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Foreword

These notes are neither an introduction nor a survey (if only a brief) of
noncommutative geometry – later NCG; rather, they strive to answer some
naive but vital questions:

What is the purpose of NCG and what is it good for? Why a number
theorist or an algebraic geometer should care about the NCG? Can NCG
solve open problems of classical geometry inaccessible otherwise? In other
words, why does NCG matter? What is it anyway?

Good answer means good examples. A sweetheart of NCG called non-
commutative torus captures classical geometry of elliptic curves because such
a torus is a coordinate ring for elliptic curves. In other words, one deals with
a functor from algebraic geometry to the NCG; such functors are at the heart
of our book.

What is NCG anyway? It is a calculus of functors on the classical spaces
(e.g. algebraic, geometric, topological, etc) with the values in NCG. Such
an approach departs from the tradition of recasting geometry of the classi-
cal space X in terms of the C∗-algebra C(X) of continuous complex-valued
functions on X, see the monograph by [Connes 1994] [16].

Boston, April 2014 Igor Nikolaev
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Introduction

It is not easy to write an elementary introduction to the NCG because the
simplest non-trivial examples are mind-blowing and involve the KK-groups,
subfactors, Sklyanin algebras, etc. Such a material cannot be shrink-wrapped
into a single graduate course being the result of a slow roasting of ideas from
different (and distant) mathematical areas. This universality of NCG is ex-
actly its traction force giving the reader a long lost sense of unity of mathe-
matics. In writing these notes the author had in mind a graduate student in
(say) number theory eager to learn something new, e.g. a noncommutative
torus with real multiplication; it will soon transpire that such an object is
linked to the K-rational points of elliptic curves and the Langlands program.

The book has three parts. Part I is preparatory: Chapter 1 deals with
the simplest examples of functors arising in algebraic geometry, number the-
ory and topology; the functors take value in a category of the C∗-algebras
known as noncommutative tori. Using these functors one gets a set of non-
commutative invariants for elliptic curves and Anosov’s automorphisms of
the two-dimensional torus. Chapter 2 is a brief introduction to the cate-
gories, functors and natural transformations; they will be used throughout
the book. Chapter 3 covers an essential information about the category of
C∗-algebras and their K-theory; we introduce certain important classes of
the C∗-algebras: the AF-algebras, the UHF-algebras and the Cuntz-Krieger
algebras. Our choice of the C∗-algebras is motivated by their applications in
Part II.

Part II deals with the noncommutative invariants obtained from the func-
tors acting on various classical spaces. Chapter 4 is devoted to such functors
on the topological spaces with values in the category of the so-called station-
ary AF-algebras; the noncommutative invariants are the Handelman triples
(Λ, [I], K), where Λ is an order in a real algebraic number field K and [I]
an equivalence class of the ideals of Λ. Chapter 5 deals with the examples
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of functors arising in projective algebraic geometry and their noncommuta-
tive invariants. Finally, Chapter 6 covers functors in number theory and the
corresponding invariants.

Part III is a brief survey of the NCG; the survey is cursory yet an extensive
guide to the literature has been compiled at the end of each chapter. We hope
that the reader can instruct himself by looking at the original publications;
we owe an apology to the authors whose works are not on the list.

There exist several excellent textbooks on the NCG. The first and fore-
most is the monograph by A. Connes “Géométrie Non Commutative”, Paris,
1990 and its English edition “Noncommutative Geometry”, Academic Press,
1994. The books by J. Madore “An Introduction to Noncommutative Dif-
ferential Geometry & its Applications”, Cambridge Univ. Press, 1995, by
J. M. Gracia-Bondia, J. C. Varilly and H. Figueroa “Elements of Noncom-
mutative Geometry”, Birkhäuser, 2000 and by M. Khalkhali “Basic Non-
commutative Geometry”, EMS Series of Lectures in Mathematics, 2007 treat
particular aspects of Connes’ monograph. A different approach to the NCG
is covered in a small but instructive book by Yu. I. Manin “Topics in Non-
commutative Geometry”, Princeton Univ. Press, 1991. Finally, a more spe-
cialized “Noncommutative Geometry, Quantum Fields and Motives”, AMS
Colloquium Publications, 2008 by A. Connes and M. Marcolli is devoted to
the links to physics and number theory. None of these books treat the NCG
as a functor [63].

I thank the organizers, participants and sponsors of the Spring Institute
on Noncommutative Geometry and Operator Algebras (NCGOA) held annu-
ally at the Vanderbilt University in Nashville, Tennessee; these notes grew
from efforts to find out what is going on there. (I still don’t have an answer.)
I am grateful to folks who helped me with the project; among them are
P. Baum, D. Bisch, B. Blackadar, O. Bratteli, A. Connes, J. Cuntz, G. El-
liott, K. Goodearl, D. Handelman, N. Higson, B. Hughes, V. F. R. Jones,
M. Kapranov, M. Khalkhali, W. Krieger, Yu. Manin, V. Manuilov, M. Mar-
colli, V. Mathai, A. Mishchenko, S. Novikov, M. Rieffel, W. Thurston, V. Troit-
sky, G. Yu and others.
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Chapter 1

Model Examples

We shall start with the simplest functors arising in algebraic geometry, num-
ber theory and topology; all these functors range in a category of the C∗-
algebras called noncommutative tori. We strongly believe that a handful
of simple examples tell more than lengthy theories based on them; we en-
courage the reader to keep these model functors in mind for the rest of the
book. No special knowledge of the C∗-algebras, elliptic curves or Anosov
automorphisms (beyond an intuitive level) is required at this point; the in-
terested reader can look up the missing definitions in the standard literature
indicated at the end of each section.

1.1 Noncommutative torus

The noncommutative torus is an associative algebra over C of particular
simplicity and beauty; such an algebra can be defined in several equivalent
ways, e.g. as the universal algebra C〈u, v〉 on two unitary generators u and
v satisfying the unique commutation relation vu = e2πiθuv, where θ is a real
number. There is a more geometric introduction as a deformation of the
commutative algebra C∞(T 2) of smooth complex-valued functions on the
two-dimensional torus T 2; we shall pick up the latter because it clarifies the
origin and notation for such algebras. Roughly speaking, one starts with
the commutative algebra C∞(T 2) of infinitely differentiable complex-valued
functions on T 2 endowed with the usual pointwise sum and product of two
functions. The idea is to replace the commutative product f(x)g(x) of func-
tions f, g ∈ C∞(T 2) by a non-commutative product f(x) ∗~ g(x) depending

5



6 CHAPTER 1. MODEL EXAMPLES

on a continuous deformation parameter ~, so that ~ = 0 corresponds to the
usual product f(x)g(x); the product f(x) ∗~ g(x) must be associative for
each value of ~. To achieve the goal, it is sufficient to construct the Poisson
bracket {f, g} on C∞(T 2), i.e. a binary operation satisfying the identities
{f, f} = 0 and {f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0; the claim is a
special case of Kontsevich’s Theorem for the Poisson manifolds, see Section
14.3. The algebra C∞~ (T 2) equipped with the usual sum f(x) + g(x) and
a non-commutative associative product f(x) ∗~ g(x) is called a deformation
quantization of algebra C∞(T 2).

The required Poisson bracket can be constructed as follows. For a real
number θ define a bracket on C∞(T 2) by the formula

{f, g}θ := θ

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
.

The reader is encouraged to verify that the bracket satisfies the identities
{f, f}θ = 0 and {f, {g, h}θ}θ + {h, {f, g}θ}θ + {g, {h, f}θ}θ = 0, i.e. is
the Poisson bracket. The Kontsevich Theorem says that there exists an
associative product f ∗~ g on C∞(T 2) obtained from the bracket {f, g}θ.
Namely, let ϕ and ψ denote the Fourier transform of functions f and g
respectively; one can define an ~-family of products between the Fourier
transforms according to the formula

(ϕ ∗~ ψ)(p) =
∑
q∈Z2

ϕ(q)ψ(p− q)e−πi~ k(p,q),

where k(p, q) = θ(pq−qp) is the kernel of the Fourier transform of the Poisson
bracket {f, g}θ, i.e. an expression defined by the formula

{ϕ, ψ}θ = −4π2
∑
q∈Z2

ϕ(q)ψ(p− q)k(q, p− q).

The product f ∗~ g is defined as a pull back of the product (ϕ ∗~ ψ); the
resulting associative algebra C∞~,θ(T

2) is called the deformation quantization
of C∞(T 2) in the direction θ defined by the Poisson bracket {f, g}θ, see Fig.
1.1.

Remark 1.1.1 The algebra C∞~,θ(T
2) is endowed with the natural involution

coming from the complex conjugation on C∞(T 2), so that ϕ∗(p) := ϕ̄(−p)
for all p ∈ Z2. The natural norm on C∞~,θ(T

2) comes from the operator norm
of the Schwartz functions ϕ, ψ ∈ S(Z2) acting on the Hilbert space `2(Z2).
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Definition 1.1.1 By a noncommutative torus Ageometricθ one understands the
C∗-algebra obtained from the norm closure of the ∗-algebra C∞1, θ(T

2).

C∞(T 2)

fg f ∗~ g

C direction θ

'
&

$
%

�
�
�
��

�
�
�
��

? ?-

Figure 1.1: Deformation of algebra C∞(T 2).

The less visual analytic definition of the noncommutative torus involves
bounded linear operators acting on the Hilbert space H; the reader can think
of the operators as the infinite-dimensional matrices over C. Namely, let S1

be the unit circle; denote by L2(S1) the Hilbert space of the square inte-
grable complex valued functions on S1. Fix a real number θ ∈ [0, 1); for
every f(e2πit) ∈ L2(S1) we shall consider two bounded linear operators U
and V acting by the formula{

U [f(e2πit)] = f(e2πi(t−θ))
V [f(e2πit)] = e2πitf(e2πit).

It is verified directly that 
V U = e2πiθUV,
UU∗ = U∗U = E,
V V ∗ = V ∗V = E,

where U∗ and V ∗ are the adjoint operators of U and V , respectively, and E
is the identity operator.
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Definition 1.1.2 By a noncommutative torus Aanalyticθ one understands the
C∗-algebra generated by the operators U and V acting on the Hilbert space
L2(S1).

The algebraic definition of the noncommutative torus is the shortest; it in-
volves the universal algebras, i.e. the associative algebras given by the gen-
erators and relations. Namely, let C〈x1, x2, x3, x4〉 be the polynomial ring in
four non-commuting variables x1, x2, x3 and x4. Consider a two-sided ideal,
Iθ, generated by the relations

x3x1 = e2πiθx1x3,
x1x2 = x2x1 = e,
x3x4 = x4x3 = e.

Definition 1.1.3 By a noncommutative torus Aalgebraicθ one understands the
C∗-algebra given by the norm closure of the ∗-algebra
C〈x1, x2, x3, x4〉/Iθ, where the involution acts on the generators according to
the formula x∗1 = x2 and x∗3 = x4.

Theorem 1.1.1 Ageometricθ
∼= Aanalyticθ

∼= Aalgebraicθ

Proof. The isomorphism Aanalyticθ
∼= Aalgebraicθ is obvious, because one can

write x1 = U, x2 = U∗, x3 = V and x4 = V ∗. The isomorphism Ageometricθ
∼=

Aanalyticθ is established by the identification of functions t 7→ e2πitp ofAgeometricθ

with the unitary operators Up for each p ∈ Z2; then the generators of Z2 will
correspond to the operators U and V . �

Remark 1.1.2 We shall write Aθ to denote an abstract noncommutative
torus independent of its geometric, analytic or algebraic realization.

The noncommutative torus Aθ has a plethora of remarkable properties; for
the moment we shall dwell on the most fundamental: Morita equivalence
and real multiplication. Roughly speaking, the first property presents a basic
equivalence relation in the category of noncommutative tori; such a relation
indicates that Aθ and Aθ′ are identical from the standpoint of noncommu-
tative geometry. The second property is rare; only a countable family of
non-equivalent Aθ can have real multiplication. The property means that
the ring of endomorphisms of Aθ is non-trivial, i.e. it exceeds the ring Z. To
give an exact definition, denote by K the C∗-algebra of all compact operators.
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Definition 1.1.4 The noncommutative torus Aθ is said to be stably isomor-
phic (Morita equivalent) to a noncommutative torus Aθ′ whenever Aθ⊗K ∼=
Aθ′ ⊗K.

Recall that the Morita equivalence means that the associative algebras A
and A′ have the same category of projective modules, i.e. Mod (A) ∼=
Mod (A′). It is notoriously hard to tell (in intrinsic terms) when two non-
isomorphic algebras are Morita equivalent; of course, if A ∼= A′ then A is
Morita equivalent to A′. The following remarkable result provides a clear and
definitive solution to the Morita equivalence problem for the noncommutative
tori; it would be futile to talk about any links to the elliptic curves (complex
tori) if a weaker or fuzzier result were true.

Theorem 1.1.2 (Rieffel) The noncommutative tori Aθ and Aθ′ are stably
isomorphic (Morita equivalent) if and only if

θ′ =
aθ + b

cθ + d
for some matrix

(
a b
c d

)
∈ SL2(Z).

The second fundamental property of the algebra Aθ is the so-called real
multiplication; such a multiplication signals exceptional symmetry of Aθ.
Recall that the Weierstrass uniformization of elliptic curves by the lattices
Lτ := Z + Zτ gives rise to the complex multiplication, i.e. phenomenon of
an unusual behavior of the endomorphism ring of Lτ ; the noncommutative
torus Aθ demonstrates the same behavior with (almost) the same name. To
introduce real multiplication, denote by Q the set of all quadratic irrational
numbers, i.e. the irrational roots of all quadratic polynomials with integer
coefficients.

Theorem 1.1.3 (Manin) The endomorphism ring of a noncommutative
torus Aθ is given by the formula

End (Aθ) ∼=
{
Z, if θ ∈ R− (Q∪ Q)
Z + fOk, if θ ∈ Q,

where integer f ≥ 1 is conductor of an order in the ring of integers Ok of the
real quadratic field k = Q(

√
D).

Definition 1.1.5 The noncommutative torus Aθ is said to have real multi-
plication if End (Aθ) is bigger than Z, i.e. θ is a quadratic irrationality; we

shall write A(D,f)
RM to denote noncommutative tori with real multiplication by

an order of conductor f in the quadratic field Q(
√
D),
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Remark 1.1.3 It is easy to see that real multiplication is an invariant of
the stable isomorphism (Morita equivalence) class of noncommutative torus
Aθ.

Guide to the literature. For an authentic introduction to the noncommu-
tative tori we encourage the reader to start with the survey paper by [Rieffel
1990] [89]. The noncommutative torus is also known as the irrational rota-
tion algebra, see [Pimsner & Voiculescu 1980] [83] and [Rieffel 1981] [88]. The
real multiplication has been introduced and studied by [Manin 2003] [52].

