (4.3), and together with (12.10), it provides us with 

up and down quark masses specified at least a million times more accurately than those which are presently-listed by 

PDG.  But are these reliable mass values?  Specifically, can we interconnect these two postulated masses, which are 

well within PDG error bars, with other energies or masses which are empirically-known on an independent basis? 

First, using the more precise up and down masses (12.10), (12.11) emerging from postulates (12.9), (12.10), let us 5 

calculate the differences E∆  between the energies represented by 2TrK  in (12.6), (12.7), and those represented by 

( )2
TrK  in (12.4), (12.5) divided by ( )1.5

2π .  The results are, which are the same as (1.12) and (1.13), are: 

( ) ( ) ( ) ( )2 1.5 1.52Tr Tr / 2 2 4 4 / 2 7.640679 0 008202607332  uP P P d u d u d uE K K m m m m m m MeV .π π∆ ≡ − = + − + + = = , (12.12) 

( ) ( ) ( ) ( )2 1.5 1.52Tr Tr / 2 2 4 4 / 2 9.812358 MeV 0 010534000622 uN N N u d u u d dE K K m m m m m m .π π∆ ≡ − = + − + + = = . (12.13) 

We note that the average of these two energies is 8.726519 MeV, and that the binding energies of all but the very lightest 10 

and heaviest nuclides are in the range between 8 and 9 MeV per nucleon.  As before, these represent the latent binding 

energies of the proton and neutron.  From here, we will carry out calculations in AMU rather than MeV to obtain better 

experimental precision, due to the “relatively poorly known electronic charge.” [24]  In general, we use empirical data 

drawn from [24] or [25] or, if not available at these sources, from [13]. 

First we consider the alpha particle, which is the 4He nucleus.  This has Z=2 protons and N=2 neutrons.  If we 15 

calculate Z=2 times 
PE∆  in (12.12) plus N=2 times 

NE∆  in (12.13) and subtract off 2 u dm m , and if we then compare 

the result to the empirical binding energy B of the alpha particle, we find, identically to (5.2) that: 

( )4

2 2 2

Difference:              

P N u dE E m m

B He

⋅ ∆ + ⋅ ∆ − =

=
-6

0.030379212155 u

0.030376586499 u

2.625656 ×10 u

, (12.14) 

These energies differ from one another by less than 3 parts per million AMU.  Keeping in mind that the alpha contains 

two protons and two neutrons, which together in turn house six up and six down quarks, it is also to be noted that (12.14) 20 

is fully symmetric under both P N↔  and u d↔  interchange. 

Next, consider the 3He nucleus, the helion.  Here, we form Tr 2P d uK m m= + , multiply this by 
um , and compare 

to the empirical binding energy B.  The result, identical to (6.2), is:  

( )3

Tr 2

                 

Difference:                                     

u P u u dm K m m m

B He

= + =

=
-5

0.008323342076 u

0.008285602824 u

3.7739252×10 u

. (12.15) 

These differ by less than 4 parts in 105. 25 

Next, we examine the triton, which is the 3H nucleus.  Making use of a ( )1.5
2π  divisor, here we find that: 

( )
( )

3
2

3

4 2 / 2

Difference:  

u µ dm m m π

B H

− =

=
-6

0.009102256308 u

0.009105585412 u

- 3.329104×10 u

. (12.16) 

These differ by less than 4 parts in one million, and this is identical to (A18). 

Thus far we have been examining binding energies, but let’s look at fusion-release energies to see if similar close 

results obtain.  First, consider 22P H→ , the fusion of two protons into a deuteron via 30 

1 1 2
1 1 1 EnergyH H H e ν++ → + + + .  Here, with E representing the empirical fusion-release energy, we find that: 
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( )
( )

3
2

2

2 2

2      =

Difference:                          -

µ dm m / π

E P H

=

→
-7

0.000450424092 u

0.000451141003 u

7.16911 ×10 u

. (12.17) 

The difference here is less just over 7 parts in ten million, and this is identical to (A13). 

Now consider 2 3H P H+ → , which entails fusing a deuteron and proton into a triton via  

1 2 3
1 1 1 EnergyH H H e ν++ → + + + .  Here, we find, equivalently to (A3), that: 

( )2 3

2                      

Difference:                          

um

E H P H

=

+ → =
-6

0.004776340200 u

0.004780386215 u

- 4.046015×10 u

. (12.18) 5 

This is a difference just over 4 parts per million.   

In fact, the 3H binding energy (12.16) is not independent from (12.17) and (12.18); rather it is derived from (12.17) and 

(12.18) as shown in the Appendix.  But the other very crucial relationship derived from (12.17) and (12.18), which we 

compare to the observed neutron minus proton mass difference 
N PM M− , equivalently to (A16), is: 

( ) ( )
3
23 2 3 / 2

                                      =

Difference:                                                          

u d µ d u

N P

m m m m m π

M M

− + − =

−
-7

0.001389166099 u

0.001388449188 u

7.16911×10 u

. (12.19) 10 

This inherits the accuracy of what we found in (12.17), and appears to describe the neutron minus proton mass difference 

to just over 7 parts in ten million! 

Given these close relations for the light nuclides, let us also sample a heavier nuclide, 56Fe which has Z=26 protons and 

N=30 neutrons, just to gain some confidence that we can also express heavier nuclide binding energies exclusively as a 

function of up and down quark masses. Similarly to the top line of (12.14), we now calculate 
P NZ E N E⋅∆ + ⋅ ∆  using 15 

(12.12) and (12.13), compare this to the empirical 56Fe binding energy in MeV, and then calculate the percentage of the 

latter over the former, to obtain: 

( )
( ) ( )

56

56

                                 

26 30                   

26 30

 

/

P N

P N

E E

E E

B Fe

B Fe

⋅ ∆ + ⋅ ∆ =

⋅ ∆ + ⋅

=

=∆

493.028394 Me

492.253892 MeV

99.8

V

42909%

. (12.20) 

This is closely related to the observation after (12.13) that the average of (12.12) and (12.13) is 8.726519 MeV, which is 

also very close to the binding energies per nucleon of many nuclides in the middle of the periodic table, see (1.14).  20 

Clearly then, the binding energies of heavier nuclides can also be closely expressed as functions of the up and down 

current quark masses.   

It turns out after thorough examination that 56Fe has the highest ( )/ P NB Z E N E⋅∆ + ⋅ ∆  percentage of all the nuclides 

in the periodic table and that there is no nuclide which exceeds 100%.  The fact that this percentage is always just shy of 

100% is a direct experimental confirmation quark confinement, as discussed at (1.14).  It is also worth keeping in mind 25 

that the contribution of each neutron to any calculation of an energy number 
P NZ E N EΕ ≡ ⋅ ∆ + ⋅∆  via (12.12) and 

(12.13), is greater than each proton contribution by about 28.4%, i.e., by a factor of: 

0 010534000622
1 284225880325

0 008202607332
N

P

E . u
.

E . u

∆ = =
∆

, (12.21) 

and to juxtapose this with the fact that above 4He, all stable nuclides either have equal numbers of protons and neutrons, 

or are neutron-rich.  This of course, is (4.8) for the ratio of the latent neutron-to-proton binding energies. 30 
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It is also worth noting that as among all of 2H, 3H, 3He and 4He, that the alpha, 4He, is the only nuclide for which the 

binding energy (12.14) includes, using Z=2 and N=2, the energy number 
P NZ E N EΕ ≡ ⋅ ∆ + ⋅ ∆ .  None of 2H, 3H, 3He 

contains 
P NZ E N EΕ ≡ ⋅ ∆ + ⋅ ∆ , and this fully accounts for why the binding energy is very much higher for 4He than for 

2H, 3H and 3He.  This reiterates the “top to bottom” and “bottom to top” discussion of section 5.  

Having presented all of the foregoing data, we now return to our second postulate (12.10) which identified the up 5 

quark mass um  with the deuteron 2H binding energy.  We see that the binding energies for all the other 1s nucleons 

3H, 3He, 4He, and even the neutron minus proton mass difference itself, as well as the (not independent) 2 3H p H+ →  

and 2 3H p H+ →  fusion energies and the 56Fe binding energy can also be very closely approximated using only the 

traces (12.4) to (12.7) and components 
um ,  

dm  and 
u dm m  of the outer products 

P PK K⊗  and 
N NK K⊗  formed 

from Koide matrices (12.1) to which we assign 
1 dm m= , 

2 3 um m m= =  for the proton and 
1 um m= , 

2 3 dm m m= =  for 10 

the neutron, and the divisor ( )1.5
2π .  These multiple close relationships appear to validate the postulate (12.10) that 

nuclear binding energies are in fact directly reflective of the up and down current quark masses confined within the 

nuclide nucleons, wherein the deuteron, as the very smallest composite nuclide, simply derives its binding energy from 

the very lightest mass, namely that of the up quark.   Because the first postulate (12.9) for the relationship among the 

electron, up and down masses was also integrally involved in deducing all of these binding and fusion energy 15 

concurrences, this tends to offer retrospective confirmation that (12.9) does indeed give a correct, physically-meaningful 

relationship as well.  By any objective assessment, the odds against all of these empirical concurrences being wholly 

coincidental are astronomical. 

Retrospectively, noting that the deduced relationships (12.14) to (12.19) – while very close – are still not exact within 

experimental errors, we are now motivated to withdraw the second postulate (12.10) identifying the up quark mass 20 

exactly with the deuteron binding energy, and in its place to offer the substitute postulate that the neutron minus proton 

mass difference is actually the exact relationship which drives all the others.  That is, we replace (12.10) with the 

substitute postulate that 

( ) ( )
3
23 2 3 / 2N P u d µ d uM M m m m m m π− = ≡ − + −0.001388449188 u  (12.22) 

is an exact relationship.  We also regard the first postulate in (12.9) to be confirmed by all of the close relationships 25 

(12.14) through (12.20), and so now take (12.9) to be an exact relationship among the electron, up and down masses.  

We then use (12.9) and (12.22) to recalibrate the up and down quark masses, and all the binding and fusion-release 

energy relationships, accordingly.  This is exactly what we did in section 10. 

As a result, the recalibrated quark masses which by definition render (12.22) exact to all decimal places in the empirical 

0.001388449188 uN PM M− =  mass difference, just as in (10.3), (10.4), are: 30 

0 002387339327 uum .= , (12.23) 

0 005267312526 udm .= . (12.24) 

As other ways to independently measure quark masses are made more precise beyond the current PDG spreads 

.7

.34.8  MeVdm +
−=  and .7

.52.3  MeVum +
−= , (12.23), (12.24) provide many decimal places at which these quark mass 

predictions (12.23), (12.24) can be strengthened or contradicted.   35 

The recalibrated binding energies, contrast (12.14), (12.15) and (12.16) respectively for 4He, 3He, 3H, now become, just 

as in (10.8) through (10.10): 

2 2 2 0 030373002032 uP N u dE E m m .⋅ ∆ + ⋅ ∆ − = , (12.25) 
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2 0 008320783890 uu u dm m m .+ = , (12.26) 

( )
3
24 2 / 2 0 009099047078 uu µ dm m m π .− = . (12.27) 

Additionally, because the up and down masses have now been recalibrated by less than one part per million in AMU, 

the observed 2H deuteron binding energy ( )2 =0 002388170100 uB H .  is no longer exactly equal to the mass of up quark, 

but instead differs as shown below, and just as in (10.11): 5 

( )2

                 

          

Difference:                     

um

B H

=

=
-7

0.002387339327 u

0.002388170100 u

- 8.30773 × 10 u

. (12.28) 

Following recalibration, the accuracy to less than one part per million of the originally-derived neutron minus proton 

mass difference has migrated instead to a difference of less than one part per million between the up quark mass and the 

deuteron binding energy.  The difference between the binding energies “retrodicted” by (12.25) to (12.28), and those 

actually observed empirically, is the same as those shown in Figure 11, with diagonal lines representing nuclear isobars 10 

of like A=Z+N, but with the results in this section based strictly on use of Koide-type matrices for protons and neutrons.  

This close fitting is what retrospectively validates the quark masses (12.23), (12.24), the neutron minus proton mass 

difference (12.22), and the up and down and electron mass relationship (12.9), upon all of which this fitting is based.  

Any substantial alteration in these four relationships would adversely affect the fit in Figure 11. 

