A BRIEF COMMENT ON A PREVIOUS PAPER

GERMÁN ANDRÉS PAZ

In this paper we make a brief comment about the article "On the Interval [n, 2n]: Primes, Composites and Perfect Powers" (General Mathematics Notes, Vol. 15, No. 1, March 2013, pp. 1–15; arXiv:1309.0479 [math.NT]).

On page 8 of the mentioned article we can read the following:

In the following table we also show that the interval $[2n, 4n]$
contains at least two prime numbers r and s such that $2n<$
$r < 3n < s < 4n$ for every integer $2n$ such that $2 \le 2n \le 14$:

2n	r	3n	s	4n
2	2, 3	3	3	4
4	5	6	7	8
6	7	9	11	12
8	11	12	13	16
10	11, 13	15	17, 19	20
12	13, 17	18	19, 23	24
14	17, 19	21	23	28

This should be replaced with the following:

In the following table we also show that the interval [2n, 4n] contains at least two prime numbers r and s such that 2n < r < 3n < s < 4n for every integer 2n such that $4 \le 2n \le 14$:

2n	r	3n	s	4n
4	5	6	7	8
6	7	9	11	12
8	11	12	13	16
10	11, 13	15	17, 19	20
12	13, 17	18	19, 23	24
11	17 10	21	23	28

In other words, (1) should be replaced with (2). This is a minor error which does not affect results at all.

Now, let us consider the following true statements:

- The intervals [2n, 3n] and [3n, 4n] both contain at least one prime for n = 1.
- The interval [2n, 4n] contains at least two prime numbers r and s such that 2n < r < 3n < s < 4n for every integer 2n such that $4 \le 2n \le 14$, according to (2).

Date: December 31, 2013.

GERMÁN ANDRÉS PAZ

If we combine these two statements with Theorem 6.5 (see article), we conclude that the intervals [2n, 3n] and [3n, 4n] both contain at least one prime number for every integer $n \geq 1$ (already proved by M. El Bachraoui and Andy Loo).