1.2 Elliptic curves

Elliptic curves are so fundamental that they hardly need any introduction;
many basic facts and open problems of complex analysis, algebraic geometry
and number theory can be reformulated in terms of such curves. Perhaps it is
the single most ancient mathematical object so well explored yet hiding the
deepest unsolved problems, e.g. the Birch and Swinnerton-Dyer Conjecture.
Unless otherwise stated, we deal with the elliptic curves over the field C of
complex numbers; recall that an elliptic curve is the subset of the complex
projective plane of the form

E(C) = {(x, y, z) ∈ CP 2 | y2z = 4x3 + axz2 + bz3},

where a and b are some constant complex numbers. The real points of E(C)
are depicted in Figure 1.2.

�
�

a < 0 a > 0

Figure 1.2: The real points of an affine elliptic curve y2 = 4x3 + ax.
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Remark 1.2.1 It is known that each elliptic curve E(C) is isomorphic to the
set of points of intersection of two quadric surfaces in the complex projective
space CP 3 given by the system of homogeneous equations{

u2 + v2 + w2 + z2 = 0,
Av2 +Bw2 + z2 = 0,

where A and B are some constant complex numbers and (u, v, w, z) ∈ CP 3;
the system is called the Jacobi form of elliptic curve E(C).

Definition 1.2.1 By a complex torus one understands the space C/(Zω1 +
Zω2), where ω1 and ω2 are linearly independent vectors in the complex plane
C, see Fig. 1.3; the ratio τ = ω2/ω1 is called a complex modulus.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

--�
��
�
�

'
&
$
%

C/(Z + Zτ)C

1

τ

factor
map

Figure 1.3: Complex torus C/(Z + Zτ).

Remark 1.2.2 Two complex tori C/(Z+Zτ) and C/(Z+Zτ ′) are isomorphic
if and only if

τ ′ =
aτ + b

cτ + d
for some matrix

(
a b
c d

)
∈ SL2(Z).

(We leave the proof to the reader. Hint: notice that z 7→ αz is an invertible
holomorphic map for each α ∈ C− {0}.)

One may wonder if the complex analytic manifold C/(Z+Zτ) can be embed-
ded into an n-dimensional complex projective space as an algebraic variety;
it turns out that the answer is emphatically yes even for the case n = 2. The
following classical result relates complex torus C/(Z + Zτ) with an elliptic
curve E(C) in the projective plane CP 2.
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Theorem 1.2.1 (Weierstrass) There exists a holomorphic embedding

C/(Z + Zτ) ↪→ CP 2

given by the formula

z 7→
{

(℘(z), ℘′(z), 1) for z 6∈ Lτ := Z + Zτ ,
(0, 1, 0) for z ∈ Lτ

,

which is an isomorphism between complex torus C/(Z+Zτ) and elliptic curve

E(C) = {(x, y, z) ∈ CP 2 | y2z = 4x3 + axz2 + bz3},

where ℘(z) is the Weierstrass function defined by the convergent series

℘(z) =
1

z2
+

∑
ω∈Lτ−{0}

(
1

(z − ω)2
− 1

ω2

)
.

and {
a = −60

∑
ω∈Lτ−{0}

1
ω4 ,

b = −140
∑
ω∈Lτ−{0}

1
ω6 .

Remark 1.2.3 Roughly speaking, the Weierstrass Theorem identifies ellip-
tic curves E(C) and complex tori C/(Zω1 + Zω2); we shall write Eτ to denote
elliptic curve corresponding to the complex torus of modulus τ = ω2/ω1.

Remark 1.2.4 (First encounter with functors) The declared purpose
of our notes were functors with the range in category of associative algebras;
as a model example we picked the category of noncommutative tori. Based
on what is known about the algebra Aθ, one cannot avoid the following fun-
damental question: Why the isomorphisms of elliptic curves look exactly the
same as the stable isomorphisms (Morita equivalences) of noncommutative
tori? In other words, what makes the diagram in Fig. 1.4 commute?

To settle the problem, we presume that the observed phenomenon is the part
of a categorical correspondence between elliptic curves and noncommutative
tori; the following theorem says that it is indeed so.

Theorem 1.2.2 There exists a covariant functor F from the category of all
elliptic curves Eτ to the category of noncommutative tori Aθ, such that if Eτ is
isomorphic to Eτ ′ then Aθ = F (Eτ ) is stably isomorphic (Morita equivalent)
to Aθ′ = F (Eτ ′).
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? ?
-

-

Aθ

F F

Aθ′=aθ+b
cθ+d

Eτ Eτ ′=aτ+b
cτ+d

stably

isomorphic

isomorphic

Figure 1.4: Fundamental phenomenon.

Proof. We shall give an algebraic proof of this fact based on the notion of a
Sklyanin algebra; there exists a geometric proof using the notion of measured
foliations and the Teichmüller theory, see Section 5.1.2. Recall that the
Sklyanin algebra S(α, β, γ) is a free C-algebra on four generators x1, . . . , x4

and six quadratic relations:

x1x2 − x2x1 = α(x3x4 + x4x3),
x1x2 + x2x1 = x3x4 − x4x3,
x1x3 − x3x1 = β(x4x2 + x2x4),
x1x3 + x3x1 = x4x2 − x2x4,
x1x4 − x4x1 = γ(x2x3 + x3x2),
x1x4 + x4x1 = x2x3 − x3x2,

where α + β + γ + αβγ = 0, see e.g. [Smith & Stafford 1992] [99], p. 260.
The algebra S(α, β, γ) is isomorphic to a (twisted homogeneous) coordinate
ring of elliptic curve Eτ ⊂ CP 3 given in its Jacobi form{

u2 + v2 + w2 + z2 = 0,
1−α
1+β

v2 + 1+α
1−γw

2 + z2 = 0;

the latter means that S(α, β, γ) satisfies the fundamental isomorphism

Mod (S(α, β, γ))/Tors ∼= Coh (Eτ ),

where Coh is the category of quasi-coherent sheaves on Eτ , Mod the category
of graded left modules over the graded ring S(α, β, γ) and Tors the full sub-
category of Mod consisting of the torsion modules, see [Serre 1955] [91]. The
algebra S(α, β, γ) defines a natural automorphism σ : Eτ → Eτ of the elliptic
curve Eτ , see e.g. [Stafford & van den Bergh 2001] [100], p. 173. Fix an
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automorphism σ of order 4, i.e. σ4 = 1; in this case β = 1, γ = −1 and it is
known that system of quadratic relations for the Sklyanin algebra S(α, β, γ)
can be brought to a skew symmetric form

x3x1 = µe2πiθx1x3,
x4x2 = 1

µ
e2πiθx2x4,

x4x1 = µe−2πiθx1x4,
x3x2 = 1

µ
e−2πiθx2x3,

x2x1 = x1x2,
x4x3 = x3x4,

where θ = Arg (q) and µ = |q| for some complex number q ∈ C − {0}, see
[Feigin & Odesskii 1989] [26], Remark 1.

On the other hand, the system of relations involved in the algebraic def-
inition of noncommutative torus Aθ is equivalent to the following system of
quadratic relations 

x3x1 = e2πiθx1x3,
x4x2 = e2πiθx2x4,
x4x1 = e−2πiθx1x4,
x3x2 = e−2πiθx2x3,
x2x1 = x1x2 = e,
x4x3 = x3x4 = e.

(We leave the proof to the reader as an exercise in non-commutative algebra.)
Comparing these relations with the skew symmetric relations for the Sklyanin
algebra S(α, 1,−1), one concludes that they are almost identical; to pin down
the difference we shall add two extra relations

x1x3 = x3x4 =
1

µ
e

to relations of the Sklyanin algebra and bring it (by multiplication and can-
cellations) to the following equivalent form

x3x1x4 = e2πiθx1,
x4 = e2πiθx2x4x1,

x4x1x3 = e−2πiθx1,
x2 = e−2πiθx4x2x3,
x2x1 = x1x2 = 1

µ
e,

x4x3 = x3x4 = 1
µ
e.
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Doing the same type of equivalent transformations to the system of relations
for the noncommutative torus, one brings the system to the form

x3x1x4 = e2πiθx1,
x4 = e2πiθx2x4x1,

x4x1x3 = e−2πiθx1,
x2 = e−2πiθx4x2x3,
x2x1 = x1x2 = e,
x4x3 = x3x4 = e.

Thus the only difference between relations for the Sklyanin algebra (modulo
the ideal Iµ generated by relations x1x3 = x3x4 = 1

µ
e) and such for the

noncommutative torus Aθ is a scaling of the unit 1
µ
e. Thus one obtains the

following remarkable isomorphism

Aθ ∼= S(α, 1,−1) / Iµ.

Remark 1.2.5 (Noncommutative torus as coordinate ring of Eτ)
Roughly speaking, the above formula says that modulo the ideal Iµ the non-
commutative torus Aθ is a coordinate ring of elliptic curve Eτ .

The required functor F can be obtained as a quotient map of the fundamental
(Serre) isomorphism

Iµ\Coh (Eτ ) ∼= Mod (Iµ\S(α, 1,−1))/Tors ∼= Mod (Aθ)/Tors

and the fact that the isomorphisms in category Mod (Aθ) correspond to the
stable isomorphisms (Morita equivalences) of category Aθ. �

Guide to the literature. The reader can enjoy a plenty of excellent lit-
erature introducing elliptic curves; see e.g. [Husemöller 1986] [42], [Knapp
1992] [44], [Koblitz 1984] [46], [Silverman 1985] [93], [Silverman 1994] [94],
[Silverman & Tate 1992] [95] and others. More advanced topics are covered
in the survey papers [Cassels 1966] [14], [Mazur 1986] [53] and [Tate 1974]
[103]. Noncommutative tori as coordinate rings of elliptic curves were studied
in [62] and [64]; the higher genus curves were considered in [65].
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1.3 Complex multiplication

A central problem of algebraic number theory is to give an explicit construc-
tion for the abelian extensions of a given field k. For instance, if k ∼= Q is
the field of rational numbers, the Kronecker-Weber Theorem says that the
maximal abelian extension of Q is the union of all cyclotomic extensions; thus
we have an explicit class field theory over Q. If k = Q(

√
−D) is an imaginary

quadratic field, then complex multiplication realizes the class field theory for
k. Let us recall some useful definition.

Definition 1.3.1 Elliptic curve Eτ is said to have complex multiplication if
the endomorphism ring of Eτ is bigger than Z, i.e. τ is a quadratic irrational-
ity (see below); we shall write E (−D,f)

CM to denote elliptic curves with complex
multiplication by an order of conductor f in the quadratic field Q(

√
−D).

Remark 1.3.1 The endomorphism ring

End (Eτ ) := {α ∈ C : αLτ ⊆ Lτ}

of elliptic curve Eτ = C/Lτ is given by the formula

End (Eτ ) ∼=
{
Z, if τ ∈ C−Q
Z + fOk, if τ ∈ Q,

where Q is the set of all imaginary quadratic numbers and integer f ≥ 1 is
conductor of an order in the ring of integers Ok of the imaginary quadratic
number field k = Q(

√
−D).

In previous section we constructed a functor F on elliptic curves Eτ with
the range in the category of noncommutative tori Aθ; roughly speaking the
following theorem characterizes the restriction of F to elliptic curves with
complex multiplication.

Theorem 1.3.1 ([66], [71]) F (E (−D,f)
CM ) = A(D,f)

RM .

Remark 1.3.2 It follows from the theorem that the associative algebra
A(D,f)
RM is a coordinate ring of elliptic curve E (−D,f)

CM ; in other words, each

geometric property of curve E (−D,f)
CM can be expressed in terms of the non-

commutative torus A(D,f)
RM .
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The noncommutative invariants of algebra A(D,f)
RM are linked to ranks of the

K-rational elliptic curves, i.e. elliptic curves E(K) over an algebraic field
K; to illustrate the claim, let us recall some basic definitions and facts. Let
k = Q(

√
−D) be an imaginary quadratic number field and let j(E (−D,f)

CM )

be the j-invariant of elliptic curve E (−D,f)
CM ; it is well known from complex

multiplication, that
E (−D,f)
CM

∼= E(K),

where K = k(j(E (−D,f)
CM )) is the Hilbert class field of k, see e.g. [Silverman

1994] [94], p. 95. The Mordell-Weil theorem says that the set of the K-

rational points of E (−D,f)
CM is a finitely generated abelian group, see [Tate

1974] [103], p. 192; the rank of such a group will be denoted by rk (E (−D,f)
CM ).

For the sake of simplicity, we further restrict to the following class of curves.
If (E (−D,f)

CM )σ, σ ∈ Gal (K|Q) is the Galois conjugate of the curve E (−D,f)
CM ,

then by a Q-curve one understands elliptic curve E (−D,f)
CM , such that there

exists an isogeny between (E (−D,f)
CM )σ and E (−D,f)

CM for each σ ∈ Gal (K|Q), see
e.g. [Gross 1980] [29]. Let P

3 mod 4
be the set of all primes p = 3 mod 4; it

is known that E (−p,1)
CM is a Q-curve whenever p ∈ P

3 mod 4
, see [Gross 1980]

[29], p. 33. The rank of E (−p,1)
CM is always divisible by 2hk, where hk is the

class number of field k = Q(
√
−p), see [Gross 1980] [29], p. 49; by a Q-rank

of E (−p,1)
CM one understands the integer

rkQ(E (−p,1)
CM ) :=

1

2hk
rk (E (−p,1)

CM ).

Definition 1.3.2 Suppose that [a0, a1, a2, . . . , a2, a1, 2a0] is the periodic con-
tinued fraction of

√
D, see e.g. [Perron 1954] [82], p.83; then by an arith-

metic complexity c(A(D,f)
RM ) of torus A(D,f)

RM one understands the total number
of independent ai in its period (a1, a2, . . . , a2, a1, 2a0), see Section 6.3.2 for
the details.

Remark 1.3.3 It is easy to see that arithmetic complexity c(A(D,f)
RM ) is an

invariant of the stable isomorphism (Morita equivalence) class of the non-

commutative torus A(D,f)
RM ; in other words, c(A(D,f)

RM ) is a noncommutative

invariant of torus A(D,f)
RM .

The declared purpose of our notes were noncommutative invariants related
to the classical geometry of elliptic curves; theorem below is one of such
statements for the Q-curves.
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Theorem 1.3.2 ([72]) rkQ (E (−p,1)
CM )+1 = c(A(p,1)

RM ), whenever p = 3 mod 4.

Remark 1.3.4 It is known that there are infinitely many pairwise non-
isomorphic Q-curves, see e.g. [Gross 1980] [29]; all pairwise non-isomorphic

Q-curves E (−p,1)
CM with p < 100 and their noncommutative invariant c(A(p,1)

RM )
are calculated in Fig.1.5.

p ≡ 3 mod 4 rkQ(E (−p,1)
CM )

√
p c(A(p,1)

RM )

3 1 [1, 1, 2] 2
7 0 [2, 1, 1, 1, 4] 1
11 1 [3, 3, 6] 2
19 1 [4, 2, 1, 3, 1, 2, 8] 2
23 0 [4, 1, 3, 1, 8] 1
31 0 [5, 1, 1, 3, 5, 3, 1, 1, 10] 1
43 1 [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12] 2
47 0 [6, 1, 5, 1, 12] 1
59 1 [7, 1, 2, 7, 2, 1, 14] 2
67 1 [8, 5, 2, 1, 1, 7, 1, 1, 2, 5, 16] 2
71 0 [8, 2, 2, 1, 7, 1, 2, 2, 16] 1
79 0 [8, 1, 7, 1, 16] 1
83 1 [9, 9, 18] 2

Figure 1.5: The Q-curves E (−p,1)
CM with p < 100.