It is also to be noted that the various relationships above can be combined to derive the earlier (9.8), which expresses 15 

the 26.73 MeV of energy empirically-observed to be released during a single solar fusion event whereby four protons are 

fused into an alpha particle, solely as a function of the up and down quark masses, also to parts per million in AMU.  

This in turn provides the foundation for catalyzing resonant fusion energy release just as was developed in section 9.  

The purpose of the foregoing in this section is not to be repetitious, but to show that the same results we found in all the 

previous sections can be independently obtained via Koide-style mass matrices (12.1) and (12.3).  The reason is that this 20 

will now enable us to establish resonant fusion relationships and the technological approach to catalyzing resonant fusion 

for some heavier nuclides as well, and in particular, for 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N. 

13.  Binding Energies and Fusion Reactions for 6Li, 7Li, 7Be and 8Be 

In this section we continue using the Koide matrices (12.1) by developing fusion and binding relationships for the 2s 

shell nuclides 6Li, 7Li, 7Be and 8Be.  The first nuclide we consider is 6Li.   In doing so, we observe, for example from 25 

[13], that there are no stable nuclides with 5A Z N= + = .  One 5A =  candidate for possible stability, 5He, has a 

half-life of 700(30)×10−24 s and immediately sheds the extra neutron decay into the 4He alpha.  The other candidate, 5Li, 

has a half-life of 370(30)×10−24 s and sheds the extra proton to decay into the 4He alpha.  If we seek stability, the 

lightest stable nuclide in the 2s shell is 6Li. 

Let us therefore now consider the process 4 6
2 32 EnergyHe p Li e ν++ → + + +  whereby one fuses an alpha particle with 30 

two protons in order to create a stable 6Li nuclide plus a positron and neutrino.  The energy released during this 

hypothetical fusion event is: 

4 6
2 3 0.002033478Ene 2  rg uy p eM M M m= + − − = , (13.1) 

where 4
2 4.001506179125 uM =  is the observed nuclear weight of the 4He alpha, 1.007276466812 upM =  is the 

observed proton mass, 6
3 6.013477055 uM =  is the observed 6Li nuclear weight, and the electron mass is given in (12.9). 35 

We saw in the last section that 
um ,  

dm  and 
u dm m , which are the nine non-zero components of the outer products 

P P P AB PCDK K K K⊗ =  and 
N N N AB N CDK K K K⊗ = , as well as the foregoing divided by the natural number ( )1.5

2π , are the 



JRYFUSION 

32 

 

“energy numbers” based exclusively on the up and down quarks masses that we need to look to, to try to fit the binding 

and fusion energy data.  We again do the same here.  It is readily determined that: 

( )1.5
0.0029 / 2 026396 uu dm m π = , (13.2) 

is extremely close to (13.1), differing by a mere 67.08153 10  u−× , that is, about 7 parts per million AMU.  Might this be 

a “significant” relationship, and not merely a close coincidence? 5 

Here, we need to be cautious.  The question is whether the coefficient “9” in (13.2) has some physical significance in 

relation to the Koide matrix (12.1) and/or the physical properties of the “target nuclide” 6Li which we are presently 

considering, and is not merely a fortuitous coincidence.  Of course, (12.1) is a 9 component matrix, and its outer 

products have exactly 9 non-zero components.  But the significance of the coefficient “9” is more physically-direct 

when we consider that 6Li contains exactly 9 up quarks and 9 down quarks.  That is, “9” is the number of up/down 10 

quark pairs contained in a 6Li nuclide.   So if (13.2) is in fact a theoretical expression to 7 parts per million for the 

energy released to fuse an alpha plus two protons into a 6Li, then this would mean that in order to bind together the 6Li 

nuclide, each of the nine up/down quark pairs in the target 6Li nuclide has to give up ( )1.5
1 / 2u dm m π⋅  “dose” of 

energy.  This suggests that perhaps “9” is not a random number but makes some physical sense.   

So let us provisionally hypothesize that (13.2) correctly gives the fusion-release energy for the reaction (13.1), by 15 

writing: 

( ) ( )1.54 6 4 6
2 3 2 3Energy 2 Energy 2 9 / 2p e u dHe p Li e M M M m m mν π++ → + + + = + − − ≡ . (13.3) 

As noted, this is accurate to about 7 parts per million.  Then let us see if this is backed up by other nuclides. 

Now, having “built” a 6Li nuclide, let us consider the hypothetical isomeric fusion process 6 7
3 4 EnergyLi p Be+ → +  

whereby a 6Li nuclide is fused with a proton to produce a 7Be nuclide.  For this event, the energy released is: 20 

6 7
3 4 0.006018011721 uEnergy pM M M= + − = . (13.4) 

where we use the empirical values 6
3 6.013477055 uM = , 7

4 7.014735510362 uM = , and the proton mass 

6
3 6.013477055 uM = .  Comparing to our restricted set of ingredients 

um ,  
dm  and 

u dm m  and these divided by 

( )1.5
2π , we find that: 

( )1.5
0.006019934830 u18 / 2dm π = . (13.5) 25 

This differs from (13.4) by 61.92310833848 10  u−× , or just under 2 parts per million AMU.  What might be the 

significance of the coefficient “18,” to be certain that these are not just coincidental integer multiples?  Here, 6Li, which 

is now the “source nuclide” to which we wish to add a proton, contains 18 quarks in total.  So (13.5) may be explained 

on the basis that each of the 18 quarks inside of a 6Li nuclide has to give up an energy “dosage” of exactly ( )1.5
1 / 2dm π⋅  

in order to bind with a proton and yield a 7Be nuclide.  That is, each quark in 6Li has to give up some energy, precisely 30 

defined in relation to the down quark mass, in order to “motivate” the new proton to join the 2s shell and produce a 7Be 

nuclide.  This makes some physical sense as well, and especially so because a similar view (nine ( )1.5
/ 2u dm m π  

doses) was used to explain the energy released during the fusion event 4 6
2 32 EnergyHe p Li e ν++ → + + + .  In fact, the 

results in (13.2) and  (13.5) appear to supplement one another and greatly reduce the probability of coincidence, because 

they each, independently, suggest that once we start building heavier nuclides on the stable “base” of an alpha 4He 35 

nuclide, there are prescribed “dosages” of energy which the existing quarks and / or nucleons need to contribute and 

which are precisely described (to parts per million) in terms of 
u dm m  for 4He�6Li and in terms of 

dm  for 6Li�7Be. 

Let us therefore also regard (13.5) to correctly specify the energy in (13.4) to about two parts per million, thus setting: 
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( ) ( )1.56 7 6 7
3 4 3 4Energy Energy 18 / 2p dLi p Be M M M m π+ → + = + − ≡ . (13.6) 

Now that we have “built” the 7Be nuclide, we take note that 7Be is comparatively stable, with a half-life of 53.22(6) 

days after which it will decay into the completely stable 7Li nuclide via electron capture.  So let us now turn to this 

β-decay reaction, which is more formally stated as 7 7
4 3 EnergyBe e Li ν+ → + + .  Again, as in (13.1) and (13.4) we 

calculate the associated energy: 5 

7 7
4 3 0.0009252800Energy 00 ueM M m= − + =  (13.7) 

using the empirical values 7
4 7.014735510362 uM = , 7

3 7.014358810272 uM = and the electron mass (12.9).  Here, 

using our ingredients 
um ,  

dm  and 
u dm m  and ( )1.5

2π  divisor, we find: 

( )1.5
0.000909486 / 2 5124 uum π = . (13.8) 

This differs from the empirical number (13.7) by 51.579487551927 10  u−− × , or under two parts per 100,000.  10 

Previously we came up with the numbers 9 (up/down pairs in 6Li) and 18 (quarks in 6Li).  Now we come upon the 

number “6” which is the number of nuclides in 6Li.  So (13.8) would appear, if meaningful, to say that each nuclide in 

the underlying 6Li nuclide gives up an energy dose of ( )1.5
1 / 2um π⋅  to facilitate the isotopic beta decay of 7Be�7Li.   

This too makes sense in terms of this number not being random, but bearing a genuine physical meaning for the nuclide 

in question.  Together with the result in (13.2) and (13.5), this seems to suggest that energies released to enable fusion 15 

or beta decay, at least in the 2s shell, come in discrete doses.  For 4He�6Li the dose is ( )1.5
1 / 2u dm m π⋅  for each 

up/down quark pair in 6Li.  For 6Li�7Be the dose is ( )1.5
1 / 2dm π⋅  for each quark in 6Li.  Finally, for 7Be�7Li the 

dose is ( )1.5
1 / 2um π⋅  for each nuclide in 6Li.  Notably, these respectively utilize the three ingredients ( )1.5

/ 2u dm m π , 

( )1.5
/ 2dm π  and ( )1.5

/ 2um π .  Taken all together, this suggests that the numbers “9,” “18” and “6” which were emerged 

by comparing these ingredients to empirical data are all meaningful numbers based on physical properties of 6Li itself. 20 

So, we now take (13.8) to be a meaningful expression for the energy in (13.7) to under 2 parts per 100,000, and so 

write: 

( ) ( )1.57 7 7 7
4 3 4 3Energy Energy 6 / 2e uBe e Li M M m mν π+ → + + = − + ≡ . (13.9) 

Next, we turn to 8Be, which completes the 2s shell, providing 2 protons and 2 neutrons in addition to four nucleons 

which already subsist in the 1s shell.  Despite having complete 1s and 2s shells and no extra nucleons, the 8Be isotope 25 

has a half-life of 6.7(17)×10−17 s, after which it alpha-decays via 8 4 4
4 2 2 EnergyBe He He→ + +  into two alpha particles.  

For 4He, of course, the binding energy is observed to be ( )4
2 0.030376586499 uB He = .  The empirical value of the 8Be 

binding energy is observed to be ( )8
4 0.060654750 6u88B Be = .  And, the 4He alpha binding energy is fitted to under 

four parts per million by 2 2 2P N u dE E m m⋅ ∆ + ⋅ ∆ −  as reviewed in (12.14). 

It is nothing new to note that the 8Be binding energy is almost twice as large as the 4He binding energy, and 30 

specifically, that the empirical ratio: 

( ) ( )8 4
4 2 1.996759 5/ 93B Be B He = . (13.10) 

So, we know at the outset that if we simply double the 4He binding energy and write  

( ) ( )8
4 2 2 2 2P N u dB Be E E m m≅ × ⋅ ∆ + ⋅ ∆ − , we will get a close approximation to under 1%.  Certainly then, an 

expression of the form 
?4 4P NE E E⋅ ∆ + ⋅ ∆ −  should give us the result we want, that is, one would hope that 35 
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P NZ E N E⋅ ∆ + ⋅ ∆  with Z=4 and N=4, minus some unknown energy 
? 4 u dE m m≅  will give us the 8Be binding energy to 

within at least parts per 100,000, matching the accuracy for the other foregoing results.  The question is, how do we 

determine 
?E  using the same ingredients 

um ,  
dm  and 

u dm m  and the ( )1.5
2π  divisor? 

First, it is physically very important that (13.10) is not equal to 2 but is less than 2 by about 0.32%.  Since it appears 

that physically, stable nuclides are those which tend toward higher rather than lower binding energies, the ratio (13.10) 5 

tells us that two 4He will have more binding energy in total than one 8Be, and for this reason, 8Be will split into two 4He 

in order to maximize this total binding energy.  That is, there is more binding energy in two separate 4He than in a 

single 8Be and apparently nature prefers this.  So the very existence of the alpha decay 8 4
4 22Be He→ ⋅  as a preferred 

transition over 4 8
2 42 He Be⋅ →  appears to depend on the ratio (13.10) being slightly less than 2.  Consequently, this 

small diminution from 2 needs to be understood and not simply neglected by approximating to ( ) ( )8 4
4 2/ 2B Be B He ≅ . 10 

Next, as to “numbers” that would make sense in the same way as “9,” “18” and “6” just above, we note that 8Be has 

A=8 nucleons.  So certainly, “8” is a number that would be of interest.  Now, we have used the 3-dimensional 

Gaussian integration number  ( )1.5
15.749602 99457π =  throughout to report close fits between empirical binding data 

and certain expressions built from of up and down quark masses via products of Koide-type matrices (12.1).  But, if an 

expression like 2 u dm m  was an ingredient in successfully matching the 4He binding energy to parts per million and a 15 

( )1.5
1 / 2u dm m π⋅  energy dose per quark pair in 6Li successfully reproduced the 4 6

2 32 EnergyHe p Li e ν++ → + + +  

reaction also to parts per million, we see that both ( )1.5
/ 2u dm m π  and 

u dm m  are ingredients that provide suitable 

energy doses.  So because ( )1.5
15.749609945 162 7π = ≅ , this means that ( )1.5

16 / 2u d u dm m m mπ⋅ ≅ .  For a nuclide 

8Be with 8 nucleons, a coefficient “16” which approximates ( )1.5
2π  in fact becomes physically relevant and not just 

random. 20 

With this in mind, given that ( )4
2 2 2 2P N u dB He E E m m= ⋅ ∆ + ⋅ ∆ −  as seen in (12.14), and given that we need an 

? 4 u dE m m≅  for 8Be, let us use the close approximation ( )1.5
16 / 2u d u dm m m mπ⋅ ≅  to form another energy number: 

( ) ( )1.5 4
22 2 32 / 2P N u dB E E m m B Heπ′ ≡ ⋅ ∆ + ⋅ ∆ − ⋅ ≅ . (13.11) 

that is close to ( )4
2B He  of (12.14), but not exactly the same.  Now, let us conduct the gedanken of fusing two 4He into one 

8Be.  Of course, this will split into two 4He after 6.7(17)×10−17 s, but this is still useful to think about.  One of the two 4He 25 

will have to form the 1s shell.  The other will need to overlay “around” the 1s shell and form the 2s shell.  Let us suppose 

that the 4He which forms the 1s shell retains the ( )4
2B He  shown in (12.14).  But let us suppose that the other 4He which 

goes into the 2s shell instead carries with it energy number (13.11) which is very close to, but not the same as, ( )4
2B He .  

Accordingly, we now use (13.11) and (12.14) together to construct a hypothesized: 

( ) ( )1.58
4 4 4 2 32 / 2 0.0606332509 uP N u d u dB Be E E m m m m π= ⋅ ∆ + ⋅ ∆ − − = . (13.12) 30 

This differs from the empirical ( )8
4 0.060654750 6u88B Be = by 52.1500027391 10  u−− × , just over two parts in 100,000.  

So the accuracy is in the desired range.  But does this make sense in other ways, so it is not just a coincidental guess but 

has physical meaning?  First, the ratio: 

( )
( )

( )1.58
4

4
2

4 4 2 32 /
1.9960521 22

2 2
5

2

2
P N u d u d

P N u d

B Be E E m m m m

E E m mB He

π⋅ ∆ + ⋅ ∆ − −
= =

⋅ ∆ + ⋅ ∆ −
, (13.13) 
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compare (13.10), is less than 2 by 0.4%, versus the empirical 0.32% noted earlier, and so will also cause the reaction 

8 4
4 22Be He→ ⋅  to be energetically favored rather than 4 8

2 42 He Be⋅ → .  This a very important prerequisite for (13.12) to 

be a valid candidate for the 8Be binding energy. 

Secondly, noting that 4He contains 6 up and 6 down quarks and is fully symmetric under u d↔  quark interchange, 

we observe that 8Be contains 12 up and 12 down quarks and that (13.12) is also fully symmetric under u d↔  quark 5 

interchange.  Apparently, u d↔  invariance is a desirable binding energy symmetry at least for the full-shell nuclides 
4He and 8Be with equal numbers of protons and neutron and hence of up and down quarks. 

Third, the number 32=8x4 has a very natural meaning in terms of the energy dosage considerations uncovered in the 

several lithium fusions just reviewed.  Referring to (12.12) and (12.13), we see that ( )1.5
4 / 2u dm m π  is an important 

“energy dose” arising from the Koide matrices applied to protons and neutrons.  Given that 8Be contains 8 nucleons, one 10 

can interpret the (13.12) as saying that each of the 8 nucleons in 8Be “contributes” a ( )1.5
4 / 2u dm m π−  dose of energy 

to binding energy (13.13), to produce the term ( )1.5
32 / 2u dm m π− .  And, because this contribution yields the ratio 

(13.13), our gedanken to fuse 4 8
2 42 He Be⋅ →  will last all of 6.7(17)×10−17 s, after which we will witness the 

physically-preferred decay 8 4
4 22Be He→ ⋅ .  So (13.12) appears to touch all the bases required to be a credible 

relationship for 8Be binding energy and we shall henceforth employ it as such. 15 

With the foregoing, we now have an expression for 8Be binding that is accurate to about 2 parts per 100,000, and we 

have expressions with similar accuracy for fusion / beta decay energies related to 6Li (13.3), 7Be (13.6) and 7Li (13.9).  

These fusion / decay energies (13.3), (13.6) and (13.9) may be deductively converted over into binding energies, as 

shown next. 

In general, for a nuclide with Z protons and N neutrons hence A=Z+N nucleons, the binding energy A
Z B  is related to 20 

its atomic weight A
Z M  according to: 

A A
Z P N ZB Z M N M M= ⋅ + ⋅ − . (13.14) 

So for the 6
3Li  , 7

4Be  and 7
3Li  binding energies respectively, we need to find: 

6 6
3 3

7 7
4 4

7 7
3 3

3 3

4 3

3 4

P N

P N

P N

B M M M

B M M M

B M M M

= ⋅ + ⋅ −

= ⋅ + ⋅ −

= ⋅ + ⋅ −

. (13.15) 

We first use the results in (13.3), (13.6) and (13.9) for 6
3M , 7

4M  and 7
3M  to rewrite the above equation set as: 25 

( )
( )

( )

1.56 4
3 2

1.57 6
4 3

1.57 7
3 4

3 9 / 2

3 3 18 / 2

3 4 6 / 2

P N u d e

P N d

P N u e

B M M m m M m

B M M m M

B M M m M m

π

π

π

= + ⋅ + − +

= ⋅ + ⋅ + −

= ⋅ + ⋅ + − −

. (13.16) 

We then use (13.3) and (13.6) again in the latter two expressions to obtain: 

( )
( ) ( )

( ) ( )

1.56 4
3 2

1.5 1.57 4
4 2

1.5 1.57 6
3 3

3 9 / 2

3 18 / 2 9 / 2

2 4 6 / 2 18 / 2

P N u d e

P N d u d e

P N u d e

B M M m m M m

B M M m m m M m

B M M m m M m

π

π π

π π

= + ⋅ + − +

= + ⋅ + + − +

= ⋅ + ⋅ + + − −

. (13.17) 

And we then use (13.3) yet again in the final expression to obtain: 
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( )
( ) ( )

( ) ( ) ( )

1.56 4
3 2

1.5 1.57 4
4 2

1.5 1.5 1.57 4
3 2

3 9 / 2

3 18 / 2 9 / 2

4 6 / 2 18 / 2 9 / 2

P N u d e

P N d u d e

N u d u d

B M M m m M m

B M M m m m M m

B M m m m m M

π

π π

π π π

= + ⋅ + − +

= + ⋅ + + − +

= ⋅ + + + −

. (13.18) 

These expressions are now all reduced to contain the alpha nuclear weight 4
2M .  For this we rewrite (13.14) for Z=2 

and N=2 as: 
4 4
2 22 2P NM M M B= ⋅ + ⋅ − . (13.19) 

Substituting (13.19) into all of (13.18), we next obtain: 5 

( )
( ) ( )

( ) ( ) ( ) ( )

1.56 4
3 2

1.5 1.57 4
4 2

1.5 1.5 1.57 4
3 2

9 / 2

18 / 2 9 / 2

2 6 / 2 18 / 2 9 / 2

N P u d e

N P d u d e

N P u d u d

B M M m m B m

B M M m m m B m

B M M m m m m B

π

π π

π π π

= − + + +

= − + + + +

= ⋅ − + + + +

. (13.20) 

Finally, we use the neutron minus proton mass difference (12.22), the up, down and electron relationship (12.9), and 

the 4He binding energy (12.14) with (12.12) and (12.13), and reduce.  We then use the quark masses (12.23), (12.24), 

directly, to obtain: 

( ) ( )

( ) ( )

( ) ( )

3
2

3
2

3
2

6
3

7
4

7
3

7 6 2 10 10 9 2

7 6 2 10 8

0.0343364272 u

0.0403563620 u

0.042105716 u

9 2

8 6 2 2 2 11 2

u d u d u d u d

u d u d u d u d

u d u d u d u d

B m m m m m m m m π

B m m m m m m m m π

B m m m m m m m m π

= + − + − − − =

= + − + − + − =

= + − + + − =

. (13.21) 10 

The respective empirical values are 6
3 0.0343470932 uB =  (difference of 51.06660 10  u−− × ), 7

4 0.0403651049 uB =

(difference of 68.7429 10  u−− × ), and 7
3 0.0421302542 uB =  (difference of 52.45378 10  u−− × ).  So together with 8Be 

from (13.12), we have now developed expressions for all of the 2s nuclide binding energies to small parts per 105 or (for 
7Be) parts per million. 

Figure 12 now summarizes the retrodicted expressions and calculated values for both the 1s and 2s nuclides in the 15 

form of the customary chart of binding energy per nucleon, converted from AMU into MeV via 931.494061 u V1  Me= .  

This familiar curve shows eight of the very lightest elements in the well-known form of a per-nucleon binding energy 

graph.  All of these energies, however, are no longer just empirical, but rather may be calculated strictly from the 

masses (12.23), (12.24) of the up and down quarks which, when the indicated calculations are performed, will enable a fit 

to the empirical data to parts per million or low parts per 100,000 in all cases.  This provides strong validation that the 20 

foregoing approach enables nuclear binding energies to be fitted very precisely at a granular level, based solely as a 

function of the up and down quark masses.  This fit in turn validates the values of masses (12.23), (12.24) via the 

observed nuclear binding energies which are known much more precisely than any quark mass values derived from deep 

inelastic scattering. 

Also of interest is that the retrodicted binding energy per nucleon of 3H exceeds that of its isobar 3He by 25 

0.24164918 MeV, while the retrodicted binding energy per nucleon of 7Li exceeds that of its isobar 7Be by the relatively 

similar 0.23278761 MeV.  It is often assumed that separate consideration needs to be given to the electrostatic 

repulsion of an extra proton which lowers the binding energy of a proton-rich nuclide, e.g. 3He and 7Be.  What the 

foregoing shows is that the binding energy difference owing to this electrostatic repulsion is already inherently and 

integrally built into both the quark masses, and the relationships in Figure 12 which combine these quark masses to 30 

arrive at nuclear binding energies. 

Insofar as what we might learn from these results to progress in a granular way to even heavier nuclides, we see that 

we have essentially “woven” our way through the progression 4He � 6Li � 7Be � 7Li in (13.3), (13.6) and (13.9), 
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which weaving was then deductively reflected in the binding energy calculations of (13.14) to (13.21).  Part of how we 

obtain confidence that our results are meaningful not randomly-coincidental, is that we progress carefully in this manner 

from one nuclide to the next along known fusion or beta-decay routes, and make certain that the coefficients we use at 

each step to combine the 
um ,  

dm , 
u dm m  and ( )1.5

2π  ingredients make sense in relation to the nuclides in question.  