Guide to the literature. D. Hilbert counted complex multiplication as
not only the most beautiful part of mathematics but also of entire science;
it surely does as it links complex analysis and number theory. One cannot
beat [Serre 1967] [92] for an introduction, but more comprehensive [Silverman
1994] [94], Ch. 2 is the must. Real multiplication has been introduced in
[Manin 2004] [52]. The link between the two was the subject of [66].
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1.4 Anosov automorphisms

Roughly speaking topology studies invariants of continuous maps f : X → Y
between the topological spaces X and Y ; if f is invertible and X = Y we
shall call it an automorphism. The automorphisms f, f ′ : X → X are said
to be conjugate if there exists an automorphism h : X → X such that
f ′ = h ◦ f ◦ h−1, where f ◦ f ′ means the composition of f and f ′; the
conjugation means a “change of coordinate system” for the topological space
X and each property of f invariant under the conjugation is intrinsic, i.e. a
topological invariant of f . The conjugation problem is unsolved even when X
is a topological surface (compact two-dimensional manifold); such a solution
would imply topological classification of the three-dimensional manifolds,
see e.g. [Hemion 1979] [39]. The automorphism f : X → X is said to
have an infinite order if fn 6= Id for each n ∈ Z. Further we shall focus
on the topological invariants of automorphisms f when X = T 2 is the two-
dimensional torus. Because T 2 ∼= R2/Z2, each automorphism of T 2 can be
given by an invertible map (isomorphism) of lattice Z2 ⊂ R2, see Fig. 1.6; in
other words, the automorphism f : T 2 → T 2 can be written in the matrix
form

Af =
(
a11 a12

a21 a22

)
∈ GL(2,Z).

-

'
&
$
%

R2/Z2Z2 ⊂ R2

factor
map

Figure 1.6: Topological torus T 2 ∼= R2/Z2.

Definition 1.4.1 An infinite order automorphism f : T 2 → T 2 is called
Anosov if its matrix form Af satisfies the inequality |a11 + a22| > 2.

Remark 1.4.1 The definition of Anosov’s automorphism does not depend
on the conjugation, because the trace a11 + a22 is an invariant of the lat-
ter. Moreover, it is easy to see that “almost all” automorphisms of T 2 are
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Anosov’s; they constitute the most interesting part among all automorphisms
of the torus.

To study topological invariants we shall construct a functor F on the set of
all Anosov automorphisms with the values in a category of the noncommu-
tative tori such that the diagram in Fig. 1.7 is commutative; in other words,
if f and f ′ are conjugate Anosov automorphisms, then the corresponding
noncommutative tori Aθ and Aθ′ are stably isomorphic (Morita equivalent).
The required map F : Af 7→ Aθ can be constructed as follows. For simplic-

? ?
-

-

Aθ

F F

Aθ′

f f ′ = h ◦ f ◦ h−1

stable

isomorphism

conjugation

Figure 1.7: Functor F .

ity, we shall assume that a11 + a22 > 2; the case a11 + a22 < −2 is treated
similarly. Moreover, we can assume that Af is a positive matrix since each
class of conjugation of the Anosov automorphism f contains such a repre-
sentative; denote by λAf the Perron-Frobenius eigenvalue of positive matrix
Af . The noncommutative torus Aθ = F (Af ) is defined by the normalized
Perron-Frobenius eigenvector (1, θ) of the matrix Af , i.e.

Af

(
1
θ

)
= λAf

(
1
θ

)
.

Remark 1.4.2 We leave it to the reader to prove that if f is Anosov’s, then
θ is a quadratic irrationality given by the formula

θ =
a22 − a11 +

√
(a11 + a22)2 − 4

2a12

.

It follows from the above formula that map F takes values in the noncom-
mutative tori with real multiplication; the following theorem says that our
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map F : Af 7→ Aθ is actually a functor. (The proof of this fact is an easy
exercise for anyone familiar with the notion of the AF -algebra of stationary
type, the Bratteli diagram, etc.; we refer the interested reader to [63], p.153
for a short proof.)

Theorem 1.4.1 ([69]) If f and f ′ are conjugate Anosov automorphisms,
then the noncommutative torus Aθ = F (Af ) is stably isomorphic (Morita
equivalent) to Aθ′ = F (Af ′).

Thus the problem of conjugation for the Anosov automorphisms can be re-
cast in terms of the noncommutative tori; namely, one needs to find invari-
ants of the stable isomorphism class of a noncommutative torus with real
multilplication. Such a noncommutative invariant has been calculated in
[Handelman 1981] [32]; namely, consider the eigenvalue problem for a matrix
Af ∈ GL(2, Z), i.e. AfvA = λAfvA, where λAf > 1 is the Perron-Frobenius

eigenvalue and vA = (v
(1)
A , v

(2)
A ) the corresponding eigenvector with the posi-

tive entries normalized so that v
(i)
A ∈ K = Q(λAf ). Denote by m = Zv(1)

A +Zv(2)
A

a Z-module in the number field K. Recall that the coefficient ring, Λ, of mod-
ule m consists of the elements α ∈ K such that αm ⊆ m. It is known that Λ
is an order in K (i.e. a subring of K containing 1) and, with no restriction,
one can assume that m ⊆ Λ. It follows from the definition, that m coincides
with an ideal, I, whose equivalence class in Λ we shall denote by [I].

Theorem 1.4.2 (Handelman’s noncommutative invariant) The triple
(Λ, [I], K) is an arithmetic invariant of the stable isomorphism class of the
noncommutative torus Aθ with real multiplication, i.e. the tori Aθ and Aθ′
are stably isomorphic (Morita equivalent) if and only if Λ = Λ′, [I] = [I ′] and
K = K ′.

Remark 1.4.3 The Handelman Theorem was proved for the so-called AF -
algebras of a stationary type; such algebras and the noncommutative tori
with real multiplication are known to have the same K+

0 semigroup and
therefore the same classes of stable isomorphisms. Similar problem for ma-
trices was solved in [Latimer & MacDuffee 1933] [49] and [Wallace 1984]
[107].

Handelman’s Invariant (Λ, [I], K) gives rise to a series of numerical invariants
of the conjugation class of Anosov’s automorphisms; we shall consider one
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such invariant called module determinant ∆(m). Let m = Zv(1)
A + Zv(2)

A be the
module attached to Λ; consider the symmetric bilinear form

q(x, y) =
2∑
i=1

2∑
j=1

Tr (v
(i)
A v

(j)
A )xixj,

where Tr (v
(i)
A v

(j)
A ) is the trace of the algebraic number v

(i)
A v

(j)
A .

Definition 1.4.2 By a determinant of module m one understands the deter-
minant of the bilinear form q(x, y), i.e. the rational integer

∆(m) := Tr (v
(1)
A v

(1)
A ) Tr (v

(2)
A v

(2)
A )− Tr2 (v

(1)
A v

(2)
A ).

Remark 1.4.4 The rational integer ∆(m) is a numerical invariant of Anosov’s
automorphisms, because it does not depend on the basis of module m =
Zv(1)

A + Zv(2)
A ; we leave the proof to the reader.

In conclusion, we calculate the noncommutative invariant ∆(m) for the con-
crete automorphisms f of T 2; the reader can see that in both cases our
invariant ∆(m) is stronger than the classical Alexander polynomial ∆(t), i.e.
∆(m) detects the topological classes of f which invariant ∆(t) cannot see.

Example 1.4.1 Consider Anosov’s automorphisms fA, fB : T 2 → T 2 given
by matrices

A =
(

5 2
2 1

)
and B =

(
5 1
4 1

)
,

respectively. The Alexander polynomials of fA and fB are identical ∆A(t) =
∆B(t) = t2 − 6t + 1; yet the automorphisms fA and fB are not conjugate.
Indeed, the Perron-Frobenius eigenvector of matrix A is vA = (1,

√
2 − 1)

while of the matrix B is vB = (1, 2
√

2 − 2). The bilinear forms for the
modules mA = Z + (

√
2− 1)Z and mB = Z + (2

√
2− 2)Z can be written as

qA(x, y) = 2x2 − 4xy + 6y2, qB(x, y) = 2x2 − 8xy + 24y2,

respectively. The modules mA,mB are not similar in the number field K =
Q(
√

2), since their determinants ∆(mA) = 8 and ∆(mB) = 32 are not equal.
Therefore, matrices A and B are not similar in the group GL(2,Z).
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Example 1.4.2 Consider Anosov’s automorphisms fA, fB : T 2 → T 2 given
by matrices

A =
(

4 3
5 4

)
and B =

(
4 15
1 4

)
,

respectively. The Alexander polynomials of fA and fB are identical ∆A(t) =
∆B(t) = t2 − 8t + 1; yet the automorphisms fA and fB are not conjugate.
Indeed, the Perron-Frobenius eigenvector of matrix A is vA = (1, 1

3

√
15)

while of the matrix B is vB = (1, 1
15

√
15). The corresponding modules are

mA = Z + (1
3

√
15)Z and mB = Z + ( 1

15

√
15)Z; therefore

qA(x, y) = 2x2 + 18y2, qB(x, y) = 2x2 + 450y2,

respectively. The modules mA,mB are not similar in the number field K =
Q(
√

15), since the module determinants ∆(mA) = 36 and ∆(mB) = 900 are
not equal. Therefore, matrices A and B are not similar in the group GL(2,Z).

Guide to the literature. The topology of surface automorphisms is the
fundamental and the oldest part of geometric topology; it dates back to
the works of J. Nielsen [Nielsen 1927; 1929; 1932] [61] and M. Dehn [Dehn
1938] [19]. W. Thurston proved that that there are only three types of
such automorphisms: they are either of finite order, or of the Anosov type
(called pseudo-Anosov) or else a mixture of the two, see e.g. [Thurston 1988]
[105]; the topological classification of pseudo-Anosov automorphisms is the
next problem after the Geometrization Conjecture proved by G. Perelman,
see [Thurston 1982] [104]. An excellent introduction to the subject are the
books [Fathi, Laudenbach & Poénaru 1979] [24] and [Casson & Bleiler 1988]
[15]. The noncommutative invariants of pseudo-Anosov automorphisms were
constructed in [69].

Exercises

1. Show that the bracket on C∞(T 2) defined by the formula

{f, g}θ := θ

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
.

is the Poisson bracket, i.e. satisfies the identities {f, f}θ = 0 and
{f, {g, h}θ}θ + {h, {f, g}θ}θ + {g, {h, f}θ}θ = 0.
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2. Prove that real multiplication is an invariant of the stable isomorphism
(Morita equivalence) class of noncommutative torus Aθ.

3. Prove that complex tori C/(Z+Zτ) a C/(Z+Zτ ′) are isomorphic if and

only if τ ′ = aτ+b
cτ+d

for some matrix
(
a b
c d

)
∈ SL2(Z). (Hint: notice that

z 7→ αz is an invertible holomorphic map for each α ∈ C− {0}.)

4. Prove that the system of relations
x3x1 = e2πiθx1x3,
x1x2 = x2x1 = e,
x3x4 = x4x3 = e.

involved in the algebraic definition of noncommutative torus Aθ is
equivalent to the following system of quadratic relations

x3x1 = e2πiθx1x3,
x4x2 = e2πiθx2x4,
x4x1 = e−2πiθx1x4,
x3x2 = e−2πiθx2x3,
x2x1 = x1x2 = e,
x4x3 = x3x4 = e.

5. Prove that elliptic curve Eτ has complex multiplication if and only if
the complex modulus τ ∈ Q(

√
−D) is an imaginary quadratic number.

(Hint: Let α ∈ C be such that α(Z + Zτ) ⊆ Z + Zτ . That is there exist
m,n, r, s ∈ Z, such that {

α = m+ nτ,
ατ = r + sτ.

One can divide the second equation by the first, so that one gets τ =
r+sτ
m+nτ

. Thus nτ 2 + (m− s)τ − r = 0; in other words, τ is an imaginary
quadratic number. Conversely, if τ is the imaginary quadratic number,
then it is easy to see that End (C/(Z + Zτ)) is non-trivial.)

6. Prove that the period (a1, a2, . . . , a2, a1, 2a0) (and the arithmetic com-
plexity) is an invariant of the stable isomorphism (Morita equivalence)

class of the noncommutative torus A(D,f)
RM .
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7. Prove that the rational integer ∆(m) is a numerical invariant of Anosov’s
automorphisms. (Hint: ∆(m) does not depend on the basis of module

m = Zv(1)
A + Zv(2)

A .)

8. Prove that the matrices

A =
(

5 2
2 1

)
and B =

(
5 1
4 1

)
are not similar by using the Gauss method, i.e. the method of continued
fractions. (Hint: Find the fixed points Ax = x and Bx = x, which gives

us xA = 1 +
√

2 and xB = 1+
√

2
2

, respectively. Then one unfolds the
fixed points into a periodic continued fraction, which gives us xA =
[2, 2, 2, . . .] and xB = [1, 4, 1, 4, . . .]. Since the period (2) of xA differs
from the period (1, 4) of B, one concludes that matrices A and B belong
to different similarity classes in GL(2, Z).)

9. Repeat the exercise for matrices

A =
(

4 3
5 4

)
and B =

(
4 15
1 4

)
.
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Chapter 2

Topology

In this chapter we shall construct several functors on the topological spaces
with values in the category of stationary AF-algebras or the Cuntz-Krieger
algebras. The functors give rise to a set of noncommutative invariants some
of which can be explicitly calculated; all the invariants are homotopy invari-
ants of the corresponding topological space. The chapter is written for a
topologist and we assume that all topological facts are known to the reader;
for otherwise, a reference list is compiled at the end of each section.

2.1 Classification of the surface maps

We assume that X is a compact oriented surface of genus g ≥ 1; we shall be
interested in the continuous invertible self-maps (automorphisms) of X, i.e.

φ : X → X.

As it was shown in the model example for X ∼= T 2, there exists a functor on
the set of all Anosov’s maps φ with values in the category of noncommuta-
tive tori with real multiplication; the functor sends the conjugate Anosov’s
maps to the stably isomorphic (Morita equivalent) noncommutative tori Aθ.
Roughly speaking, in this section we extend this result to the higher genus
surfaces, i.e for g ≥ 2. However, instead of using Aθ’s as the target category,
we shall use the category of stationary AF-algebras introduced in Section
3.5.2; in the case g = 1 the two categories are order-isomorphic because their
K+

0 semigroups are, see the end of Section 3.5.1.