This way, as we build up heavier shells and nuclides, we know they are being constructed on a carefully-laid foundation. 5 

14.  Binding Energies and Fusion Reactions for 10B, 9Be, 10Be, 11B, 11C, 12C and 14N 

We begin this section by considering the 10B nuclide.  For 6Li we considered the fusion reaction 

4 6
2 32 EnergyHe p Li e ν++ → + + + .  We follow a similar route and consider the fusion reaction 

8 10
4 52 EnergyBe p B e ν++ → + + + .  The energy released during such a fusion event is: 

8 10
4 5 0.006921034Ene 2  rg uy p eM M M m= + − − = , (14.1) 10 

using empirical data 8
4 8.003110780 uM = , 10

5 10.010194100 uM = , 1.007276466812 upM =  and 

0 000548579909 uem .= .  We recall from (13.3) that the energy released during 4 6
2 32 EnergyHe p Li e ν++ → + + +  was 

given by ( )1.5
9 / 2u dm m π  to about 7 parts per million.  Because 6Li has A=Z+N=6 nucleons and so has 9 3 / 2A= ×  

up / down quark pairs, we interpreted this as indicating that each of the nine quark pairs gave up one ( )1.5
/ 2u dm m π  

energy dose during this fusion.  Following suit, we observe that 10B has A=Z+N=10 nucleons, and so contains 15 

15 3 / 2A= ×  up / down quark pairs.  Expecting some consistency, we construct the factor ( )1.5
15 / 2u dm m π  and 

subtract this from the empirical energy in (14.1) to obtain: 

( )1.5
15 /0.006921034 u 0.00354 70  2 3 7 uu d u dm m m mπ ≅=− . (14.2) 

So apparently there is still some energy that is unaccounted for when we open up the 2p shell with 10B.  However, is 

the easily seen that the energy calculated in (14.2) differs from 
u dm m  by 62.3983 10  u−×  i.e., by just over two parts 20 

per million AMU, as is also shown above.  So we use (14.2) together with (14.1) to conclude that: 

( ) ( )1.58 10 8 10
4 5 4 5Energy 2 Energy 2 0.006923432 15 u/ 2p e u d u dBe p B e M M M m m m m mν π++ → + + + = + − − = + = . (14.3) 

This differs from the empirical value (14.1) by the same 62.3983 10  u−× , or just over two parts per million.  So when 

the stable nuclide 10B is created by fusing an unstable 8Be with two protons, apparently each up / down quark pair in the 

target 10B nuclide contributes one energy does of ( )1.5
/ 2u dm m π .  But in addition, there is an overall energy dose of 25 

u dm m  as well.  Noting that in the 2s shell, the orbital angular momentum is l=0, but that 2p is the first shell in which 

nucleons have a non-zero l=1, it makes sense, at least preliminarily, to regard this extra 
u dm m  dose that did not appear 

when we built 6Li, as being required to provide the energy needed to sustain one proton and one neutron in n=2, l=1, 

m=0 states.  So we regard the ( ) ( )1.5
3 / 2 / 2u dA m m π× ⋅  energy doses as pairwise contributions by the up and down 

quarks to sustain binding, and the overall 
u dm m  dose as a contribution to sustain angular momentum. 30 

Equation (14.3) which states that the 8 10
4 52Be p B+ →  fusion releases a total energy of  ( )1.5

15 / 2u d u dm m m m π+ , 

contrasted with (13.3) which states that 4 6
2 32He p Li+ →  releases a total energy of ( )1.5

9 / 2u dm m π , is compelling 

validating evidence of this approach, because a) the source nuclides 8
4Be  and 4

2 He  are similarly-situated in the first 

two Z=N full neutron and proton shell positions in the periodic table, b) the target nuclides 10
5B  and 6

3Li  are similarly 

situated in the first two Z=N positions with a new shell opened for each of protons and neutrons, c) the reactions are 35 
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like-reactions, d) 10
5 B  contains 15 up and 15 down quarks and in the term ( )1.5

15 / 2u dm m π , 15 appearances of each of 

the up and down masses, e) 6
3Li  contains 9 up and 9 down quarks and in the term ( )1.5

9 / 2u dm m π , 9 appearances of 

each of the up and down masses and f) the only difference between these reactions is the further term 
u dm m  for 

8 10
4 52Be p B+ → , which accounts for l=1 shells which first open up in 10

5 B  but are not needed in 6
3Li . 

Rather than stay inside the n=2, l=1, m=0 states of the 2p shell, let us see if we can strike further into the nuclear 5 

binding table by building the 14N in a similar way.  Here, for the first time, we will have protons and neutrons in n=2, l-

=1, m=±1 states, i.e., with non-zero m magnetic quantum number states.  The analogous reaction we wish to consider 

here, is 12 14
6 72 EnergyC p N e ν++ → + + + . The energy released is: 

12 14
6 7En 0.011478929 er 2 ugy p eM M M m= + − − = . (14.4) 

This uses the empirical data 12
6 11.996708521 uM = , 14

7 13.999233945N =  and the proton and electron masses.  Noting 10 

that these elements are both along the Z=N nuclide diagonal and have equal numbers of up and down quarks and that we 

have thus far utilized a 0.003546105 uu dm m =  construct which is u d↔  symmetric, let us also bring the 

similarly-symmetric ( ) 0.0038/ 22 7326 uu dm m+ =  construct into play.  This is about 8% larger than 
u dm m , but has 

the appropriate symmetry and so should also be considered especially when working on the Z=N diagonal.  Very 

interestingly, the above energy (14.4) differs from ( )3 / 2u dm m⋅ +  by a mere 63.0490 10  u−× .  We therefore make the 15 

association: 

( ) ( )12 14 12 14
6 7 6 7Energy 2 Energy 2 3 0.011481  2 8/ 97 up e u dC p N e M M M m m mν++ → + + + = + ⋅ − − == ⋅ + . (14.5)  

Apparently, once we start to construct nuclides for which m≠0, nature replaces 
u dm m , and simply employs three 

“doses” of ( ) / 2u dm m+  to construct 14N.  Perhaps the number “3” representing these doses may be ascribed to the 

three complete shell levels 1s, 2s and 2p0 (where the superscript “0” indicates m=0) upon which the proton and neutron to 20 

create 14N are overlaid. 

Having obtained the relationship (14.3) for 10B, which is a stable nuclide, let us see if we can branch out from here.  

First, we work over to 10B’s lighter isotone 9Be.  The reaction we shall consider is 9 10
4 5 EnergyBe p B+ → + , fusing a 

proton with 9Be to produce 10B for which the binding energy is now known in principle via (14.3).  (See (13.14) through 

(13.21) which show how the binding energy is deduced once nuclear weight is established.)  The fusion energy is: 25 

9 10
4 5Ener 0.00707024  ugy 7pM M M= + − = , (14.6)  

using the empirical values 9
4 9.009987880 uM = ,  10

5 10.010194100 uM =  and the proton mass.  This differs from 

2 µ dm m  by 52.19637 10  u−×  or just over 2 parts per 100,000 AMU, which is within the ranges we have previously 

taken to be physically meaningful.  So we now establish the close relationship: 

( )9 10 9 10
4 5 4 5E 0.007092210 unergy Energy 2p µ dBe p B M M M m m+ → + = + − = = , (14.7) 30 

This binding energy for 9Be can now be deduced from this, as will be done shortly below. 

The next nuclide we consider branching to from 10B is the comparatively stable 10Be, which has a half-life of 1.39×106 

years before it decays through β
- decay into its isotope 10B for which we deduced the fusion energy (14.3).  Here the 

reaction is 10 10
4 5 EnergyBe B e ν→ + + +  and so the energy relationships are:  

10 10
4 5 0.000596800 g uEner y eM M m= − − = . (14.8) 35 
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Above, we use the empirical 10
4 10.011339480 uM = , 10

5 10.010194100 uM =  and the electron mass.  In trying to fit this 

result, we recall from (12.15) that the binding energy of 3He is retrodicted to under four parts per 100,000 to be 

( ) ( )3 2 2u d u u u dB He m m m m m m= + = + .  Keeping this in mind, we form three similar mass combinations 

( )2 2d d u d u dm m m m m m+ = + ,  ( )2 2d u d d u dm m m m m m+ = +  and ( )2 2u u d u u dm m m m m m+ = + , as 

well as the foregoing divided by ( )1.5
2π .  All of these are readily constructed from the square root of an up or down 5 

quark mass times the trace of a Koide matrix for the proton or neutron, see, e.g., (12.15).  It turns out that the value in 

(14.8) differs from the final expression ( ) ( )1.5
2 / 2u u dm m m π+  by 65.0911 10  u−− × , that is, by five parts per million 

AMU.  We take this to be a meaningful relationship, and so write (14.8) as: 

( ) ( ) ( )1.510 10 10 10
4 5 4 5Energy Energy 0.000601892 1 u/ 2e u u dBe B e M M m m m mν π→ + + + = − − = + = . (14.9) 

Now we branch up to 11B via 10 11
5 5 EnergyB p e B ν+ + → + + .  The energies are: 10 

10 11
5 5E 0.011456647 unergy p eM M m M= + + − = . (14.10) 

Above, we use 10
5 10.010194100 uM = , 11

5 11.006562500M =  and the proton and electron masses.  It turns out that the 

above differs from ( )3 / 2u dm m⋅ +  by 52.53311 10  u−× , or under 3 parts per 100,000.  We take this as a meaningful 

relationship, and so write (14.10) as: 

( ) ( )10 11 10 11
5 5 5 5Energy Ene 0.0114819783  urgy / 2p e u dB p e B M M m M m mν+ + → + + = + + − = ⋅ + = . (14.11)   15 

So as a respective result of (14.3), (14.7), (14.9) and (14.11), it becomes possible to deduce the binding energies of 

four new nuclides: 10B, 9Be, 10Be and 11B.  Before we explicitly deduce these four binding energies, let us also look at 

one final branch, this time from 11B to 11C.  Carbon-11, which is used to label molecules in PET scans, has a half-life of 

20.334(24) min before it β+ decays into 11B which we have just uncovered in (14.11) above.  This reaction is 

11 11
6 5 EnergyC e B ν+ → + + , which is represented as: 20 

11 11
6 5Energ 0.00212820  y 0 ueM m M= + − = . (14.12) 

Here we have used 11
5 11.006562500M =  and 11

6 11.008142121 uM = .  Comparing to the usual constructs, we see that 

( ) ( )1.5
4 2 / 2u u dm m m π+  differs by 51.49327 10  u−− × , less than 2 parts in 100,000.  So we take this to be meaningful, 

and rewrite (14.12) as: 

( ) ( ) ( )1.5 1.511 11 11 11
6 5 6 5Energy Energy 8 / 2 0.002113264 / 7 u2e u u dC e B M m M m m mν π π+ → + + = + − = + = . (14.13)  25 

Now we explicitly deduce the binding energies for all of 10B, 9Be, 10Be, 11B and 11C, before we turn separately to 12C 

which completes the 2p0 subshell (0 representing m=0).  As we are reminded in (13.14), for a nuclide with Z protons 

and N neutrons hence A=Z+N nucleons, the binding energy A
Z B  is related to its atomic weight A

Z M  according to: 

A A
Z P N ZB Z M N M M= ⋅ + ⋅ − . (14.14) 

So for the 10B, 9Be, 10Be, 11B and 11C binding energies, we need to find: 30 

10 10
5 5

9 9
4 4

10 10
4 4

11 11
5 5

11 11
6 6

5 5

4 5

4 6

5 6

6 5

P N

P N

P N

P N

P N

B M M M

B M M M

B M M M

B M M M

B M M M

= ⋅ + ⋅ −

= ⋅ + ⋅ −

= ⋅ + ⋅ −

= ⋅ + ⋅ −

= ⋅ + ⋅ −

. (14.15) 
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We begin by substituting (14.3), (14.7), (14.9), (14.11) and (14.13) into the above, rearranged so that the nuclear 

masses on the very right of each of the above may be replaced.  This yields:  

( )

( ) ( )
( )

( ) ( )

1.510 8
5 4

9 10
4 5

1.5 1.510 10
4 5

11 10
5 5

1.5 1.511 11
6 5

3 5 15 / 2

5 5 2

4 6 / 2 2 / 2

4 6 3 / 2

6 5 8 / 2 4 / 2

P N u d u d e

P N µ d

P N u u d e

P N u d e

P N u u d e

B M M M m m m m m

B M M M m m

B M M M m m m m

B M M M m m m

B M M M m m m m

π

π π

π π

= ⋅ + ⋅ − + + +

= ⋅ + ⋅ − −

= ⋅ + ⋅ − − − −

= ⋅ + ⋅ − + ⋅ + −

= ⋅ + ⋅ − − − +

. (14.16) 

Next we substitute for 10
5 M  in the second through fourth expressions, and for 11

5M  and again for 10
5 M  in the final 

expression.  This brings us to: 5 

( )
( )
( ) ( )

( ) ( )
( )

1.510 8
5 4

1.59 8
4 4

1.5 1.510 8
4 4

1.511 8
5 4

11 8
6 4

3 5 15 / 2

3 5 15 / 2

2 6 13 / 2 / 2

2 6 3 / 2 15 / 2

3 5 3 / 2

P N u d u d e

P N u d u d e

P N u d u d u

P N u d u d u d

P N u d u

B M M M m m m m m

B M M M m m m m m

B M M M m m m m m

B M M M m m m m m m

B M M M m m m m

π

π

π π

π

= ⋅ + ⋅ − + + +

= ⋅ + ⋅ − − + +

= ⋅ + ⋅ − + + −

= ⋅ + ⋅ − + ⋅ + + +

= ⋅ + ⋅ − + ⋅ + + ( ) ( )1.5 1.5
8 / 2 11 / 2d u u d em m m mπ π− + +

. (14.17) 

Now the foregoing all contain the nuclear weight 8
4M  of 8Be.  So now we invert (14.14) specifically for 8Be, to write: 

8 8
4 44 4P NM M M B= ⋅ + ⋅ − . (14.18) 

Substituting this into all of (14.17) and reducing, next yields: 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1.510 8
5 4

1.59 8
4 4

1.5 1.510 8
4 4

1.511 8
5 4

1.511 8
6 4

15 / 2

15 / 2

2 13 / 2 / 2

2 3 / 2 15 / 2

3 / 2 8 / 2 11

N P u d u d e

N P u d u d e

N P u d u d u

N P u d u d u d

N P u d u d u u d

B M M B m m m m m

B M M B m m m m m

B M M B m m m m m

B M M B m m m m m m

B M M B m m m m m m m

π

π

π π

π

π

= − + + + +

= − + − + +

= − + + + −

= − + + ⋅ + + +

= − + + ⋅ + + − + ( )1.5
/ 2 emπ +

. (14.19) 10 

Now we just need to make three final substitutions and reduce:  From (12.22): 

( ) ( )
3
23 2 3 / 2N P u d µ d uM M m m m m m π− = − + − . (14.20) 

From combining (13.12) with (12.12) and (12.13) and reducing: 

( ) ( )1.58
4 12 12 2 20 64 20 / 2u d u d d u d uB m m m m m m m m π= + − − + + . (14.21) 

And from (12.9): 15 

( ) ( )1.5
3 / 2e d um m m π= − . (14.22) 

Making the substitutions (14.20) through (14.22) into all of (14.19), reducing, and evaluating using the recalibrated 

quark masses (12.23) and (12.24) finally yields for 10B, 9Be, 10Be, 11B and 11C, respectively: 

( ) ( )

( ) ( )

( ) ( )

1.510
5

1.59
4

1.510
4

11
5

0.0694937119 u

0

13 12 20 20 51 / 2

13 12 3 20 20 51 / 2

14 12 15 26 55 / 2

31 27
1

.0624015014 u

0.06973

4 26

169  

2

01 u

2

u d u d u d u d

u d u d u d u d

u d u d u d µ d

u d u d u

B m m m m m m m m

B m m m m m m m m

B m m m m m m m m

B m m m m m

π

π

π

= + − − + + =

= + − − + + =

= + − − + + =

= + − − +( ) ( )

( ) ( )

1.5

1.511
6

53 / 2

29 27

0.0818155590 u

0.078862422428 20 55 /  u2
2 2

d µ d

u d u d u d µ d

m m m

B m m m m m m m m

π

π

+ =

= + − − + + =

. (14.23) 

Respective empirical values for the above are 0.0695128136 u ( 51.910169 10  u−∆ = − × ); 0.0624425669 u  20 
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( 54.106544 10  u−∆ = − × ); 0.0697558829 u ( 52.419278 10  u−∆ = − × ); 0.0818093296 u ( 66.22936 10  u−∆ = × ); and finally, 

0.0788412603 u ( 52.116207 10  u−∆ = × ).  Now let us finally turn to 12C. 

Carbon-12 has Z=A=6 and fully fills the 2p0 subshell for both protons and neutrons.  It contains 18 up and down 

quarks alike.  Like 4He and 8Be, we expect that the binding energy for 12C will be symmetric under u d↔  

interchange.  Therefore, we expect that the only admissible numbers will be 
u dm m  and ( )1

2 u dm m+  and multiples 5 

and combinations thereof. 

Using the proton and neutron latent binding “energy numbers” from (12.12) and (12.13): 

( ) ( )1.5
2 4 4 / 2P d u d u d uE m m m m m m π∆ = + − + + , (14.24) 

( ) ( )1.5
2 4 4 / 2N u d u u d dE m m m m m m π∆ = + − + + , (14.25) 

(12.14) shows that the 4He alpha particle binding energy is: 10 

4
2 2 2 2P N u dB E E m m= ⋅ ∆ + ⋅ ∆ −  (14.26) 

to under 3 parts per million AMU.  Similarly, in (13.12) we found that the 8Be binding energy is (see the fully-expanded 

expression (14.21) above): 

( )1.58
4 4 4 2 32 / 2P N u d u dB E E m m m m π= ⋅ ∆ + ⋅ ∆ − − , (14.27) 

to about 2 parts per 100,000 AMU.    If we define an energy “dosage” 1
1 2 u dD m m≡ , then we may write (14.26) in 15 

terms of A=Z+N as: 

4
2 1P NB Z E N E A D= ⋅ ∆ + ⋅ ∆ − ⋅  (14.28) 

Using this same dosage, (14.27) may be written as: 

( )( )1.58
4 1 116 / 2

2 2P N

A A
B Z E N E D D π= ⋅ ∆ + ⋅ ∆ − − , (14.29) 

recalling that in obtaining (14.29), we took advantage of ( )1.5
16 15.749609 452 9 7π =≅ , see between (13.10) and (13.11).  20 

This is was what accounted for the almost immediate alpha-decay of one 8Be nucleus into two 4H nuclei.  

It turns out after some trial and error fitting based on the foregoing, that the 12C binding energy may be specified, not 

using 
u dm m , but rather, using the other u d↔  symmetric construct ( )1

2 u dm m+  which differs from 
u dm m  by 

about 8%, and which has previously appeared in (14.5) for 14N and (14.11) for 11B.  Specifically, it may be calculated 

that a 12C binding energy defined in terms of quark masses as (with the number A=12 being the number of nucleons): 25 

( ) ( ) ( )1.512
6 0.0989087255 6 6 12 / 2 uP N u d u dB E E m m m m π= ⋅ ∆ + ⋅ ∆ − + − + =  (14.30) 

will differ from the empirical energy 0.0989397763 u by 53.10508 10  u−− × . 

To obtain an “apples-to-apples” comparison with (14.28) and (14.29) to help discern the overall pattern of full-shell 

Z=N=even elements such as 4He, 8Be, 12C, 16O, 20Ne, 24Mg, etc., which as we have seen in section 3 here appear to form a 

“backbone” from which it then becomes possible to branch out to close isotones, isobars and isotopes, let us define 30 

another dosage number ( )1
2 4 u dD m m≡ + .  Using this in (14.30) allows us to write: 

( )( )1.512
6 2 216 / 2

3 4P N

A A
B Z E N E D D π= ⋅∆ + ⋅∆ − − ⋅ . (14.31) 

While it is not yet clear what the overall formulation is for A
Z B  in general for the Z=N=even backbone, (14.28), 

(14.29) and (14.31) start to give us a sense of what to be looking for.  Trying to further fit 16O, 20Ne and 24Mg, the next 

three backbone nuclides, may provide a better view of how to propagate this backbone all the way through the nuclide 35 



JRYFUSION 

42 

 

table, and provide the “tree trunk” for then branching out as develop in sections 13 and 14 here, to “map” the complete 

“nuclear genome” as a function of up and down quark masses to low parts per 100,000 or parts per million AMU. 

Finally, with one more data point on the nuclear “backbone” identified in (14.30), let us make us of (14.5) and (14.30) 

to deduce the 14N binding energy.  This is the first element we are considering in the 2p±1 subshell, in which the 

magnetic quantum number m≠0.  We again start with (14.14) which tells us that: 5 

14 14
7 77 7P NB M M M= ⋅ + ⋅ − . (14.32) 

We next rearrange (14.5) to separate 14
7 M  and use this in (14.32), thus: 

( )14 12
7 65 7 3 / 2P N u d eB M M m m M m= ⋅ + ⋅ × + − ++ . (14.33) 

Then using (14.14) in the inverted form 12 12
6 66 6P NM M M B= ⋅ + ⋅ − , we rewrite (14.33) as: 

( ) ( )14 12
7 63 / 2N P u d eB M M m m B m= − × + + ++ . (14.34) 10 

Now, we simply use (14.20), (14.30), (14.24), (14.25) and (14.22) in the above and reduce.  Using the quark masses 

(14.23), (14.24), we finally obtain: 

( ) ( )1.514
7

39 37
42 42 50 / 2

2 2
0.1123277324 uu d u d u dB m m m m m m π= + − + + = . (14.35) 

The empirical binding energy is 0.1123557343 u, which differs by 52.800186 10  u−× .  This is our first nuclide which 

contains protons and neutrons for which m≠0. 15 

The incremental approach of deducing binding energies by "weaving" from one nuclide to other nearby nuclides 

through the close consideration of fusion and data decay reactions as first elaborated in section 13, appears to be very 

much re-validated by the results obtained here as well. Additionally this sort of approach gives us confidence that our 

overall expressions for binding energies are correct, because they are incrementally constructed in this manner, brick by 

brick or stitch by stitch so to speak, enhancing the probability that the relationships obtained are meaningful, and are not 20 

random fortuitous coincidences.  As regards nuclear fusion, this extends the range of fusions reaction that one can 

catalyze via the “resonant fusion” approach first disclosed in section 9. 
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Appendix—Detailed Derivation of the Triton Nuclide Binding Energy and the Neutron minus Proton Mass Difference 25 

To derive the triton binding energy, we start by considering a hypothetical process to fuse a 1
1H  nucleus (proton) with 

a 2
1H nucleus (deuteron) to produce a 3

1H  nucleus (triton), plus whatever by-products emerge from the fusion. Because 

the inputs 11H  and 2
1H  each have a charge of +1, and the output 3

1H  also has a charge of +1, a positron will be 

needed to carry off the additional electric charge, and this will need to be balanced with a neutrino. Of course, there will 

be some fusion energy released. So in short, the fusion reaction we now wish to study is: 30 

1 2 3
1 1 1H H H Energye ν++ → + + +  (A1) 

The question: how much energy is released? 

As we can see, this process includes a β +  decay. If we neglect the neutrino mass 0mν ≅ , and since ee
m m+ = , we 

can reformulate (A1) using the nuclide masses in Figure 2, as the empirical relationship: 

1 2 3
1 1 1Energy 0.004780386215eM M M m u= + − − = . (A2) 35 

If we then return to our “toolkit” (4.11), we see that 2 0.004776340200um u= . The difference: 

Energy 2 0 004780386215 0 004776340200 0.000004046015um . u . u u− = − = −  (A3) 

is four parts per million! So, we now regard Energy 2 um≅  to be very close relationship to the empirical data for the 

reaction (A1) with energy release (A2). For the deuteron, alpha and helion, our toolkit matched up to a binding energy. 
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But for the triton, in contrast, our toolkit instead matched up to a fusion-release energy. A new player in this mix, which 

has not heretofore become directly involved in predicting binding energies, is the electron rest mass in (A2). So, based on 

(A3), we set Energy 2 um= , and then rewrite (A2), using ( )1
1M M p= , as: 

( )3 2
1 Predicted 1 2 u eM M p M m m= + − − . (A4) 

Now let’s reduce. To translate between Figures 2 and 3, we of course used: 5 

1 1
0 1 0BA A

Z ZZ M N M M= ⋅ + ⋅ −  (A5) 

which relates observed binding energy 0B  in general, to nuclear mass/weight M in general. So we now use (A5) 

specifically for 3
1 0B  and combine this with (A4) using ( )1

0M M n= , to write: 

( )3 1 1 3 2
1 0Predicted 1 0 1 1B 1 2 2 2 u eM M M M n M m m= ⋅ + ⋅ − = − + + . (A6) 

Then, to take care of the remaining deuteron mass 2
1M  in the above, we use (A5) a second time, now for 2

1 0B : 10 

( ) ( )2 1 1 2 2
1 0Predicted 1 0 1 1B M M M M p M n M= + − = + − . (A7) 

We then combine (A7) rewritten in terms of 2
1M , with (A6) to obtain: 

( ) ( )3 2
1 0Predicted 1 0PredictedB B 2 u eM n M p m m= − + + + . (A8) 

Now all we need is 21 0PredictedB . But this is just the deuteron binding energy in (5.4). So a final substitution of 

2
1 0PredictedB um=  into (A8) yields: 15 

( ) ( )3
1 0PredictedB 3 u eM n M p m m= − + + . (A9) 

So now, we do have a prediction for the triton binding energy, and it does include the electron rest mass, but it also 

includes the difference (7.1) between the free neutron and proton masses. It would be highly desirable for many reasons 

beyond the present exercise to also express this on a completely theoretical basis. 