29
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2.1.1 Pseudo-Anosov maps of a surface

Let Mod (X) be the mapping class group of a compact surface X, i.e.
the group of orientation preserving automorphisms of X modulo the trivial
ones. Recall that φ, φ′ ∈ Mod (X) are conjugate automorphisms, whenever
φ′ = h ◦ φ ◦ h−1 for an h ∈ Mod (X). It is not hard to see that conjugation
is an equivalence relation which splits the mapping class group into disjoint
classes of conjugate automorphisms. The construction of invariants of the
conjugacy classes in Mod (X) is an important and difficult problem studied
by [Hemion 1979] [39], [Mosher 1986] [57], and others; it is important to
understand that any knowledge of such invariants leads to a topological clas-
sification of three-dimensional manifolds [Thurston 1982] [104]. It is known
that any φ ∈Mod (X) is isotopic to an automorphism φ′, such that either (i)
φ′ has a finite order, or (ii) φ′ is a pseudo-Anosov (aperiodic) automorphism,
or else (iii) φ′ is reducible by a system of curves Γ surrounded by the small
tubular neighborhoods N(Γ), such that on X \N(Γ) φ′ satisfies either (i) or
(ii). Let φ be a representative of the equivalence class of a pseudo-Anosov
automorphism. Then there exist a pair consisting of the stable Fs and un-
stable Fu mutually orthogonal measured foliations on the surface X, such
that φ(Fs) = 1

λφ
Fs and φ(Fu) = λφFu, where λφ > 1 is called a dilatation

of φ. The foliations Fs,Fu are minimal, uniquely ergodic and describe the
automorphism φ up to a power. In the sequel, we shall focus on the conju-
gacy problem for the pseudo-Anosov automorphisms of a surface X; we shall
try to solve the problem using functors with values in the NCG. Namely, we
shall assign to each pseudo-Anosov map φ an AF-algebra, Aφ, so that for
every h ∈ Mod (X) the diagram in Fig. 4.1 is commutative. In words, if φ
and φ′ are conjugate pseudo-Anosov automorphisms, then the AF-algebras
Aφ and Aφ′ are stably isomorphic. For the sake of clarity, we shall consider
an example illustrating the idea in the case X ∼= T 2.

Example 2.1.1 (case X ∼= T 2) Let φ ∈Mod (T 2) be the Anosov automor-
phism given by a non-negative matrix Aφ ∈ SL(2,Z). Consider a stationary
AF-algebra, Aφ, given by the periodic Bratteli diagram shown in Fig. 4.2,
where aij indicate the multiplicity of the respective edges of the graph. (We
encourage the reader to verify that F : φ 7→ Aφ is a well-defined function on
the set of Anosov automorphisms given by the hyperbolic matrices with the
non-negative entries.) Let us show that if φ, φ′ ∈ Mod (T 2) are conjugate
Anosov automorphisms, then Aφ,Aφ′ are stably isomorphic AF-algebras. In-
deed, let φ′ = h ◦ φ ◦ h−1 for an h ∈ Mod (X). Then Aφ′ = TAφT

−1 for
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? ?
-

-

Aφ Aφ′

φ φ′ = h ◦ φ ◦ h−1

stable

isomorphism

conjugacy

Figure 2.1: Conjugation of the pseudo-Anosov maps.

a matrix T ∈ SL2(Z). Note that (A′φ)n = (TAφT
−1)n = TAnφT

−1, where
n ∈ N. We shall use the following criterion: the AF-algebras A,A′ are stably
isomorphic if and only if their Bratteli diagrams contain a common block
of an arbitrary length, see [Effros 1981] [21], Theorem 2.3 and recall that
an order-isomorphism mentioned in the theorem is equivalent to the condi-
tion that the corresponding Bratteli diagrams have the same infinite tails –
i.e. a common block of infinite length. Consider the following sequences of
matrices 

AφAφ . . . Aφ︸ ︷︷ ︸
n

T AφAφ . . . Aφ︸ ︷︷ ︸
n

T−1,

which mimic the Bratteli diagrams of Aφ and Aφ′ . Letting n → ∞, we
conclude that Aφ ⊗K ∼= Aφ′ ⊗K.
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a11 a11 a11

a12 a12 a12
a21 a21 a21

a22 a22 a22

Aφ =
(
a11 a12

a21 a22

)
,

Figure 2.2: The AF-algebra Aφ.

Remark 2.1.1 (Handelman’s invariant of the AF-algebra Aφ) One
can reformulate the conjugacy problem for the automorphisms φ : T 2 → T 2
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in terms of the AF-algebras Aφ; namely, one needs to find invariants of
the stable isomorphism (Morita equivalence) classes of the stationary AF-
algebras Aφ. One such invariant was introduced in Section 1.4; let us recall
its definition and properties. Consider an eigenvalue problem for the matrix
Aφ ∈ SL(2,Z), i.e. AφvA = λAvA, where λA > 1 is the Perron-Frobenius

eigenvalue and vA = (v
(1)
A , v

(2)
A ) the corresponding eigenvector with the posi-

tive entries normalized so that v
(i)
A ∈ K = Q(λA). Denote by m = Zv(1)

A +Zv(2)
A

the Z-module in the number field K. The coefficient ring, Λ, of module m

consists of the elements α ∈ K such that αm ⊆ m. It is known that Λ is an
order in K (i.e. a subring of K containing 1) and, with no restriction, one
can assume that m ⊆ Λ. It follows from the definition, that m coincides with
an ideal, I, whose equivalence class in Λ we shall denote by [I]. The triple
(Λ, [I], K) is an arithmetic invariant of the stable isomorphism class of Aφ:
the Aφ,Aφ′ are stably isomorphic AF-algebras if and only if Λ = Λ′, [I] = [I ′]
and K = K ′, see [Handelman 1981] [32].

2.1.2 Functors and invariants

Denote by Fφ the stable foliation of a pseudo-Anosov automorphism φ ∈
Mod (X). For brevity, we assume that Fφ is an oriented foliation given by
the trajectories of a closed 1-form ω ∈ H1(X;R). Let v(i) =

∫
γi
ω, where

{γ1, . . . , γn} is a basis in the relative homology H1(X,Sing Fφ;Z), such that
θ = (θ1, . . . , θn−1) is a vector with positive coordinates θi = v(i+1)/v(1).

Remark 2.1.2 The constants θi depend on a basis in the homology group,
but the Z-module generated by the θi does not.

Consider the infinite Jacobi-Perron continued fraction of θ:(
1
θ

)
= lim

k→∞

(
0 1
I b1

)
. . .
(

0 1
I bk

)(
0
I

)
,

where bi = (b
(i)
1 , . . . , b

(i)
n−1)T is a vector of the nonnegative integers, I the unit

matrix and I = (0, . . . , 0, 1)T ; we refer the reader to [Bernstein 1971] [7] for
the definition of the Jacobi-Perron algorithm and related continued fractions.

Definition 2.1.1 By Aφ one understands the AF-algebra given by the Brat-

teli diagram defined by the incidence matrices Bk =
(
0 1
I bk

)
for k = 1, . . . ,∞.
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Remark 2.1.3 We encourage the reader to verify, that Aφ coincides with
the one for the Anosov maps. (Hint: the Jacobi-Perron fractions of dimension
n = 2 coincide with the regular continued fractions.)

Definition 2.1.2 For a matrix A ∈ GLn(Z) with positive entries, we shall

denote by λA the Perron-Frobenius eigenvalue and let (v
(1)
A , . . . , v

(n)
A ) be the

corresponding normalized eigenvector such that v
(i)
A ∈ K = Q(λA). The

coefficient (endomorphism) ring of the module m = Zv(1)
A + . . . + Zv(n)

A will
shall write as Λ; the equivalence class of ideal I in Λ will be written as [I].
We shall denote by ∆ = det (aij) and Σ the determinant and signature of

the symmetric bilinear form q(x, y) =
∑n
i,j aijxixj, where aij = Tr (v

(i)
A v

(j)
A )

and Tr (•) the trace function.

Theorem 2.1.1 Aφ is a stationary AF-algebra.

Let Φ be a category of all pseudo-Anosov (Anosov, resp.) automorphisms
of a surface of the genus g ≥ 2 (g = 1, resp.); the arrows (morphisms) are
conjugations between the automorphisms. Likewise, let A be the category of
all stationary AF-algebras Aφ, where φ runs over the set Φ; the arrows of A
are stable isomorphisms among the algebras Aφ.

Theorem 2.1.2 (Functor on pseudo-Anosov maps) Let F : Φ→ A be
a map given by the formula φ 7→ Aφ. Then:

(i) F is a functor which maps conjugate pseudo-Anosov automorphisms
to stably isomorphic AF-algebras;

(ii) Ker F = [φ], where [φ] = {φ′ ∈ Φ | (φ′)m = φn, m, n ∈ N} is the
commensurability class of the pseudo-Anosov automorphism φ.

Corollary 2.1.1 (Noncommutative invariants) The following are in-
variants of the conjugacy classes of the pseudo-Anosov automorphisms:

(i) triples (Λ, [I], K);

(ii) integers ∆ and Σ.

Remark 2.1.4 (Effectiveness of invariants (Λ, [I], K), ∆ and Σ) How
to calculate invariants (Λ, [I], K), ∆ and Σ? There is no obvious way; the
problem is similar to that of numerical invariants of the fundamental group
of a knot. A step in this direction would be computation of the matrix
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A; the latter is similar to the matrix ρ(φ), where ρ : Mod (X) → PIL is a
faithful representation of the mapping class group as a group of the piecewise-
integral-linear (PIL) transformations [Penner 1984] [80], p.45. The entries of
ρ(φ) are the linear combinations of the Dehn twists along the (3g− 1) (Lick-
orish) curves on the surface X. Then one can effectively determine whether
the ρ(φ) and A are similar matrices (over Z) by bringing the polynomial ma-
trices ρ(φ)−xI and A−xI to the Smith normal form; when the similarity is
established, the numerical invariants ∆ and Σ become the polynomials in the
Dehn twists. A tabulation of the simplest elements of Mod (X) is possible
in terms of ∆ and Σ.

Theorems 4.1.1, 4.1.2 and Corollary 4.1.1 will be proved in Section 4.1.5; the
necessary background is developed in the sections below.

2.1.3 Jacobian of measured foliations

Let F be a measured foliation on a compact surface X [105]. For the sake
of brevity, we shall always assume that F is an oriented foliation, i.e. given
by the trajectories of a closed 1-form ω on X. (The assumption is not a
restriction – each measured foliation is oriented on a surface X̃, which is a
double cover of X ramified at the singular points of the half-integer index of
the non-oriented foliation [Hubbard & Masur 1979] [41].) Let {γ1, . . . , γn} be
a basis in the relative homology group H1(X,Sing F ; Z), where Sing F is the
set of singular points of the foliation F . It is well known that n = 2g+m−1,
where g is the genus of X and m = |Sing (F)|. The periods of ω in the above
basis will be written

λi =
∫
γi
ω.

The real numbers λi are coordinates of F in the space of all measured folia-
tions on X with the fixed set of singular points, see e.g. [Douady & Hubbard
1975] [20].

Definition 2.1.3 By a jacobian Jac (F) of the measured foliation F , we
understand a Z-module m = Zλ1 + . . . + Zλn regarded as a subset of the real
line R.

An importance of the jacobians stems from an observation that although the
periods, λi, depend on the choice of basis in H1(X,Sing F ;Z), the jacobian
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does not. Moreover, up to a scalar multiple, the jacobian is an invariant of
the equivalence class of the foliation F . We formalize these observations in
the following two lemmas.

Lemma 2.1.1 The Z-module m is independent of choice of basis
in H1(X,Sing F ;Z) and depends solely on the foliation F .

Proof. Indeed, let A = (aij) ∈ GL(n,Z) and let

γ′i =
n∑
j=1

aijγj

be a new basis in H1(X,Sing F ;Z). Then using the integration rules:

λ′i =
∫
γ′i
ω =

∫∑n

j=1
aijγj

ω =

=
∑n
j=1

∫
γj
ω =

n∑
j=1

aijλj.

To prove that m = m′, consider the following equations:

m′ =
∑n
i=1 Zλ

′
i =

n∑
i=1

Z
n∑
j=1

aijλj =

=
∑n
j=1 (

∑n
i=1 aijZ)λj ⊆ m.

Let A−1 = (bij) ∈ GL(n,Z) be an inverse to the matrix A. Then λi =∑n
j=1 bijλ

′
j and

m =
∑n
i=1 Zλi =

n∑
i=1

Z
n∑
j=1

bijλ
′
j =

=
∑n
j=1 (

∑n
i=1 bijZ)λ′j ⊆ m′.

Since both m′ ⊆ m and m ⊆ m′, we conclude that m′ = m. Lemma 4.1.1
follows. �

Definition 2.1.4 Two measured foliations F and F ′ are said to equivalent,
if there exists an automorphism h ∈Mod (X), which sends the leaves of the
foliation F to the leaves of the foliation F ′.
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Remark 2.1.5 The equivalence relation involves the topological foliations,
i.e. projective classes of the measured foliations, see [Thurston 1988] [105]
for the details.

Lemma 2.1.2 Let F ,F ′ be the equivalent measured foliations on a surface
X. Then

Jac (F ′) = µ Jac (F),

where µ > 0 is a real number.

Proof. Let h : X → X be an automorphism of the surface X. Denote by h∗
its action on H1(X,Sing (F);Z) and by h∗ on H1(X;R) connected by the
formula:∫

h∗(γ)
ω =

∫
γ
h∗(ω), ∀γ ∈ H1(X,Sing (F);Z), ∀ω ∈ H1(X;R).

Let ω, ω′ ∈ H1(X;R) be the closed 1-forms whose trajectories define the foli-
ations F and F ′, respectively. Since F ,F ′ are equivalent measured foliations,

ω′ = µ h∗(ω)

for a µ > 0.

Let Jac (F) = Zλ1 + . . .+ Zλn and Jac (F ′) = Zλ′1 + . . .+ Zλ′n. Then:

λ′i =
∫
γi
ω′ = µ

∫
γi
h∗(ω) = µ

∫
h∗(γi)

ω, 1 ≤ i ≤ n.

By lemma 4.1.1, it holds:

Jac (F) =
n∑
i=1

Z
∫
γi
ω =

n∑
i=1

Z
∫
h∗(γi)

ω.

Therefore:

Jac (F ′) =
n∑
i=1

Z
∫
γi
ω′ = µ

n∑
i=1

Z
∫
h∗(γi)

ω = µ Jac (F).

Lemma 4.1.2 follows. �
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AF AF ′

F F ′

stably

isomorphic

equivalent

Figure 2.3: Functor on measured foliations.

2.1.4 Equivalent foliations

Recall that for a measured foliation F , we constructed an AF-algebra, AF .
Our goal is to prove commutativity of the diagram in Fig. 4.3.; in other words,
two equivalent measured foliations map to the stably isomorphic (Morita
equivalent) AF-algebras AF .

Lemma 2.1.3 (Perron) Let m = Zλ1 + . . .+ Zλn and m′ = Zλ′1 + . . .+ Zλ′n
be two Z-modules, such that m′ = µm for a µ > 0. Then the Jacobi-Perron
continued fractions of the vectors λ and λ′ coincide except, possibly, at a
finite number of terms.

Proof. Let m = Zλ1 + . . . + Zλn and m′ = Zλ′1 + . . . + Zλ′n. Since m′ = µm,
where µ is a positive real, one gets the following identity of the Z-modules:

Zλ′1 + . . .+ Zλ′n = Z(µλ1) + . . .+ Z(µλn).