To do this, we repeat the analysis just conducted, but now, we fuse two 11H  nuclei (protons) into a single 2
1H nucleus 20 

(deuteron). Analogously to (A1), we write: 

1 1 2
1 1 1H H H Energye ν++ → + + + , (A10) 

and again ask, how much energy? This fusion, it is noted, is the first step of the process by which the sun and stars 

produce energy, and is the simplest of all fusions, so is interesting from a variety of viewpoints. 

As in (A2), we first reformulate (A10) using the nuclide masses in Figure 2, as the empirical: 25 

( )1 1 2 2
1 1 1 1Energy 2 0.000451141003e eM M M m M p M m u= + − − = − − = . (A11) 

As a point of reference, this is equivalent to 0.420235 MeV, which will be familiar to anybody to who has studied 

hydrogen fusion. As before, we pore over the “toolbox” in (4.11), including ( )
3

22π  divisors, to discover that 

( )
3

22 2π 0.000450424092µ dm m u= . Once again, we see a very close match, specifically: 

( )
3

2Energy 2 2π 0 000451141003 0 000450424092 0.000000716911µ dm m . u . u u− = − = . (A12) 30 

Here, the match is to just over 7 parts in ten million, and it is the closest match yet! Apparently, each of the 2 protons 

contributes a ( )
3

22πµ dm m  energy dose to effectuate the 2
12p H→  fusion into a deuteron.  So we take this too to be a 

meaningful relationship, and use this to rewrite (A11) as: 
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( ) ( )
3

22
12 2π 2µ d em m M p M m= − − . (A13) 

Now we need to reduce this expression. First, using (4.1), namely 2
1 0B um= , we write (A7) as: 

( ) ( )2
1 uM M p M n m= + − .   (A14) 

Then we combine (A14) with (A13) and rearrange, and also use (1.11), to obtain the prediction: 

( ) ( ) ( ) ( ) ( )
3 3

2 2
Predicted

2 2π 3 2 3 2π 0.001389166099u e µ d u d µ d uM n M p m m m m m m m m m u− = − − = − + − =   . (A15) 5 

This is an extremely important relationship relating the observed difference (7.1) between the neutron and proton 

mass ( ) ( ) 0.001388449188M n M p u− =  solely to the up and down (and optionally electron) rest masses. This is useful 

in a wide array of circumstances, especially between nuclear isobars (along the diagonal lines of like-A which are shown 

in the figures here) which by definition convert into one another via beta decay. Comparing (A15) with (7.1), we see that: 

( ) ( ) ( ) ( )
Predicted Observed

0 001389166099 0 001388449188 0.000000716911M n M p M n M p . u . u u− − − = − =        (A16) 10 

This is the exact same degree of accuracy, to just over 7 parts in ten million AMU, which we saw in (A12). So this is yet 

another relationship matched very closely by empirical data. 

Because of this, we now take (A15) to be a meaningful relationship, and use this in (A9) to write: 

( ) ( )
3

3 3 2
0 1 0PredictedPredicted

B H B 4 2 2π 0.009102256308u µ dm m m u= = − = . (A17) 

As a result, we finally have a theoretical expression for the binding energy of the triton, totally in terms of the up and 15 

down quark masses. The empirical value 3
1 0B =  0.009105585412u  is shown in Figure 3, and doing the comparison, 

we have: 

3 3
1 0Predicted 1 0B B 0.009102256308 0.009105585412 0.000003329104u u u− = − = −  (A18) 

We see that this result is accurate to just over three parts in one million AMU!
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I claim: 

1. A resonant nuclear fusion system for resonantly-catalyzing the release of nuclear fusion energy, comprising: 1 

a nuclear fuel; 2 

a high-frequency gamma radiation source producing gamma radiation proximate at least one of the resonant 3 

frequencies corresponding to um , dm , u dm m , ( ) / 2u dm m+ , ( )
3

22πum , ( )
3

22πdm , ( )
3

22πu dm m , 4 

( ) ( )
3

2/ 2 2u dm m π+ , integer harmonic multiples of said resonant frequencies, and sums of said resonant frequencies and 5 

said integer harmonic multiples, wherein um  is the current rest mass of the up quark and dm  is the current rest mass of 6 

the down quark; and 7 

said gamma radiation source configured in relation to said nuclear fuel so as to subject said nuclear fuel to said 8 

gamma radiation. 9 

2. The system of claim 1, said gamma radiation source employing Compton backscattering to produce said gamma 1 

radiation. 2 

3. The system of claim 1, said nuclear fuel comprising 1H hydrogen. 1 

4. The system of claim 1, said nuclear fuel comprising 2H deuterons. 1 

5. The system of claim 1, said nuclear fuel comprising 3He helions. 1 

6. The system of claim 1, said nuclear fuel comprising 4He alpha particles. 1 

7. The system of claim 1, said nuclear fuel comprising 6Li lithium nuclei. 1 

8. The system of claim 1, said nuclear fuel comprising 7Be beryllium nuclei. 1 

9. The system of claim 1, said nuclear fuel comprising 8Be beryllium nuclei. 1 

10. The system of claim 1, said nuclear fuel comprising 12C carbon nuclei. 1 

11. The system of claim 1, said nuclear fuel comprising 9Be beryllium nuclei. 1 

12. The system of claim 1, said nuclear fuel comprising 10Be beryllium nuclei. 1 

13. The system of claim 1, said nuclear fuel comprising 10B boron nuclei. 1 

14. The system of claim 1, said nuclear fuel comprising 11C carbon nuclei. 1 

15. The system of claim 1: 1 

said nuclear fuel comprising 1H hydrogen; and 2 

said gamma radiation comprising at least one of the resonant frequencies proximate ( )
3

22πµ dm m  and 3 

( )
3

22 2πµ dm m ; wherein: 4 

2H deuterons together with nuclear fusion energy are produced from said 1H hydrogen, by catalyzing the nuclear 5 

fusion reaction 1 1 2
1 1 1H H H Energye ν++ → + + + . 6 

16. The system of claim 1: 1 

said nuclear fuel comprising 1H hydrogen and 2H deuterons; and 2 

said gamma radiation comprising at least one of the resonant frequencies proximate um , u dm m  and the sum 3 

u u dm m m+ ; wherein: 4 

 3He helions together with nuclear fusion energy are produced from said 1H hydrogen and said 2H deuterons, by 5 

catalyzing the nuclear fusion reaction 2 1 3
1 1 2H H He Energy+ → + . 6 

17. The system of claim 1: 1 
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said nuclear fuel comprising 3He helions; and 2 

said gamma radiation comprising at least one of the resonant frequencies proximate 2 um , 6 dm , 4 u dm m , 3 

( )
3

210 2πdm , ( )
3

210 2πum , ( )
3

216 2πu dm m  and the sum  4 

( ) ( )
3

22 6 4 10 10 16 2πu d u d d u u dm m m m m m m m+ − − + + ; wherein: 5 

4He alpha particles together with nuclear fusion energy are produced from said 3He helions, by catalyzing the 6 

nuclear fusion reaction 3 3 4 1 1
2 2 2 1 1He He He H H Energy+ → + + + . 7 

18. The system of claim 1: 1 

said nuclear fuel comprising 1H hydrogen; and 2 

said gamma radiation comprising at least one of the resonant frequencies proximate 6 dm , um , 2 um , 4 um , 3 

u dm m , 2 u dm m , 4 u dm m , ( )
3

22 2πdm , ( )
3

210 2πdm , ( )
3

210 2πum , ( )
3

222 2πum , ( )
3

22 2πu dm m , 4 

( )
3

24 2πu dm m , ( )
3

212 2πu dm m , ( )
3

216 2πu dm m  and the sum: 5 

( )
( )

( )
( )

( ) ( )

( ) ( )

3 3

2 2

3

2

3

2

10 10 16
2 6 4 2 2 2 4

2π 2π

4 6 4 2 10 10 12 2π

4 6 2 2 22 12 2π

µ dd u u d
u d u d u u d e

u d e u d d u u d

u d u d d u u d

m mm m m m
m m m m m m m m

m m m m m m m m m

m m m m m m m m

   + +   + − − + + + +
      
   

= + + − − + +

= + − + − −

and addends thereof, 6 

wherein em  is the rest mass of the electron; wherein: 7 

4He alpha particles together with nuclear fusion energy are produced from said 1H hydrogen, by catalyzing the solar 8 

nuclear fusion reaction ( ) ( ) ( ) ( )1 4
1 24 H 2 He 12.79 MeV 2 5.52 MeV 2 0.42 MeV 4 2e eγ γ γ γ ν−⋅ + → + + + + + .  9 

19. The system of claim 1: 1 

said nuclear fuel comprising 4He alpha particles and 1H hydrogen; 2 

said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
2u dm m π  and 3 

( )1.5
9 2u dm m π ; wherein: 4 

6Li lithium nuclei together with nuclear fusion energy are produced from said 4He alpha particles and said 1H 5 

hydrogen, by catalyzing the nuclear fusion reaction 4 6
2 32 EnergyHe p Li e ν++ → + + + . 6 

20. The system of claim 1: 1 

said nuclear fuel comprising 6Li lithium nuclei and 1H hydrogen; 2 

said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
/ 2dm π  and ( )1.5

18 / 2dm π ; 3 

wherein: 4 
7Be beryllium nuclei together with nuclear fusion energy are produced from said 6Li lithium nuclei and said 1H 5 

hydrogen, by catalyzing the nuclear fusion reaction 6 7
3 4 EnergyLi p Be+ → + .6 

21. The system of claim 1: 1 

said nuclear fuel comprising 7Be beryllium nuclei and electrons e; 2 

said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
/ 2um π  and ( )1.5

6 / 2um π ; 3 
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wherein: 4 
7Li lithium nuclei together with nuclear fusion energy are produced from said 7Be beryllium nuclei and said 5 

electrons e, by catalyzing the nuclear beta-decay reaction 7 7
4 3 EnergyBe e Li ν+ → + + . 6 

22. The system of claim 1: 1 

said nuclear fuel comprising at least one of 8Be beryllium nuclei and 4He alpha particles, and 1H hydrogen; 2 

said gamma radiation comprising at least one of the resonant frequencies proximate 
u dm m , ( )1.5

/ 2u dm m π , 3 

( )1.5
15 / 2u dm m π  and the sum ( )1.5

15 / 2u d u dm m m m π+ ; wherein: 4 

10B boron nuclei together with nuclear fusion energy are produced from at least one of said 8Be beryllium nuclei and 5 
4He alpha particles, and said 1H hydrogen, by catalyzing the nuclear fusion reaction 8 10

4 52 EnergyBe p B e ν++ → + + + . 6 

23. The system of claim 1: 1 

said nuclear fuel comprising 12C carbon nuclei and 1H hydrogen; 2 

said gamma radiation comprising at least one of the resonant frequencies proximate ( ) / 2u dm m+  and 3 

( )3 / 2u dm m⋅ + ; wherein: 4 

14N nitrogen nuclei together with nuclear fusion energy are produced from said 12C carbon nuclei and said 1H 5 

hydrogen, by catalyzing the nuclear fusion reaction 12 14
6 72 EnergyC p N e ν++ → + + + .6 

24. The system of claim 1: 1 

said nuclear fuel comprising 9Be beryllium nuclei and 1H hydrogen; 2 

said gamma radiation comprising at least one of the resonant frequencies proximate 
µ dm m  and 2 µ dm m ; 3 

wherein: 4 

 10B boron nuclei together with nuclear fusion energy are produced from said 9Be beryllium nuclei and said 1H 5 

hydrogen, by catalyzing the nuclear fusion reaction 9 10
4 5 EnergyBe p B+ → + . 6 

25. The system of claim 1: 1 

said nuclear fuel comprising 10Be beryllium nuclei; 2 

said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
/ 2um π , ( )1.5

/ 2u dm m π , 3 

( )1.5
2 / 2u dm m π  and the sum ( ) ( )1.5

2 / 2u u dm m m π+ ; wherein: 4 

10B boron nuclei together with nuclear fusion energy are produced from said 10Be beryllium nuclei, by catalyzing 5 

the nuclear beta-decay reaction 10 10
4 5 EnergyBe B e ν→ + + + . 6 

26. The system of claim 1: 1 

said nuclear fuel comprising 10B boron nuclei and 1H hydrogen; 2 

said gamma radiation comprising at least one of the resonant frequencies proximate ( ) / 2u dm m+  and 3 