One can always assume that λi and λ′i are positive reals. For obvious reasons,
there exists a basis {λ′′1 , . . . , λ

′′
n} of the module m′, such that:{
λ′′ = A(µλ)
λ′′ = A′λ′,

where A,A′ ∈ GL+(n,Z) are the matrices, whose entries are non-negative
integers. In view of [Bauer 1996] [6], Proposition 3, we have

A =
(

0 1
I b1

)
. . .
(

0 1
I bk

)
A′ =

(
0 1
I b′1

)
. . .
(

0 1
I b′l

)
,
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where bi, b
′
i are non-negative integer vectors. Since the Jacobi-Perron con-

tinued fraction for the vectors λ and µλ coincide for any µ > 0 (see e.g.
[Bernstein 1971] [7]), we conclude that:


(

1
θ

)
=
(

0 1
I b1

)
. . .
(

0 1
I bk

)(
0 1
I a1

)(
0 1
I a2

)
. . .
(

0
I

)
(

1
θ′

)
=
(

0 1
I b′1

)
. . .
(

0 1
I b′l

)(
0 1
I a1

)(
0 1
I a2

)
. . .
(

0
I

)
,

where (
1
θ′′

)
= lim

i→∞

(
0 1
I a1

)
. . .
(

0 1
I ai

)(
0
I

)
.

In other words, the continued fractions of the vectors λ and λ′ coincide but
at a finite number of terms. Lemma 4.1.3 follows. �

Lemma 2.1.4 (Basic lemma) Let F and F ′ be equivalent measured folia-
tions on a surface X. Then the AF-algebras AF and AF ′ are stably isomor-
phic.

Proof. Notice that lemma 4.1.2 implies that equivalent measured foliations
F ,F ′ have proportional jacobians, i.e. m′ = µm for a µ > 0. On the other
hand, by lemma 4.1.3 the continued fraction expansion of the basis vectors
of the proportional jacobians must coincide, except a finite number of terms.
Thus, the AF-algebras AF and AF ′ are given by the Bratteli diagrams, which
are identical, except a finite part of the diagram. It is well known (see e.g.
[Effros 1981] [21], Theorem 2.3), that the AF-algebras, which have such a
property, are stably isomorphic. Lemma 4.1.4 follows. �

2.1.5 Proofs

Proof of theorem 4.1.1

Let φ ∈ Mod (X) be a pseudo-Anosov automorphism of the surface X.
Denote by Fφ the invariant foliation of φ. By definition of such a foliation,
φ(Fφ) = λφFφ, where λφ > 1 is the dilatation of φ. Consider the jacobian
Jac (Fφ) = mφ of foliation Fφ. Since Fφ is an invariant foliation of the
pseudo-Anosov automorphism φ, one gets the following equality of the Z-
modules:

mφ = λφmφ, λφ 6= ±1.
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Let {v(1), . . . , v(n)} be a basis in module mφ, such that v(i) > 0; from the
above equation, one obtains the following system of linear equations:

λφv
(1) = a11v

(1) + a12v
(2) + . . .+ a1nv

(n)

λφv
(2) = a21v

(1) + a22v
(2) + . . .+ a2nv

(n)

...
λφv

(n) = an1v
(1) + an2v

(2) + . . .+ annv
(n),

where aij ∈ Z. The matrix A = (aij) is invertible. Indeed, since foliation
Fφ is minimal, real numbers v(1), . . . , v(n) are linearly independent over Q.
So do numbers λφv

(1), . . . , λφv
(n), which therefore can be taken for a basis

of the module mφ. Thus, there exists an integer matrix B = (bij), such that
v(j) =

∑
i,j w

(i), where w(i) = λφv
(i). Clearly, B is an inverse to matrix A.

Therefore, A ∈ GL(n,Z).
Moreover, without loss of the generality one can assume that aij ≥ 0.

Indeed, if it is not yet the case, consider the conjugacy class [A] of the
matrix A. Since v(i) > 0, there exists a matrix A+ ∈ [A] whose entries are
non-negative integers. One has to replace basis v = (v(1), . . . , v(n)) in the
module mφ by a basis Tv, where A+ = TAT−1. It will be further assumed
that A = A+.

Lemma 2.1.5 Vector (v(1), . . . , v(n)) is the limit of a periodic Jacobi-Perron
continued fraction.

Proof. It follows from the discussion above, that there exists a non-negative
integer matrix A, such that Av = λφv. In view of [Bauer 1996] [6], Proposi-
tion 3, matrix A admits the unique factorization

A =
(

0 1
I b1

)
. . .
(

0 1
I bk

)
,

where bi = (b
(i)
1 , . . . , b

(i)
n )T are vectors of the non-negative integers. Let us

consider the periodic Jacobi-Perron continued fraction

Per
(

0 1
I b1

)
. . .
(

0 1
I bk

)(
0
I

)
.

According to [Perron 1907] [81], Satz XII, the above fraction converges to
vector w = (w(1), . . . , w(n)), such that w satisfies equation (B1B2 . . . Bk)w =
Aw = λφw. In view of equation Av = λφv, we conclude that vectors v and
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w are collinear. Therefore, the Jacobi-Perron continued fractions of v and w
must coincide. Lemma 4.1.5 follows. �

It is easy to see, that the AF-algebra attached to foliation Fφ is stationary.
Indeed, by lemma 4.1.5, the vector of periods v(i) =

∫
γi
ω unfolds into a pe-

riodic Jacobi-Perron continued fraction. By definition, the Bratteli diagram
of the AF-algebra Aφ is periodic as well. In other words, the AF-algebra Aφ
is stationary. Theorem 4.1.1 is proved. �

Proof of theorem 4.1.2

(i) Let us prove the first statement. For the sake of completeness, let us give
a proof of the following well-known lemma.

Lemma 2.1.6 If φ and φ′ are conjugate pseudo-Anosov automorphisms of a
surface X, then their invariant measured foliations Fφ and Fφ′ are equivalent.

Proof. Let φ, φ′ ∈ Mod (X) be conjugate, i.e φ′ = h ◦ φ ◦ h−1 for an auto-
morphism h ∈Mod (X). Since φ is the pseudo-Anosov automorphism, there
exists a measured foliation Fφ, such that φ(Fφ) = λφFφ. Let us evaluate the
automorphism φ′ on the foliation h(Fφ):

φ′(h(Fφ)) = hφh−1(h(Fφ)) = hφ(Fφ) =

= hλφFφ = λφ(h(Fφ)).

Thus, Fφ′ = h(Fφ) is the invariant foliation for the pseudo-Anosov automor-
phism φ′ and Fφ,Fφ′ are equivalent foliations. Note also that the pseudo-
Anosov automorphism φ′ has the same dilatation as the automorphism φ.
Lemma 4.1.6 follows. �

To finish the proof of item (i), suppose that φ and φ′ are conjugate
pseudo-Anosov automorphisms. Functor F acts by the formulas φ 7→ Aφ
and φ′ 7→ Aφ′ , where Aφ,Aφ′ are the AF-algebras corresponding to invari-
ant foliations Fφ,Fφ′ . In view of lemma 4.1.6, Fφ and Fφ′ are equivalent
measured foliations. Then, by lemma 4.1.4, the AF-algebras Aφ and Aφ′ are
stably isomorphic AF-algebras. Item (i) follows.

(ii) Let us prove the second statement. We start with an elementary
observation. Let φ ∈ Mod (X) be a pseudo-Anosov automorphism. Then
there exists a unique measured foliation, Fφ, such that φ(Fφ) = λφFφ, where
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λφ > 1 is an algebraic integer. Let us evaluate automorphism φ2 ∈Mod (X)
on the foliation Fφ:

φ2(Fφ) = φ(φ(Fφ)) = φ(λφFφ) =

= λφφ(Fφ) = λ2
φFφ = λφ2Fφ,

where λφ2 := λ2
φ. Thus, foliation Fφ is an invariant foliation for the auto-

morphism φ2 as well. By induction, one concludes that Fφ is an invariant
foliation of the automorphism φn for any n ≥ 1.

Even more is true. Suppose that ψ ∈ Mod (X) is a pseudo-Anosov
automorphism, such that ψm = φn for some m ≥ 1 and ψ 6= φ. Then Fφ
is an invariant foliation for the automorphism ψ. Indeed, Fφ is invariant
foliation of the automorphism ψm. If there exists F ′ 6= Fφ such that the
foliation F ′ is an invariant foliation of ψ, then the foliation F ′ is also an
invariant foliation of the pseudo-Anosov automorphism ψm. Thus, by the
uniqueness, F ′ = Fφ. We have just proved the following lemma.

Lemma 2.1.7 If [φ] is the set of all pseudo-Anosov automorphisms ψ of X,
such that ψm = φn for some positive integers m and n, then the pseudo-
Anosov foliation Fφ is an invariant foliation for every pseudo-Anosov auto-
morphism ψ ∈ [φ].

In view of lemma 4.1.7, one gets the following identities for the AF-algebras

Aφ = Aφ2 = . . . = Aφn = Aψm = . . . = Aψ2 = Aψ.

Thus, functor F is not an injective functor: the preimage, Ker F , of algbera
Aφ consists of a countable set of the pseudo-Anosov automorphisms ψ ∈ [φ],
commensurable with the automorphism φ. Theorem 4.1.2 is proved. �

Proof of corollary 4.1.1

(i) Theorem 4.1.1 says that Aφ is a stationary AF-algebra. An arithmetic
invariant of the stable isomorphism classes of the stationary AF-algebras has
been found by D. Handelman in [Handelman 1981] [33]. Summing up his
results, the invariant is as follows. Let A ∈ GL(n,Z) be a matrix with the
strictly positive entries, such that A is equal to the minimal period of the
Bratteli diagram of the stationary AF-algebra. (In case the matrix A has zero
entries, it is necessary to take a proper minimal power of the matrix A.) By
the Perron-Frobenius theory, matrix A has a real eigenvalue λA > 1, which
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exceeds the absolute values of other roots of the characteristic polynomial of
A. Note that λA is an invertible algebraic integer (the unit). Consider the
real algebraic number field K = Q(λA) obtained as an extension of the field

of the rational numbers by the algebraic number λA. Let (v
(1)
A , . . . , v

(n)
A ) be

the eigenvector corresponding to the eigenvalue λA. One can normalize the
eigenvector so that v

(i)
A ∈ K. The departure point of Handelman’s invariant

is the Z-module m = Zv(1)
A + . . . + Zv(n)

A . The module m brings in two new
arithmetic objects: (i) the ring Λ of the endomorphisms of m and (ii) an
ideal I in the ring Λ, such that I = m after a scaling, see e.g. [Borevich
& Shafarevich 1966] [11], Lemma 1, p. 88. The ring Λ is an order in the
algebraic number field K and therefore one can talk about the ideal classes in
Λ. The ideal class of I is denoted by [I]. Omitting the embedding question
for the field K, the triple (Λ, [I], K) is an invariant of the stable isomorphism
class of the stationary AF-algebra Aφ, see [Handelman 1981] [33], §5. Item
(i) follows.

(ii) Numerical invariants of the stable isomorphism classes of the station-
ary AF-algebras can be derived from the triple (Λ, [I], K). These invariants
are the rational integers – called the determinant and signature – can be
obtained as follows. Let m,m′ be the full Z-modules in an algebraic number
field K. It follows from (i), that if m 6= m′ are distinct as the Z-modules,
then the corresponding AF-algebras cannot be stably isomorphic. We wish
to find the numerical invariants, which discern the case m 6= m′. It is assumed
that a Z-module is given by the set of generators {λ1, . . . , λn}. Therefore,
the problem can be formulated as follows: find a number attached to the set
of generators {λ1, . . . , λn}, which does not change on the set of generators
{λ′1, . . . , λ′n} of the same Z-module. One such invariant is associated with
the trace function on the algebraic number field K. Recall that

Tr : K → Q

is a linear function on K such that Tr (α + β) = Tr (α) + Tr (β) and
Tr (aα) = a Tr (α) for ∀α, β ∈ K and ∀a ∈ Q. Let m be a full Z-module in
the field K. The trace function defines a symmetric bilinear form q(x, y) :
m× m→ Q by the formula

(x, y) 7−→ Tr (xy), ∀x, y ∈ m.
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The form q(x, y) depends on the basis {λ1, . . . , λn} in the module m

q(x, y) =
n∑
j=1

n∑
i=1

aijxiyj, where aij = Tr (λiλj).

However, the general theory of the bilinear forms (over the fields Q,R,C or
the ring of rational integers Z) tells us that certain numerical quantities will
not depend on the choice of such a basis.

Definition 2.1.5 By a determinant of the bilinear form q(x, y) one under-
stands the rational integer number

∆ = det (Tr (λiλj)).

Lemma 2.1.8 The determinant ∆(m) is independent of the choice of the
basis {λ1, . . . , λn} in the module m.

Proof. Consider a symmetric matrix A corresponding to the bilinear form
q(x, y), i.e.

A =


a11 a12 . . . a1n

a12 a22 . . . a2n
...

...
a1n a2n . . . ann

 .
It is known that the matrix A, written in a new basis, will take the form
A′ = UTAU , where U ∈ GL(n,Z). Then det (A′) = det (UTAU) =
det (UT )det (A)det (U) = det (A). Therefore, the rational integer number

∆ = det (Tr (λiλj)),

does not depend on the choice of the basis {λ1, . . . , λn} in the module m.
Lemma 4.1.8 follows. �

Remark 2.1.6 (p-adic invariants) Roughly speaking, Lemma 4.1.8 says
that determinant ∆(m) discerns two distinct modules, i.e. m 6= m′. Note
that if ∆(m) = ∆(m′) for the modules m and m′, one cannot conclude that
m = m′. The problem of equivalence of the symmetric bilinear forms over Q
(i.e. the existence of a linear substitution over Q, which transforms one form
to the other), is a fundamental question of number theory. The Minkowski-
Hasse theorem says that two such forms are equivalent if and only if they are
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equivalent over the p-adic field Qp for every prime number p and over the
field R. Clearly, the resulting p-adic quantities will give new invariants of the
stable isomorphism classes of the AF-algebras. The question is much similar
to the Minkowski units attached to knots, see e.g. [Reidemeister 1932] [87].

Definition 2.1.6 By a signature of the bilinear form q(x, y) one understands
the rational integer Σ = (#a+

i ) − (#a−i ), where a+
i are the positive and a−i

the negative entries in the diagonal form

a1x
2
1 + a2x

2
2 + . . .+ anx

2
n

of q(x, y); recall that each q(x, y) can be brought by an integer linear trans-
formation to the diagonal form.

Lemma 2.1.9 The signature Σ(m) is independent of the choice of basis in
the module m and, therefore, Σ(m) 6= Σ(m′) implies m 6= m′.

Proof. The claim follows from the Law of Inertia for the signature of the
bilinear form q(x, y). �

Corollary 4.1.1 follows from Lemmas 4.1.8 and 4.1.9. �

2.1.6 Anosov maps of the torus

We shall calculate the noncommutative invariants ∆(m) and Σ(m) for the
Anosov automorphisms of the two-dimensional torus; we construct concrete
examples of Anosov automorphisms with the same Alexander polynomial
∆(t) but different invariant ∆(m), i.e. showing that Σ(m) is finer than ∆(t).
Recall that isotopy classes of the orientation-preserving diffeomorphisms of
the torus T 2 are bijective with the 2 × 2 matrices with integer entries and
determinant +1, i.e. Mod (T 2) ∼= SL(2,Z). Under the identification, the
non-periodic automorphisms correspond to the matrices A ∈ SL(2,Z) with
|Tr A| > 2. Let K = Q(

√
d) be a quadratic extension of the field of rational

numbers Q. Further we suppose that d is a positive square free integer. Let

ω =

{
1+
√
d

2
if d ≡ 1 mod 4,√

d if d ≡ 2, 3 mod 4.
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Remark 2.1.7 Recall that if f is a positive integer then every order in K
has the form Λf = Z+ (fω)Z, where f is the conductor of Λf , see e.g. [Bore-
vich & Shafarevich 1966] [11], pp. 130-132. This formula allows to classify
the similarity classes of the full modules in the field K. Indeed, there exists
a finite number of m

(1)
f , . . . ,m

(s)
f of the non-similar full modules in the field

K whose coefficient ring is the order Λf , see [Borevich & Shafarevich 1966]
[11], Chapter 2.7, Theorem 3. Thus one gets a finite-to-one classification of
the similarity classes of full modules in the field K.

Numerical invariants of the Anosov maps

Let Λf be an order in K with the conductor f . Under the addition operation,
the order Λf is a full module, which we denote by mf . Let us evaluate the
invariants q(x, y), ∆ and Σ on the module mf . To calculate (aij) = Tr (λiλj),
we let λ1 = 1, λ2 = fω. Then:

a11 = 2, a12 = a21 = f, a22 =
1

2
f 2(d+ 1) if d ≡ 1 mod 4

a11 = 2, a12 = a21 = 0, a22 = 2f 2d if d ≡ 2, 3 mod 4,

and

q(x, y) = 2x2 + 2fxy +
1

2
f 2(d+ 1)y2 if d ≡ 1 mod 4

q(x, y) = 2x2 + 2f 2dy2 if d ≡ 2, 3 mod 4.

Therefore

∆(mf ) =
{
f 2d if d ≡ 1 mod 4,
4f 2d if d ≡ 2, 3 mod 4

and
Σ(mf ) = +2.

Example 2.1.2 Consider the Anosov maps φA, φB : T 2 → T 2 given by
matrices

A =
(

5 2
2 1

)
and B =

(
5 1
4 1

)
,

respectively. The reader can verify that the Alexander polynomials of φA
and φB are identical and equal to ∆A(t) = ∆B(t) = t2 − 6t + 1; yet φA and
φB are not conjugate. Indeed, the Perron-Frobenius eigenvector of matrix A
is vA = (1,

√
2− 1) while of the matrix B is vB = (1, 2

√
2− 2). The bilinear
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forms for the modules mA = Z + (
√

2− 1)Z and mB = Z + (2
√

2− 2)Z can be
written as

qA(x, y) = 2x2 − 4xy + 6y2, qB(x, y) = 2x2 − 8xy + 24y2,

respectively. The modules mA,mB are not similar in the number field K =
Q(
√

2), since their determinants ∆(mA) = 8 and ∆(mB) = 32 are not equal.
Therefore, matrices A and B are not similar in the group SL(2,Z). Note
that the class number hK = 1 for the field K.

Remark 2.1.8 (Gauss method) The reader can verify that A and B are
non-similar by using the method of periods, which dates back to C. -F. Gauss.
According to the algorithm, we have to find the fixed points Ax = x and
Bx = x, which gives us xA = 1 +

√
2 and xB = 1+

√
2

2
, respectively. Then

one unfolds the fixed points into a periodic continued fraction, which gives
us xA = [2, 2, 2, . . .] and xB = [1, 4, 1, 4, . . .]. Since the period (2) of xA
differs from the period (1, 4) of B, the matrices A and B belong to different
similarity classes in SL(2,Z).

Example 2.1.3 Consider the Anosov maps φA, φB : T 2 → T 2 given by
matrices

A =
(

4 3
5 4

)
and B =

(
4 15
1 4

)
,

respectively. The Alexander polynomials of φA and φB are identical ∆A(t) =
∆B(t) = t2 − 8t + 1; yet the automorphisms φA and φB are not conjugate.
Indeed, the Perron-Frobenius eigenvector of matrix A is vA = (1, 1

3

√
15)

while of the matrix B is vB = (1, 1
15

√
15). The corresponding modules are

mA = Z + (1
3

√
15)Z and mB = Z + ( 1

15

√
15)Z; therefore

qA(x, y) = 2x2 + 18y2, qB(x, y) = 2x2 + 450y2,

respectively. The modules mA,mB are not similar in the number field K =
Q(
√

15), since the module determinants ∆(mA) = 36 and ∆(mB) = 900 are
not equal. Therefore, matrices A and B are not similar in the group SL(2, Z).

Example 2.1.4 ([Handelman 2009] [34], p.12) Let a, b be a pair of
positive integers satisfying the Pell equation a2 − 8b2 = 1; the latter has
infinitely many solutions, e.g. a = 3, b = 1, etc. Denote by φA, φB : T 2 → T 2

the Anosov maps given by matrices

A =
(
a 4b
2b a

)
and B =

(
a 8b
b a

)
,
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respectively. The Alexander polynomials of φA and φB are identical ∆A(t) =
∆B(t) = t2 − 2at + 1; yet maps φA and φB are not conjugate. Indeed,
the Perron-Frobenius eigenvector of matrix A is vA = (1, 1

4b

√
a2 − 1) while

of the matrix B is vB = (1, 1
8b

√
a2 − 1). The corresponding modules are

mA = Z+( 1
4b

√
a2 − 1)Z and mB = Z+( 1

8b

√
a2 − 1)Z. It is easy to see that the

discriminant d = a2−1 ≡ 3mod 4 for all a ≥ 2. Indeed, d = (a−1)(a+1) and,
therefore, integer a 6≡ 1; 3 mod 4; hence a ≡ 2 mod 4 so that a−1 ≡ 1 mod 4
and a + 1 ≡ 3 mod 4 and, thus, d = a2 − 1 ≡ 3 mod 4. Therefore the
corresponding conductors are fA = 4b and fB = 8b, and

qA(x, y) = 2x2 + 32b2(a2 − 1)y2, qB(x, y) = 2x2 + 128b2(a2 − 1)y2,

respectively. The modules mA,mB are not similar in the number field K =
Q(
√
a2 − 1), since their determinants ∆(mA) = 64 b2(a2 − 1) and ∆(mB) =

256 b2(a2− 1) are not equal. Therefore, matrices A and B are not similar in
the group SL(2,Z).

Guide to the literature. The topology of surface automorphisms is the
oldest part of geometric topology; it dates back to the works of J. Nielsen
[Nielsen 1927; 1929; 1932] [61] and M. Dehn [Dehn 1938] [19]. W. Thurston
proved that that there are only three types of such automorphisms: they
are either of finite order, or pseudo-Anosov or else a mixture of the two, see
[Thurston 1988] [105]; the topological classification of pseudo-Anosov auto-
morphisms is the next biggest problem after the Geometrization Conjecture
proved by G. Perelman, see [Thurston 1982] [104]. An excellent introduction
to the subject are the books [Fathi, Laudenbach & Poénaru 1979] [24] and
[Casson & Bleiler 1988] [15]. The measured foliations on compact surfaces
were introduced in 1970’s by W. Thurston [Thurston 1988] [105] and cov-
ered in [Hubbard & Masur 1979] [41]. The Jacobi-Perron algorithm can be
found in [Perron 1907] [81] and [Bernstein 1971] [7]. The noncommutative
invariants of pseudo-Anosov automorphisms were constructed in [69].

2.2 Torsion in the torus bundles

We assume that Mα is a torus bundle, i.e. an (n + 1)-dimensional manifold
fibering over the circle with monodromy α : T n → T n, where T n is the
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n-dimensional torus. Roughly speaking, we want to construct a covariant
functor on such bundles with the values in a category of the Cuntz-Krieger
algebras, see Section 3.7; such a functor must map homeomorphic bundles
Mα to the stably isomorphic (Morita equivalent) Cuntz-Krieger algebras.
The functor (called a Cuntz-Krieger functor) is constructed below and it is
proved that the K-theory of the Cuntz-Krieger algebra is linked to the torsion
subgroup of the first homology group of Mα. The Cuntz-Krieger functor can
be regarded as an “abelianized” version of functor F : α 7→ Aα constructed
in Section 4.1, see Remark 4.2.2.

2.2.1 Cuntz-Krieger functor

Definition 2.2.1 If T n is a torus of dimension n ≥ 1, then by a torus bundle
one understands an (n+ 1)-dimensional manifold

Mα = {T n × [0, 1] | (T n, 0) = (α(T n), 1)},

where α : T n → T n is an automorphism of T n.

Remark 2.2.1 The torus bundles Mα and Mα′ are homeomorphic, if and
only if the automorphisms α and α′ are conjugate, i.e. α′ = β ◦ α ◦ β−1 for
an automorphism β : T n → T n.

Let H1(T n; Z) ∼= Zn be the first homology of torus; consider the group
Aut (T n) of (homotopy classes of) automorphisms of T n. Any α ∈ Aut (T n)
induces a linear transformation of H1(T n; Z), given by an invertible n × n
matrix A with the integer entries; conversely, each A ∈ GL(n,Z) defines an
automorphism α : T n → T n. In this matrix representation, the conjugate
automorphisms α and α′ define similar matrices A,A′ ∈ GL(n,Z), i.e. such
that A′ = BAB−1 for a matrix B ∈ GL(n,Z). Each class of matrices, similar
to a matrix A ∈ GL(n,Z) and such that tr (A) ≥ 0 (tr (A) ≤ 0), contains a
matrix with only the non-negative (non-positive) entries. We always assume,
that our bundle Mα is given by a non-negative matrix A; the matrices with
tr (A) ≤ 0 can be reduced to this case by switching the sign (from negative
to positive) in the respective non-positive representative.

Definition 2.2.2 Denote by M a category of torus bundles (of fixed di-
mension) endowed with homeomorphisms between the bundles; denote by A
a category of the Cuntz-Krieger algebras OA with det (A) = ±1, endowed
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with stable isomorphisms between the algebras. By a Cuntz-Krieger map
F :M→A one understands the map given by the formula

Mα 7→ OA.

Theorem 2.2.1 (Functor on torus bundles) The map F is a covariant
functor, which induces an isomorphism between the abelian groups

H1(Mα;Z) ∼= Z⊕K0(F (Mα)).

Remark 2.2.2 The functor F : Mα 7→ OA can be obtained from functor
F : α 7→ Aα on automorphisms α : T n → T n with values in the stationary
AF-algebras Aα, see Section 4.1; the correspondence between F and F comes
from the canonical isomorphism

OA ⊗K ∼= Aα oσ Z,

where σ is the shift automorphism of Aα, see Section 3.7. Thus, one can
interpret the invariant Z ⊕K0(OA) as “abelianized” Handelman’s invariant
(Λ, [I], K) of algebra Aα; here we assume that (Λ, [I], K) is an analog of the
fundamental group π1(Mα).

2.2.2 Proof of theorem 4.2.1

The idea of proof consists in a reduction of the conjugacy problem for the
automorphisms of T n to the Cuntz-Krieger theorem on the flow equivalence
of the subshifts of finite type, see e.g. [Lind & Marcus 1995] [51]. For a
different proof of Theorem 4.2.1, see [Rodrigues & Ramos 2005] [90].

(i) The main reference to the subshifts of finite type (SFT) is [Lind &
Marcus 1995] [51]. Recall that a full Bernoulli n-shift is the set Xn of bi-
infinite sequences x = {xk}, where xk is a symbol taken from a set S of
cardinality n. The set Xn is endowed with the product topology, making
Xn a Cantor set. The shift homeomorphism σn : Xn → Xn is given by the
formula σn(. . . xk−1xkxk+1 . . .) = (. . . xkxk+1xk+2 . . .) The homeomorphism
defines a (discrete) dynamical system {Xn, σn} given by the iterations of σn.
Let A be an n × n matrix, whose entries aij := a(i, j) are 0 or 1. Consider
a subset XA of Xn consisting of the bi-infinite sequences, which satisfy the
restriction a(xk, xk+1) = 1 for all −∞ < k < ∞. (It takes a moment to
verify that XA is indeed a subset of Xn and XA = Xn, if and only if, all the



50 CHAPTER 2. TOPOLOGY

entries of A are 1’s.) By definition, σA = σn | XA and the pair {XA, σA} is
called a SFT. A standard edge shift construction described in [Lind & Marcus
1995] [51] allows to extend the notion of SFT to any matrix A with the non-
negative entries. It is well known that the SFT’s {XA, σA} and {XB, σB}
are topologically conjugate (as the dynamical systems), if and only if, the
matrices A and B are strong shift equivalent (SSE), see [Lind & Marcus
1995] [51] for the corresponding definition. The SSE of two matrices is a
difficult algorithmic problem, which motivates the consideration of a weaker
equivalence between the matrices called a shift equivalence (SE). Recall, that
the matrices A and B are said to be shift equivalent (over Z+), when there
exist non-negative matricesR and S and a positive integer k (a lag), satisfying
the equations AR = RB,BS = SA,Ak = RS and SR = Bk. Finally, the
SFT’s {XA, σA} and {XB, σB} (and the matrices A and B) are said to be flow
equivalent (FE), if the suspension flows of the SFT’s act on the topological
spaces, which are homeomorphic under a homeomorphism that respects the
orientation of the orbits of the suspension flow. We shall use the following
implications

SSE ⇒ SE ⇒ FE.

Remark 2.2.3 The first implication is rather classical, while for the second
we refer the reader to [Lind & Marcus 1995] [51], p. 456.

We further restrict to the SFT’s given by the matrices with determinant ±1.
In view of [Wagoner 1999] [106], Corollary 2.13, the matrices A and B with
det (A) = ±1 and det (B) = ±1 are SE (over Z+), if and only if, matrices
A and B are similar in GLn(Z). Let now α and α′ be a pair of conjugate
automorphisms of T n. Since the corresponding matrices A and A′ are similar
in GLn(Z), one concludes that the SFT’s {XA, σA} and {XA′ , σA′} are SE. In
particular, the SFT’s {XA, σA} and {XA′ , σA′} are FE. One can now apply
the known result due to Cuntz and Krieger; it says, that the C∗-algebra
OA ⊗ K is an invariant of the flow equivalence of the irreducible SFT’s, see
[Cuntz & Krieger 1980] [18], p. 252 and its proof in Section 4 of the same
work. Thus, the map F sends the conjugate automorphisms of T n into the
stably isomorphic Cuntz-Krieger algebras, i.e. F is a functor.

Let us show that F is a covariant functor. Consider the commutative diagram
in Fig. 4.4, where A,B ∈ GLn(Z) and OA,OBAB−1 ∈ A. Let g1, g2 be the
arrows (similarity of matrices) in the upper category and F (g1), F (g2) the
corresponding arrows (stable isomorphisms) in the lower category. In view
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? ?
-

-

OA

F F

OBAB−1 ,

A A′ = BAB−1

stable

isomorphism

similarity

Figure 2.4: Cuntz-Krieger functor.

of the diagram, we have the following identities:

F (g1g2) = OB2B1AB
−1
1 B−1

2
= OB2(B1AB

−1
1 )B−1

2

= OB2A′B
−1
2

= F (g1)F (g2),

where F (g1)(OA) = OA′ and F (g2)(OA′) = OA′′ . Thus, F does not reverse
the arrows and is, therefore, a covariant functor. The first statement of
Theorem 4.2.1 is proved.