( )3 / 2u dm m⋅ + ; wherein: 4 

 11B boron nuclei together with nuclear fusion energy are produced from said 10B boron nuclei and said 1H hydrogen, 5 

by catalyzing the nuclear fusion reaction 10 11
5 5 EnergyB p e B ν+ + → + + . 6 

27. The system of claim 1: 1 

said nuclear fuel comprising 11C carbon nuclei and electrons e; 2 

said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
/ 2um π , ( )1.5

8 / 2um π , 3 

( )1.5
/ 2u dm m π , ( )1.5

4 / 2u dm m π  and the sum ( ) ( )1.5 1.5
8 / 2 4 / 2u u dm m mπ π+ ; wherein: 4 
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11B boron nuclei together with nuclear fusion energy are produced from said 11C carbon nuclei and said electrons e, 5 

by catalyzing the nuclear beta-decay reaction 11 11
6 5 EnergyC e B ν+ → + + . 6 

28. A method for resonantly-catalyzing the release of nuclear fusion energy, comprising subjecting a nuclear fuel to 1 

high-frequency gamma radiation proximate at least one of the resonant frequencies corresponding to um , dm , u dm m , 2 

( ) / 2u dm m+ , ( )
3

22πum , ( )
3

22πdm , ( )
3

22πu dm m , ( ) ( )
3

2/ 2 2u dm m π+ , integer harmonic multiples of said 3 

resonant frequencies, and sums of said resonant frequencies and said integer harmonic multiples, wherein um  is the 4 

current rest mass of the up quark and dm  is the current rest mass of the down quark. 5 

29. The method of claim 28, further comprising producing said gamma using Compton backscattering. 1 

30. The method of claim 28, said nuclear fuel comprising 1H hydrogen. 1 

31. The method of claim 28, said nuclear fuel comprising 2H deuterons. 1 

32. The method of claim 28, said nuclear fuel comprising 3He helions. 1 

33. The method of claim 28, said nuclear fuel comprising 4He alpha particles. 1 

34. The method of claim 28, said nuclear fuel comprising 6Li lithium nuclei. 1 

35. The method of claim 28, said nuclear fuel comprising 7Be beryllium nuclei. 1 

36. The method of claim 28, said nuclear fuel comprising 8Be beryllium nuclei. 1 

37. The method of claim 28, said nuclear fuel comprising 12C carbon nuclei. 1 

38. The method of claim 28, said nuclear fuel comprising 9Be beryllium nuclei. 1 

39. The method of claim 28, said nuclear fuel comprising 10Be beryllium nuclei. 1 

40. The method of claim 28, said nuclear fuel comprising 10B boron nuclei. 1 

41. The method of claim 28, said nuclear fuel comprising 11C carbon nuclei. 1 

42. The method of claim 28, further comprising producing 2H deuterons together with nuclear fusion energy from 1H 1 

hydrogen, by subjecting said nuclear fuel comprising said 1H hydrogen to said gamma radiation comprising at least one 2 

of the resonant frequencies proximate ( )
3

22πµ dm m  and ( )
3

22 2πµ dm m  to catalyze the nuclear fusion reaction 3 

1 1 2
1 1 1H H H Energye ν++ → + + + . 4 

43. The method of claim 28, further comprising producing 3He helions together with nuclear fusion energy from 1H 1 

hydrogen and 2H deuterons, by subjecting said nuclear fuel comprising said 1H hydrogen and said 2H deuterons to said 2 

gamma radiation comprising at least one of the resonant frequencies proximate um , u dm m  and the sum 3 

u u dm m m+  to catalyze the nuclear fusion reaction 2 1 3
1 1 2H H He Energy+ → + . 4 

44. The method of claim 28, further comprising producing 4He alpha particles together with nuclear fusion energy from 1 
3He helions, by subjecting said nuclear fuel comprising said 3He helions to said gamma radiation comprising at least one 2 

of the resonant frequencies proximate 2 um , 6 dm , 4 u dm m , ( )
3

210 2πdm , ( )
3

210 2πum , ( )
3

216 2πu dm m  and 3 

the sum ( ) ( )
3

22 6 4 10 10 16 2πu d u d d u u dm m m m m m m m+ − − + +  to catalyze the nuclear fusion reaction 4 

3 3 4 1 1
2 2 2 1 1He He He H H Energy+ → + + + . 5 

45. The method of claim 28, further comprising producing 4He alpha particles together with nuclear fusion energy from 1 
1H hydrogen, by subjecting said nuclear fuel comprising said 1H hydrogen to said gamma radiation comprising at least 2 

one of the resonant frequencies proximate 6 dm , um , 2 um , 4 um , u dm m , 2 u dm m , 4 u dm m , ( )
3

22 2πdm , 3 
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( )
3

210 2πdm , ( )
3

210 2πum , ( )
3

222 2πum , ( )
3

22 2πu dm m , ( )
3

24 2πu dm m , ( )
3

212 2πu dm m , 4 

( )
3

216 2πu dm m  and the sum: 5 

( )
( )

( )
( )

( ) ( )

( ) ( )

3 3

2 2

3

2

3

2

10 10 16
2 6 4 2 2 2 4

2π 2π

4 6 4 2 10 10 12 2π

4 6 2 2 22 12 2π

µ dd u u d
u d u d u u d e

u d e u d d u u d

u d u d d u u d

m mm m m m
m m m m m m m m

m m m m m m m m m

m m m m m m m m

   + +   + − − + + + +
      
   

= + + − − + +

= + − + − −

and addends thereof, 6 

wherein em  is the rest mass of the electron, to catalyze the solar nuclear fusion reaction 7 

( ) ( ) ( ) ( )1 4
1 24 H 2 He 12.79 MeV 2 5.52 MeV 2 0.42 MeV 4 2e eγ γ γ γ ν−⋅ + → + + + + + .  8 

46. The method of claim 28, further comprising producing 6Li lithium nuclei together with nuclear fusion energy from 1 
4He alpha particles and 1H hydrogen, by subjecting said nuclear fuel comprising said 4He alpha particles and said 1H 2 

hydrogen to said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
2u dm m π  and 3 

( )1.5
9 2u dm m π , to catalyze the nuclear fusion reaction 4 6

2 32 EnergyHe p Li e ν++ → + + + .4 

47. The method of claim 28, further comprising producing 7Be beryllium nuclei together with nuclear fusion energy 1 

from 6Li lithium nuclei and 1H hydrogen, by subjecting said nuclear fuel comprising said 6Li lithium nuclei and said 1H 2 

hydrogen to said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
/ 2dm π  and 3 

( )1.5
18 / 2dm π  to catalyze the nuclear fusion reaction 6 7

3 4 EnergyLi p Be+ → + .4 

48. The method of claim 28, further comprising producing 7Li lithium nuclei together with nuclear fusion energy from 1 
7Be beryllium nuclei and electrons e, by subjecting said nuclear fuel comprising said 7Be beryllium nuclei and said 2 

electrons e to said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
/ 2um π  and 3 

( )1.5
6 / 2um π  to catalyze the nuclear beta-decay reaction 7 7

4 3 EnergyBe e Li ν+ → + + . 4 

49. The method of claim 28, further comprising producing 10B boron nuclei together with nuclear fusion energy from at 1 

least one of 8Be beryllium nuclei and 4He alpha particles, and 1H hydrogen, by subjecting said nuclear fuel comprising at 2 

least one of said 8Be beryllium nuclei and 4He alpha particles, and said 1H hydrogen to said gamma radiation comprising 3 

at least one of the resonant frequencies proximate 
u dm m , ( )1.5

/ 2u dm m π , ( )1.5
15 / 2u dm m π  and the sum 4 

( )1.5
15 / 2u d u dm m m m π+  to catalyze the nuclear fusion reaction 8 10

4 52 EnergyBe p B e ν++ → + + + . 5 

50. The method of claim 28, further comprising producing 14N nitrogen nuclei together with nuclear fusion energy from 1 
12C carbon nuclei and 1H hydrogen, by subjecting said nuclear fuel comprising said 12C carbon nuclei and said 1H 2 

hydrogen to said gamma radiation comprising at least one of the resonant frequencies proximate ( ) / 2u dm m+  and 3 

( )3 / 2u dm m⋅ +  to catalyze the nuclear fusion reaction 12 14
6 72 EnergyC p N e ν++ → + + + .4 

51. The method of claim 28, further comprising producing 10B boron nuclei together with nuclear fusion energy from 1 
9Be beryllium nuclei and 1H hydrogen, by subjecting said nuclear fuel comprising said 9Be beryllium nuclei and said 1H 2 

hydrogen to said gamma radiation comprising at least one of the resonant frequencies proximate 
µ dm m  and 2 µ dm m  3 

to catalyze the nuclear fusion reaction 9 10
4 5 EnergyBe p B+ → + . 4 

52. The method of claim 28, further comprising producing 10B boron nuclei together with nuclear fusion energy from 1 
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10Be beryllium nuclei, by subjecting said nuclear fuel comprising said 10Be beryllium nuclei to said gamma radiation 2 

comprising at least one of the resonant frequencies proximate ( )1.5
/ 2um π , ( )1.5

/ 2u dm m π , ( )1.5
2 / 2u dm m π  and the 3 

sum ( ) ( )1.5
2 / 2u u dm m m π+  to catalyze the nuclear beta-decay reaction 10 10

4 5 EnergyBe B e ν→ + + + . 4 

53. The method of claim 28, further comprising producing 11B boron nuclei together with nuclear fusion energy from 1 
10B boron nuclei and 1H hydrogen, by subjecting said nuclear fuel comprising said 10B boron nuclei and said 1H hydrogen 2 

to said gamma radiation comprising at least one of the resonant frequencies proximate ( ) / 2u dm m+  and ( )3 / 2u dm m⋅ +  3 

to catalyze the nuclear fusion reaction 10 11
5 5 EnergyB p e B ν+ + → + + . 4 

54. The method of claim 28, further comprising producing 11B boron nuclei together with nuclear fusion energy from 1 
11C carbon nuclei and electrons e, by subjecting said nuclear fuel comprising said 11C carbon nuclei and said electrons e 2 

to said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
/ 2um π , ( )1.5

8 / 2um π , 3 

( )1.5
/ 2u dm m π , ( )1.5

4 / 2u dm m π  and the sum ( ) ( )1.5 1.5
8 / 2 4 / 2u u dm m mπ π+  to catalyze the nuclear beta-decay 4 

reaction 11 11
6 5 EnergyC e B ν+ → + + . 5 

55. Energy, produced as a product-by-process from a process for resonantly-catalyzing the release of nuclear fusion 1 

energy, said process comprising subjecting a nuclear fuel to high-frequency gamma radiation proximate at least one of 2 

the resonant frequencies corresponding to um , dm , u dm m , ( ) / 2u dm m+ , ( )
3

22πum , ( )
3

22πdm , 3 

( )
3

22πu dm m , ( ) ( )
3

2/ 2 2u dm m π+ , integer harmonic multiples of said resonant frequencies, and sums of said resonant 4 

frequencies and said integer harmonic multiples, wherein um  is the current rest mass of the up quark and dm  is the 5 

current rest mass of the down quark. 6 

56. The energy product-by-process of claim 55, further comprising producing said gamma using Compton 1 

backscattering. 2 

57. The energy product-by-process of claim 55, said nuclear fuel comprising 1H hydrogen. 1 

58. The energy product-by-process of claim 55, said nuclear fuel comprising 2H deuterons. 1 

59. The energy product-by-process of claim 55, said nuclear fuel comprising 3He helions. 1 

60. The energy product-by-process of claim 55, said nuclear fuel comprising 4He alpha particles. 1 

61. The energy product-by-process of claim 55, said nuclear fuel comprising 6Li lithium nuclei. 1 

62. The energy product-by-process of claim 55, said nuclear fuel comprising 7Be beryllium nuclei. 1 

63. The energy product-by-process of claim 55, said nuclear fuel comprising 8Be beryllium nuclei. 1 

64. The energy product-by-process of claim 55, said nuclear fuel comprising 12C carbon nuclei. 1 

65. The energy product-by-process of claim 55, said nuclear fuel comprising 9Be beryllium nuclei. 1 

66. The energy product-by-process of claim 55, said nuclear fuel comprising 10Be beryllium nuclei. 1 

67. The energy product-by-process of claim 55, said nuclear fuel comprising 10B boron nuclei. 1 

68. The energy product-by-process of claim 55, said nuclear fuel comprising 11C carbon nuclei. 1 

69. The energy product-by-process of claim 55, said process further comprising producing 2H deuterons together with 1 

nuclear fusion energy from 1H hydrogen, by subjecting said nuclear fuel comprising said 1H hydrogen to said gamma 2 

radiation comprising at least one of the resonant frequencies proximate ( )
3

22πµ dm m  and ( )
3

22 2πµ dm m  to 3 

catalyze the nuclear fusion reaction 1 1 2
1 1 1H H H Energye ν++ → + + + . 4 

70. The energy product-by-process of claim 55, said process further comprising producing 3He helions together with 1 
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nuclear fusion energy from 1H hydrogen and 2H deuterons, by subjecting said nuclear fuel comprising said 1H hydrogen 2 

and said 2H deuterons to said gamma radiation comprising at least one of the resonant frequencies proximate um , 3 

u dm m  and the sum u u dm m m+  to catalyze the nuclear fusion reaction 2 1 3
1 1 2H H He Energy+ → + . 4 