(ii) Let Mα be a torus bundle with a monodromy, given by the matrix
A ∈ GL(n,Z). It can be calculated, e.g. using the Leray spectral sequence
for the fiber bundles, that H1(Mα;Z) ∼= Z ⊕ Zn/(A − I)Zn. Comparing this
calculation with the K-theory of the Cuntz-Krieger algebra, one concludes
that H1(Mα;Z) ∼= Z ⊕K0(OA), where OA = F (Mα). The second statement
of Theorem 4.2.1 follows. �

2.2.3 Noncommutative invariants of torus bundles

To illustrate Theorem 4.2.1, we shall consider concrete examples of the torus
bundles and calculate the noncommutative invariant K0(OA) for them. The
reader can see, that in some cases K0(OA) is complete invariant of a family
of the torus bundles. We compare K0(OA) with the corresponding Alexander
polynomial ∆(t) of the bundle and prove that K0(OA) is finer than ∆(t) (in
some cases).

Example 2.2.1 Consider a three-dimensional torus bundle

An1 =
(

1 n
0 1

)
, n ∈ Z.
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Using the reduction of matrix to its Smith normal form (see e.g. [Lind &
Marcus 1995] [51]), one can easily calculate

K0(OAn1 ) ∼= Z⊕ Zn.

Remark 2.2.4 The Cuntz-Krieger invariant K0(OAn1 ) ∼= Z ⊕ Zn is a com-
plete topological invariant of the family of bundles Mαn1

; thus, such an in-
variant solves the classification problem for such bundles.

Example 2.2.2 Consider a three-dimensional torus bundle

A2 =
(

5 2
2 1

)
.

Using the reduction of matrix to its Smith normal form, one gets

K0(OA2)
∼= Z2 ⊕ Z2.

Example 2.2.3 Consider a three-dimensional torus bundle

A3 =
(

5 1
4 1

)
.

Using the reduction of matrix to its Smith normal form, one obtains

K0(OA3)
∼= Z4.

Remark 2.2.5 (K0(OA) versus the Alexander polynomial) Note that
for the bundles Mα2 and Mα3 the Alexander polynomial:

∆A2(t) = ∆A3(t) = t2 − 6t+ 1. (2.1)

Therefore, the Alexander polynomial cannot distinguish between the bun-
dles Mα2 and Mα3 ; however, since K0(OA2) 6∼= K0(OA3), Theorem 4.2.1 says
that the torus bundles Mα2 and Mα3 are topologically distinct. Thus the
noncommutative invariant K0(OA) is finer than the Alexander polynomial.

Remark 2.2.6 According to the Thurston Geometrization Theorem, the
torus bundle Mαn1

is a nilmanifold for any n, while torus bundles Mα2 and
Mα3 are solvmanifolds, see [Thurston 1982] [104].
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Guide to the literature. For an excellent introduction to the subshifts
of finite type we refer the reader to the book by [Lind & Marcus 1995] [51]
and survey by [Wagoner 1999] [106]. The Cuntz-Krieger algebras OA, the
abelian group K0(OA) and their connection to the subshifts of finite type
were introduced in [Cuntz & Krieger 1980] [18]. Note that Theorem 4.2.1
follows from the results by [Rodrigues & Ramos 2005] [90]; however, our
argument is different and the proof is more direct and shorter than in the
above cited work. The Cuntz-Krieger functor was constructed in [67].

2.3 Obstruction theory for Anosov’s bundles

We shall use functors ranging in the category of AF-algebras to study the
Anosov bundles Mϕ, i.e. mapping tori of the Anosov diffeomorphisms

ϕ : M →M

of a smooth manifold M , see e.g. [Smale 1967] [98], p. 757. Namely, we
construct a covariant functor F form the category of Anosov’s bundles to a
category of stationary AF-algebras; the functor sends each continuous map
between the bundles to a stable homomorphism between the corresponding
AF-algebras. We develop an obstruction theory for continuous maps between
Anosov’s bundles; such a theory exploits noncommutative invariants derived
from the triple (Λ, [I], K) attached to stationary AF-algebras. We illustrate
the obstruction theory by concrete examples of dimension 2, 3 and 4.

2.3.1 Fundamental AF-algebra

By a q-dimensional, class Cr foliation of an m-dimensional manifold M one
understands a decomposition of M into a union of disjoint connected subsets
{Lα}α∈A, called the leaves, see e.g. [Lawson 1974] [50]. They must satisfy
the following property: each point in M has a neighborhood U and a system
of local class Cr coordinates x = (x1, . . . , xm) : U → Rm such that for each
leaf Lα, the components of U ∩ Lα are described by the equations xq+1 =
Const, . . . , xm = Const. Such a foliation is denoted by F = {Lα}α∈A. The
number k = m− q is called a codimension of the foliation. An example of a
codimension k foliation F is given by a closed k-form ω on M : the leaves of F
are tangent to a plane defined by the normal vector ω(p) = 0 at each point p of
M . The Cr-foliations F0 and F1 of codimension k are said to be Cs-conjugate
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(0 ≤ s ≤ r), if there exists an (orientation-preserving) diffeomorphism of M ,
of class Cs, which maps the leaves of F0 onto the leaves of F1; when s = 0, F0

and F1 are topologically conjugate. Denote by f : N →M a map of class Cs

(1 ≤ s ≤ r) of a manifold N intoM ; the map f is said to be transverse to F , if
for all x ∈ N it holds Ty(M) = τy(F)+f∗Tx(N), where τy(F) are the vectors
of Ty(M) tangent to F and f∗ : Tx(N)→ Ty(M) is the linear map on tangent
vectors induced by f , where y = f(x). If map f : N → M is transverse to
a foliation F ′ = {L}α∈A on M , then f induces a class Cs foliation F on N ,
where the leaves are defined as f−1(Lα) for all α ∈ A; it is immediate, that
codim (F) = codim (F ′). We shall call F an induced foliation. When f is a
submersion, it is transverse to any foliation of M ; in this case, the induced
foliation F is correctly defined for all F ′ on M , see [Lawson 1974] [50], p.373.
Notice, that for M = N the above definition corresponds to topologically
conjugate foliations F and F ′. To introduce measured foliations, denote
by P and Q two k-dimensional submanifolds of M , which are everywhere
transverse to a foliation F of codimension k. Consider a collection of Cr

homeomorphisms between subsets of P and Q induced by a return map along
the leaves of F . The collection of all such homeomorphisms between subsets
of all possible pairs of transverse manifolds generates a holonomy pseudogroup
of F under composition of the homeomorphisms, see [Plante 1975] [84], p.329.
A foliation F is said to have measure preserving holonomy, if its holonomy
pseudogroup has a non-trivial invariant measure, which is finite on compact
sets; for brevity, we call F a measured foliation. An example of measured
foliation is a foliation, determined by closed k-form ω; the restriction of ω
to a transverse k-dimensional manifold determines a volume element, which
gives a positive invariant measure on open sets. Each measured foliation
F defines an element of the cohomology group Hk(M ;R), see [Plante 1975]
[84]; in the case of F given by a closed k-form ω, such an element coincides
with the de Rham cohomology class of ω, ibid. In view of the isomorphism
Hk(M ;R) ∼= Hom (Hk(M),R), foliation F defines a linear map h from the
k-th homology group Hk(M) to R.

Definition 2.3.1 By a Plante group P (F) of measured foliation F one un-
derstand the finitely generated abelian subgroup h(Hk(M)/Tors) ⊂ R.

Remark 2.3.1 If {γi} is a basis of the homology group Hk(M), then the
periods λi =

∫
γi
ω are generators of the group P (F), see [Plante 1975] [84].
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Let λ = (λ1, . . . , λn) be a basis of the Plante group P (F) of a measured
foliation F , such that λi > 0. Take a vector θ = (θ1, . . . , θn−1) with θi =
λi+1/λ1; the Jacobi-Perron continued fraction of vector (1, θ) (or, projective
class of vector λ) is given by the formula(

1
θ

)
= lim

i→∞

(
0 1
I b1

)
. . .
(

0 1
I bi

)(
0
I

)
= lim

i→∞
Bi

(
0
I

)
,

where bi = (b
(i)
1 , . . . , b

(i)
n−1)T is a vector of the non-negative integers, I the

unit matrix and I = (0, . . . , 0, 1)T , see [Bernstein 1971] [7], p.13; the bi are
obtained from θ by the Euclidean algorithm, ibid., pp.2-3.

Definition 2.3.2 An AF-algebra given by the Bratteli diagram with the in-
cidence matrices Bi will be called associated to the measured foliation F ; we
shall denote such an algebra by AF .

Remark 2.3.2 Taking another basis of the Plante group P (F) gives an
AF-algebra which is stably isomorphic (Morita equivalent) to AF ; this is an
algebraic recast of the main property of the Jacobi-Perron fractions.

If F ′ is a measured foliation on a manifold M and f : N → M is a submer-
sion, then induced foliation F on N is a measured foliation. We shall denote
by MFol the category of all manifolds with measured foliations (of fixed
codimension), whose arrows are submersions of the manifolds; by MFol0 we
understand a subcategory of MFol, consisting of manifolds, whose foliations
have a unique transverse measure. Let AF-alg be a category of the (isomor-
phism classes of) AF-algebras given by convergent Jacobi-Perron fractions,
so that the arrows of AF-alg are stable homomorphisms of the AF-algebras.
By F : MFol0 → AF-alg we denote a map given by the formula F 7→ AF .
Notice, that F is correctly defined, since foliations with the unique mea-
sure have the convergent Jacobi-Perron fractions; this assertion follows from
[Bauer 1996] [6]. The following result will be proved in Section 4.3.2.

Theorem 2.3.1 The map F : MFol0 → AF-alg is a functor, which sends
any pair of induced foliations to a pair of stably homomorphic AF-algebras.

Let M be an m-dimensional manifold and ϕ : M → M a diffeomorphisms
of M ; recall, that an orbit of point x ∈ M is the subset {ϕn(x) | n ∈ Z}
of M . The finite orbits ϕm(x) = x are called periodic; when m = 1, x
is a fixed point of diffeomorphism ϕ. The fixed point p is hyperbolic if the



56 CHAPTER 2. TOPOLOGY

eigenvalues λi of the linear map Dϕ(p) : Tp(M) → Tp(M) do not lie at
the unit circle. If p ∈ M is a hyperbolic fixed point of a diffeomorphism
ϕ : M → M , denote by Tp(M) = V s + V u the corresponding decomposition
of the tangent space under the linear map Dϕ(p), where V s (V u) is the
eigenspace of Dϕ(p) corresponding to |λi| > 1 (|λi| < 1). For a sub-manifold
W s(p) there exists a contraction g : W s(p)→ W s(p) with fixed point p0 and
an injective equivariant immersion J : W s(p)→M , such that J(p0) = p and
DJ(p0) : Tp0(W

s(p)) → Tp(M) is an isomorphism; the image of J defines
an immersed submanifold W s(p) ⊂ M called a stable manifold of ϕ at p.
Clearly, dim (W s(p)) = dim (V s).

Definition 2.3.3 ([Anosov 1967] [2]) A diffeomorphism ϕ : M → M is
called Anosov if there exists a splitting of the tangent bundle T (M) into a
continuous Whitney sum T (M) = Es + Eu invariant under Dϕ : T (M) →
T (M), so that Dϕ : Es → Es is contracting and Dϕ : Eu → Eu is expanding
map.

Remark 2.3.3 The Anosov diffeomorphism imposes a restriction on topol-
ogy of manifold M , in the sense that not each manifold can support such a
diffeomorphism; however, if one Anosov diffeomorphism exists on M , there
are infinitely many (conjugacy classes of) such diffeomorphisms on M . It is
an open problem of S. Smale, which M can carry an Anosov diffeomorphism;
so far, it is proved that the hyperbolic diffeomorphisms of m-dimensional tori
and certain automorphisms of the nilmanifolds are Anosov’s, see e.g. [Smale
1967] [98].

Let p be a fixed point of the Anosov diffeomorphism ϕ : M → M and
W s(p) its stable manifold. Since W s(p) cannot have self-intersections or
limit compacta, W s(p)→M is a dense immersion, i.e. the closure of W s(p)
is the entire M . Moreover, if q is a periodic point of ϕ of period n, then W s(q)
is a translate of W s(p), i.e. locally they look like two parallel lines. Consider
a foliation F of M , whose leaves are the translates of W s(p); the F is a
continuous foliation, which is invariant under the action of diffeomorphism ϕ
on its leaves, i.e. ϕ moves leaves of F to the leaves of F , see [Smale 1967] [98],
p.760. The holonomy of F preserves the Lebesgue measure and, therefore, F
is a measured foliation; we shall call it an invariant measured foliation and
denote by Fϕ.
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Definition 2.3.4 By a fundamental AF-algebra we shall understand the AF-
algebra of foliation Fϕ, where ϕ : M → M is an Anosov diffeomorphism of
a manifold M ; the fundamental AF-algebra will be denoted by Aϕ.

Theorem 2.3.2 The Aϕ is a stationary AF-algebra.

Consider the mapping torus of the Anosov diffeomorphism ϕ, i.e. a manifold

Mϕ := M × [0, 1] / ∼, where (x, 0) ∼ (ϕ(x), 1), ∀x ∈M.

Let AnoBnd be a category of the mapping tori of all Anosov’s diffeomor-
phisms; the arrows of AnoBnd are continuous maps between the mapping
tori. Likewise, let Fund-AF be a category of all fundamental AF-algebras;
the arrows of Fund-AF are stable homomorphisms between the fundamen-
tal AF-algebras. By F : AnoBnd→ Fund-AF we understand a map given
by the formula Mϕ 7→ Aϕ, where Mϕ ∈ AnoBnd and Aϕ ∈ Fund-AF. The
following theorem says that F is a functor.

Theorem 2.3.3 (Functor on Anosov’s bundles) The map F is a co-
variant functor, which sends each continuous map Nψ → Mϕ to a stable
homomorphism Aψ → Aϕ of the corresponding fundamental AF-algebras.

Remark 2.3.4 (Obstruction theory) Theorem 4.3.3 can be used e.g. in
the obstruction theory, because stable homomorphisms of the fundamental
AF-algebras are easier to detect, than continuous maps between manifolds
Nψ and Mϕ; such homomorphisms are bijective with the inclusions of certain
Z-modules belonging to a real algebraic number field. Often it is possible to
prove, that no inclusion is possible and, thus, draw a topological conclusion
about the maps, see Section 4.3.3.