71. The energy product-by-process of claim 55, said process further comprising producing 4He alpha particles together 1 

with nuclear fusion energy from 3He helions, by subjecting said nuclear fuel comprising said 3He helions to said gamma 2 

radiation comprising at least one of the resonant frequencies proximate 2 um , 6 dm , 4 u dm m , ( )
3

210 2πdm , 3 

( )
3

210 2πum , ( )
3

216 2πu dm m  and the sum ( ) ( )
3

22 6 4 10 10 16 2πu d u d d u u dm m m m m m m m+ − − + +  to catalyze 4 

the nuclear fusion reaction 3 3 4 1 1
2 2 2 1 1He He He H H Energy+ → + + + . 5 

72. The energy product-by-process of claim 55, said process further comprising producing 4He alpha particles together 1 

with nuclear fusion energy from 1H hydrogen, by subjecting said nuclear fuel comprising said 1H hydrogen to said 2 

gamma radiation comprising at least one of the resonant frequencies proximate 6 dm , um , 2 um , 4 um , u dm m , 3 

2 u dm m , 4 u dm m , ( )
3

22 2πdm , ( )
3

210 2πdm , ( )
3

210 2πum , ( )
3

222 2πum , ( )
3

22 2πu dm m , 4 

( )
3

24 2πu dm m , ( )
3

212 2πu dm m , ( )
3

216 2πu dm m  and the sum: 5 

( )
( )

( )
( )

( ) ( )

( ) ( )

3 3

2 2

3

2

3

2

10 10 16
2 6 4 2 2 2 4

2π 2π

4 6 4 2 10 10 12 2π

4 6 2 2 22 12 2π

µ dd u u d
u d u d u u d e

u d e u d d u u d

u d u d d u u d

m mm m m m
m m m m m m m m

m m m m m m m m m

m m m m m m m m

   + +   + − − + + + +
      
   

= + + − − + +

= + − + − −

and addends thereof, 6 

wherein em  is the rest mass of the electron, to catalyze the solar nuclear fusion reaction 7 

( ) ( ) ( ) ( )1 4
1 24 H 2 He 12.79 MeV 2 5.52 MeV 2 0.42 MeV 4 2e eγ γ γ γ ν−⋅ + → + + + + + .  8 

73. The energy product-by-process of claim 55, said process further comprising producing 6Li lithium nuclei together 1 

with nuclear fusion energy from 4He alpha particles and 1H hydrogen, by subjecting said nuclear fuel comprising said 2 
4He alpha particles and said 1H hydrogen to said gamma radiation comprising at least one of the resonant frequencies 3 

proximate ( )1.5
2u dm m π  and ( )1.5

9 2u dm m π , to catalyze the nuclear fusion reaction 4 

4 6
2 32 EnergyHe p Li e ν++ → + + + .5 

74. The energy product-by-process of claim 55, said process further comprising producing 7Be beryllium nuclei 1 

together with nuclear fusion energy from 6Li lithium nuclei and 1H hydrogen, by subjecting said nuclear fuel comprising 2 

said 6Li lithium nuclei and said 1H hydrogen to said gamma radiation comprising at least one of the resonant frequencies 3 

proximate ( )1.5
/ 2dm π  and ( )1.5

18 / 2dm π  to catalyze the nuclear fusion reaction 6 7
3 4 EnergyLi p Be+ → + .4 

75. The energy product-by-process of claim 55, said process further comprising producing 7Li lithium nuclei together 1 

with nuclear fusion energy from 7Be beryllium nuclei and electrons e, by subjecting said nuclear fuel comprising said 7Be 2 

beryllium nuclei and said electrons e to said gamma radiation comprising at least one of the resonant frequencies 3 

proximate ( )1.5
/ 2um π  and ( )1.5

6 / 2um π  to catalyze the nuclear beta-decay reaction 7 7
4 3 EnergyBe e Li ν+ → + + . 4 

76. The energy product-by-process of claim 55, said process further comprising producing 10B boron nuclei together 1 
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with nuclear fusion energy from at least one of 8Be beryllium nuclei and 4He alpha particles, and 1H hydrogen, by 2 

subjecting said nuclear fuel comprising at least one of said 8Be beryllium nuclei and 4He alpha particles, and said 1H 3 

hydrogen to said gamma radiation comprising at least one of the resonant frequencies proximate 
u dm m , 4 

( )1.5
/ 2u dm m π , ( )1.5

15 / 2u dm m π  and the sum ( )1.5
15 / 2u d u dm m m m π+  to catalyze the nuclear fusion reaction 5 

8 10
4 52 EnergyBe p B e ν++ → + + + . 6 

77. The energy product-by-process of claim 55, said process further comprising producing 14N nitrogen nuclei together 1 

with nuclear fusion energy from 12C carbon nuclei and 1H hydrogen, by subjecting said nuclear fuel comprising said 12C 2 

carbon nuclei and said 1H hydrogen to said gamma radiation comprising at least one of the resonant frequencies 3 

proximate ( ) / 2u dm m+  and ( )3 / 2u dm m⋅ +  to catalyze the nuclear fusion reaction 12 14
6 72 EnergyC p N e ν++ → + + + .4 

78. The energy product-by-process of claim 55, said process further comprising producing 10B boron nuclei together 1 

with nuclear fusion energy from 9Be beryllium nuclei and 1H hydrogen, by subjecting said nuclear fuel comprising said 2 
9Be beryllium nuclei and said 1H hydrogen to said gamma radiation comprising at least one of the resonant frequencies 3 

proximate 
µ dm m  and 2 µ dm m  to catalyze the nuclear fusion reaction 9 10

4 5 EnergyBe p B+ → + . 4 

79. The energy product-by-process of claim 55, said process further comprising producing 10B boron nuclei together 1 

with nuclear fusion energy from 10Be beryllium nuclei, by subjecting said nuclear fuel comprising said 10Be beryllium 2 

nuclei to said gamma radiation comprising at least one of the resonant frequencies proximate ( )1.5
/ 2um π , 3 

( )1.5
/ 2u dm m π , ( )1.5

2 / 2u dm m π  and the sum ( ) ( )1.5
2 / 2u u dm m m π+  to catalyze the nuclear beta-decay reaction 4 

10 10
4 5 EnergyBe B e ν→ + + + . 5 

80. The energy product-by-process of claim 55, said process further comprising producing 11B boron nuclei together 1 

with nuclear fusion energy from 10B boron nuclei and 1H hydrogen, by subjecting said nuclear fuel comprising said 10B 2 

boron nuclei and said 1H hydrogen to said gamma radiation comprising at least one of the resonant frequencies proximate 3 

( ) / 2u dm m+  and ( )3 / 2u dm m⋅ +  to catalyze the nuclear fusion reaction 10 11
5 5 EnergyB p e B ν+ + → + + . 4 

81. The energy product-by-process of claim 55, said process further comprising producing 11B boron nuclei together 1 

with nuclear fusion energy from 11C carbon nuclei and electrons e, by subjecting said nuclear fuel comprising said 11C 2 

carbon nuclei and said electrons e to said gamma radiation comprising at least one of the resonant frequencies proximate 3 

( )1.5
/ 2um π , ( )1.5

8 / 2um π , ( )1.5
/ 2u dm m π , ( )1.5

4 / 2u dm m π  and the sum ( ) ( )1.5 1.5
8 / 2 4 / 2u u dm m mπ π+  to catalyze 4 

the nuclear beta-decay reaction 11 11
6 5 EnergyC e B ν+ → + + . 5 

82. A high-frequency gamma radiation source apparatus for use in resonantly-catalyzing the release of nuclear fusion 1 

energy, said source preconfigured for producing gamma radiation proximate at least one of the resonant frequencies 2 

corresponding to um , dm , u dm m , ( ) / 2u dm m+ , ( )
3

22πum , ( )
3

22πdm , ( )
3

22πu dm m , ( ) ( )
3

2/ 2 2u dm m π+ , 3 

integer harmonic multiples of said resonant frequencies, and sums of said resonant frequencies and said integer harmonic 4 

multiples, wherein um  is the current rest mass of the up quark and dm  is the current rest mass of the down quark.5 

83. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies ( )
3

22πµ dm m  and ( )
3

22 2πµ dm m .2 

84. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies um , u dm m  and the sum u u dm m m+ .2 
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The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies 2 um , 6 dm , 4 u dm m , ( )
3

210 2πdm , ( )
3

210 2πum , ( )
3

216 2πu dm m  and the sum  2 

( ) ( )
3

22 6 4 10 10 16 2πu d u d d u u dm m m m m m m m+ − − + + .3 

85. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies 6 dm , um , 2 um , 4 um , u dm m , 2 u dm m , 4 u dm m , ( )
3

22 2πdm , ( )
3

210 2πdm , 2 

( )
3

210 2πum , ( )
3

222 2πum , ( )
3

22 2πu dm m , ( )
3

24 2πu dm m , ( )
3

212 2πu dm m , ( )
3

216 2πu dm m  and the 3 

sum 

( )
( )

( )
( )

( ) ( )

( ) ( )

3 3

2 2

3

2

3

2

10 10 16
2 6 4 2 2 2 4

2π 2π

4 6 4 2 10 10 12 2π

4 6 2 2 22 12 2π

µ dd u u d
u d u d u u d e

u d e u d d u u d

u d u d d u u d

m mm m m m
m m m m m m m m

m m m m m m m m m

m m m m m m m m

   + +   + − − + + + +
      
   

= + + − − + +

= + − + − −

and addends 4 

thereof.5 

86. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies ( )1.5
2u dm m π  and ( )1.5

9 2u dm m π .2 

87. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies ( )1.5
/ 2dm π  and ( )1.5

18 / 2dm π .2 

88. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies ( )1.5
/ 2um π  and ( )1.5

6 / 2um π .2 

89. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies 
u dm m , ( )1.5

/ 2u dm m π , ( )1.5
15 / 2u dm m π  and the sum ( )1.5

15 / 2u d u dm m m m π+ .2 

90. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies ( ) / 2u dm m+  and ( )3 / 2u dm m⋅ + .2 

91. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies 
µ dm m  and 2 µ dm m .2 

92. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies ( )1.5
/ 2um π , ( )1.5

/ 2u dm m π , ( )1.5
2 / 2u dm m π  and the sum ( ) ( )1.5

2 / 2u u dm m m π+ .2 

93. The apparatus of claim 82, said source preconfigured for producing gamma radiation proximate at least one of the 1 

resonant frequencies ( )1.5
/ 2um π , ( )1.5

8 / 2um π , ( )1.5
/ 2u dm m π , ( )1.5

4 / 2u dm m π  and the sum 2 

( ) ( )1.5 1.5
8 / 2 4 / 2u u dm m mπ π+ . 3 



JRYFUSION 

55 

 

Abstract 

A system and related apparatus, method and energy product-by-process for resonantly-catalyzing the release of 

nuclear fusion energy, comprising: a nuclear fuel; a high-frequency gamma radiation source producing gamma radiation 

proximate at least one of the resonant frequencies corresponding to um , dm , u dm m , ( ) / 2u dm m+ , ( )
3

22πum , 

( )
3

22πdm , ( )
3

22πu dm m , ( ) ( )
3

2/ 2 2u dm m π+ , integer harmonic multiples of said resonant frequencies, and sums of 5 

said resonant frequencies and said integer harmonic multiples, wherein um  is the current rest mass of the up quark and 

dm  is the current rest mass of the down quark; and said gamma radiation source configured in relation to said nuclear 

fuel so as to subject said nuclear fuel to said gamma radiation.
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