2.3.2 Proofs

Proof of Theorem 4.3.1

Let F ′ be measured foliation on M , given by a closed form ω′ ∈ Hk(M ;R);
let F be measured foliation on N , induced by a submersion f : N → M .
Roughly speaking, we have to prove, that diagram in Fig. 4.5 is commutative;
the proof amounts to the fact, that the periods of form ω′ are contained
among the periods of form ω ∈ Hk(N ;R) corresponding to the foliation
F . The map f defines a homomorphism f∗ : Hk(N) → Hk(M) of the k-
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? ?
-

-

AF AF ′

F F ′

stable

homomorphism

induction

Figure 2.5: F : MFol0 → AF-alg .

th homology groups; let {ei} and {e′i} be a basis in Hk(N) and Hk(M),
respectively. Since Hk(M) = Hk(N) / ker (f∗), we shall denote by [ei] :=
ei + ker (f∗) a coset representative of ei; these can be identified with the
elements ei 6∈ ker (f∗). The integral

∫
ei
ω defines a scalar product Hk(N) ×

Hk(N ;R)→ R, so that f∗ is a linear self-adjoint operator; thus, we can write:

λ′i =
∫
e′i

ω′ =
∫
e′i

f ∗(ω) =
∫
f−1
∗ (e′i)

ω =
∫

[ei]
ω ∈ P (F),

where P (F) is the Plante group (the group of periods) of foliation F . Since
λ′i are generators of P (F ′), we conclude that P (F ′) ⊆ P (F). Note, that
P (F ′) = P (F) if and only if f∗ is an isomorphism.

One can apply a criterion of the stable homomorphism of AF-algebras;
namely, AF and AF ′ are stably homomorphic, if and only if, there exists a
positive homomorphism h : G → H between their dimension groups G and
H, see [Effros 1981] [21], p.15. But G ∼= P (F) and H ∼= P (F ′), while h = f∗.
Thus, AF and AF ′ are stably homomorphic.

The functor F is compatible with the composition; indeed, let f : N →M
and f ′ : L→ N be submersions. If F is a measured foliation of M , one gets
the induced foliations F ′ and F ′′ on N and L, respectively; these foliations fit

the diagram (L,F ′′) f ′−→ (N,F ′) f−→ (M,F) and the corresponding Plante
groups are included: P (F ′′) ⊇ P (F ′) ⊇ P (F). Thus, F (f ′ ◦ f) = F (f ′) ◦
F (f), since the inclusion of the Plante groups corresponds to the composition
of homomorphisms; Theorem 4.3.1 is proved. �
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Proof of Theorem 4.3.2

Let ϕ : M → M be an Anosov diffeomorphism; we proceed by showing,
that invariant foliation Fϕ is given by form ω ∈ Hk(M ;R), which is an
eigenvector of the linear map [ϕ] : Hk(M ;R) → Hk(M ;R) induced by ϕ.
Indeed, let 0 < c < 1 be contracting constant of the stable sub-bundle Es

of diffeomorphism ϕ and Ω the corresponding volume element; by definition,
ϕ(Ω) = cΩ. Note, that Ω is given by restriction of form ω to a k-dimensional
manifold, transverse to the leaves of Fϕ. The leaves of Fϕ are fixed by ϕ and,
therefore, ϕ(Ω) is given by a multiple cω of form ω. Since ω ∈ Hk(M ;R)
is a vector, whose coordinates define Fϕ up to a scalar, we conclude, that
[ϕ](ω) = cω, i.e. ω is an eigenvector of the linear map [ϕ]. Let (λ1, . . . , λn)
be a basis of the Plante group P (Fϕ), such that λi > 0. Notice, that ϕ acts
on λi as multiplication by constant c; indeed, since λi =

∫
γi
ω, we have:

λ′i =
∫
γi

[ϕ](ω) =
∫
γi
cω = c

∫
γi
ω = cλi,

where {γi} is a basis in Hk(M). Since ϕ preserves the leaves of Fϕ, one
concludes that λ′i ∈ P (Fϕ); therefore, λ′j =

∑
bijλi for a non-negative integer

matrix B = (bij). According to [Bauer 1996] [6], matrix B can be written as
a finite product:

B =
(

0 1
I b1

)
. . .
(

0 1
I bp

)
:= B1 . . . Bp,

where bi = (b
(i)
1 , . . . , b

(i)
n−1)T is a vector of non-negative integers and I the

unit matrix. Let λ = (λ1, . . . , λn). Consider a purely periodic Jacobi-Perron
continued fraction:

lim
i→∞

B1 . . . Bp

(
0
I

)
,

where I = (0, . . . , 0, 1)T ; by a basic property of such fractions, it converges to
an eigenvector λ′ = (λ′1, . . . , λ

′
n) of matrix B1 . . . Bp, see [Bernstein 1971] [7],

Chapter 3. But B1 . . . Bp = B and λ is an eigenvector of matrix B; therefore,
vectors λ and λ′ are collinear. The collinear vectors are known to have the
same continued fractions; thus, we have(

1
θ

)
= lim

i→∞
B1 . . . Bp

(
0
I

)
,

where θ = (θ1, . . . , θn−1) and θi = λi+1/λ1. Since vector (1, θ) unfolds into a
periodic Jacobi-Perron continued fraction, we conclude, that the AF-algebra
Aϕ is stationary. Theorem 4.3.2 is proved. �
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Proof of Theorem 4.3.3

Let ψ : N → N and ϕ : M →M be a pair of Anosov diffeomorphisms; denote
by (N,Fψ) and (M,Fϕ) the corresponding invariant foliations of manifolds
N and M , respectively. In view of Theorem 4.3.1, it is sufficient to prove,
that the diagram in Fig.4.6 is commutative. We shall split the proof in a
series of lemmas.

? ?
-

-

(N,Fψ) (M,Fϕ)

Nψ Mϕ

induced

foliations

continuous

map

Figure 2.6: Mapping tori and invariant foliations.

Lemma 2.3.1 There exists a continuous map Nψ →Mϕ, whenever f ◦ ϕ =
ψ ◦ f for a submersion f : N →M .

Proof. (i) Suppose, that h : Nψ →Mϕ is a continuous map; let us show, that
there exists a submersion f : N →M , such that f ◦ϕ = ψ ◦ f . Both Nψ and
Mϕ fiber over the circle S1 with the projection map pψ and pϕ, respectively;
therefore, the diagram in Fig. 4.7 is commutative. Let x ∈ S1; since p−1

ψ = N
and p−1

ϕ = M , the restriction of h to x defines a submersion f : N → M ,
i.e. f = hx. Moreover, since ψ and ϕ are monodromy maps of the bundle, it
holds: {

p−1
ψ (x+ 2π) = ψ(N),
p−1
ϕ (x+ 2π) = ϕ(M).

From the diagram in Fig. 4.7, we get ψ(N) = p−1
ψ (x + 2π) = f−1(p−1

ϕ (x +
2π)) = f−1(ϕ(M)) = f−1(ϕ(f(N))); thus, f ◦ ψ = ϕ ◦ f . The necessary
condition of Lemma 4.3.1 follows.

(ii) Suppose, that f : N → M is a submersion, such that f ◦ ϕ = ψ ◦ f ;
we have to construct a continuous map h : Nψ →Mϕ. Recall, that{

Nψ = {N × [0, 1] | (x, 0) ∼ (ψ(x), 1)},
Mϕ = {M × [0, 1] | (y, 0) ∼ (ϕ(y), 1)}.



2.3. OBSTRUCTION THEORY FOR ANOSOV’S BUNDLES 61
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-Nψ Mϕ

S1

h

pψ pϕ

Figure 2.7: The fiber bundles Nψ and Mϕ over S1.

We shall identify the points of Nψ and Mϕ using the substitution y = f(x); it
remains to verify, that such an identification will satisfy the gluing condition
y ∼ ϕ(y). In view of condition f ◦ ϕ = ψ ◦ f , we have:

y = f(x) ∼ f(ψ(x)) = ϕ(f(x)) = ϕ(y).

Thus, y ∼ ϕ(y) and, therefore, the map h : Nψ → Mϕ is continuous. The
sufficient condition of lemma 4.3.1 is proved. �

? ?
-

-

Hk(M,R) Hk(M,R)

Hk(N ;R) Hk(N,R)

[ϕ]

[ψ]

[f ] [f ]

Figure 2.8: The linear maps [ψ], [ϕ] and [f ].

Lemma 2.3.2 If a submersion f : N →M satisfies condition f ◦ϕ = ψ ◦ f
for the Anosov diffeomorphisms ψ : N → N and ϕ : M → M , then the
invariant foliations (N,Fψ) and (M,Fϕ) are induced by f .

Proof. The invariant foliations Fψ and Fϕ are measured; we shall denote
by ωψ ∈ Hk(N ;R) and ωϕ ∈ Hk(M ;R) the corresponding cohomology class,
respectively. The linear maps on Hk(N ;R) and Hk(M ;R) induced by ψ
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and ϕ, we shall denote by [ψ] and [ϕ]; the linear map between Hk(N ;R)
and Hk(M ;R) induced by f , we write as [f ]. Notice, that [ψ] and [ϕ] are
isomorphisms, while [f ] is generally a homomorphism. It was shown earlier,
that ωψ and ωϕ are eigenvectors of linear maps [ψ] and [ϕ], respectively; in
other words, we have: {

[ψ]ωψ = c1ωψ,
[ϕ]ωϕ = c2ωϕ,

where 0 < c1 < 1 and 0 < c2 < 1. Consider a diagram in Fig. 4.8 , which
involves the linear maps [ψ], [ϕ] and [f ]; the diagram is commutative, since
condition f ◦ϕ = ψ ◦f implies, that [ϕ]◦ [f ] = [f ]◦ [ψ]. Take the eigenvector
ωψ and consider its image under the linear map [ϕ] ◦ [f ]:

[ϕ] ◦ [f ](ωψ) = [f ] ◦ [ψ](ωψ) = [f ](c1ωψ) = c1 ([f ](ωψ)) .

Therefore, vector [f ](ωψ) is an eigenvector of the linear map [ϕ]; let compare
it with the eigenvector ωϕ:

{
[ϕ] ([f ](ωψ)) = c1 ([f ](ωψ)) ,

[ϕ]ωϕ = c2ωϕ.

We conclude, therefore, that ωϕ and [f ](ωψ) are collinear vectors, such that
cm1 = cn2 for some integers m,n > 0; a scaling gives us [f ](ωψ) = ωϕ. The
latter is an analytic formula, which says that the submersion f : N → M
induces foliation (N,Fψ) from the foliation (M,Fϕ). Lemma 4.3.2 is proved.
�

To finish the proof of Theorem 4.3.3, let Nψ → Mϕ be a continuous
map; by Lemma 4.3.1, there exists a submersion f : N → M , such that
f ◦ ϕ = ψ ◦ f . Lemma 4.3.2 says, that in this case the invariant measured
foliations (N,Fψ) and (M,Fϕ) are induced. On the other hand, from Theo-
rem 4.3.2 we know, that the Jacobi-Perron continued fraction connected to
foliations Fψ and Fϕ are periodic and, hence, convergent, see e.g [Bernstein
1971] [7]; therefore, one can apply Theorem 4.3.1 which says that the AF-
algebra Aψ is stably homomorphic to the AF-algebra Aϕ. The latter are, by
definition, the fundamental AF-algebras of the Anosov diffeomorphisms ψ
and ϕ, respectively. Theorem 4.3.3 is proved. �
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2.3.3 Obstruction theory

Let Aψ be a fundamental AF-algebra and B its primitive incidence matrix,
i.e. B is not a power of some positive integer matrix. Suppose that the
characteristic polynomial of B is irreducible and let Kψ be its splitting field;
then Kψ is a Galois extension of Q.

Definition 2.3.5 We call Gal (Aψ) := Gal (Kψ|Q) the Galois group of the
fundamental AF-algebra Aψ; such a group is determined by the AF-algebra
Aψ.

The second algebraic field is connected to the Perron-Frobenius eigenvalue λB
of the matrix B; we shall denote this field Q(λB). Note, that Q(λB) ⊆ Kψ and
Q(λB) is not, in general, a Galois extension of Q; the reason being complex
roots the polynomial char (B) may have and if there are no such roots
Q(λB) = Kψ. There is still a group Aut (Q(λB)) of automorphisms of Q(λB)
fixing the field Q and Aut (Q(λB)) ⊆ Gal (Kψ) is a subgroup inclusion.

Lemma 2.3.3 If h : Aψ → Aϕ is a stable homomorphism, then Q(λB′) ⊆ Kψ

is a field inclusion.

Proof. Notice that the non-negative matrix B becomes strictly positive,
when a proper power of it is taken; we always assume B positive. Let λ =
(λ1, . . . , λn) be a basis of the Plante group P (Fψ). Following the proof of
Theorem 4.3.2, one concludes that λi ∈ Kψ; indeed, λB ∈ Kψ is the Perron-
Frobenius eigenvalue of B , while λ the corresponding eigenvector. The latter
can be scaled so, that λi ∈ Kψ. Any stable homomorphism h : Aψ → Aϕ
induces a positive homomorphism of their dimension groups [h] : G → H;
but G ∼= P (Fψ) and H ∼= P (Fϕ). From inclusion P (Fϕ) ⊆ P (Fψ), one
gets Q(λB′) ∼= P (Fϕ) ⊗ Q ⊆ P (Fψ) ⊗ Q ∼= Q(λB) ⊆ Kf and, therefore,
Q(λB′) ⊆ Kψ. Lemma 4.3.3 follows. �

Corollary 2.3.1 If h : Aψ → Aϕ is a stable homomorphism, then Aut (Q(λB′))
(or, Gal (Aϕ)) is a subgroup (or, a normal subgroup) of Gal (Aψ).

Proof. The (Galois) subfields of the Galois field Kψ are bijective with the
(normal) subgroups of the group Gal (Kψ), see e.g. [Morandi 1996] [55]. �

Let Tm ∼= Rm/Zm be anm-dimensional torus; let ψ0 be am×m integer matrix
with det (ψ0) = 1, such that it is similar to a positive matrix. The matrix
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ψ0 defines a linear transformation of Rm, which preserves the lattice L ∼= Zm

of points with integer coordinates. There is an induced diffeomorphism ψ of
the quotient Tm ∼= Rm/Zm onto itself; this diffeomorphism ψ : Tm → Tm

has a fixed point p corresponding to the origin of Rm. Suppose that ψ0

is hyperbolic, i.e. there are no eigenvalues of ψ0 at the unit circle; then
p is a hyperbolic fixed point of ψ and the stable manifold W s(p) is the
image of the corresponding eigenspace of ψ0 under the projection Rm →
Tm. If codim W s(p) = 1, the hyperbolic linear transformation ψ0 (and the
diffeomorphism ψ) will be called tight.

Lemma 2.3.4 The tight hyperbolic matrix ψ0 is similar to the matrix B of
the fundamental AF-algebra Aψ.

Proof. Since Hk(T
m;R) ∼= R

m!
k!(m−k)! , one gets Hm−1(Tm;R) ∼= Rm; in view of

the Poincaré duality, H1(Tm;R) = Hm−1(Tm;R) ∼= Rm. Since codimW s(p) =
1, measured foliation Fψ is given by a closed form ωψ ∈ H1(Tm;R), such
that [ψ]ωψ = λψωψ, where λψ is the eigenvalue of the linear transformation
[ψ] : H1(Tm;R) → H1(Tm;R). It is easy to see that [ψ] = ψ0, because
H1(Tm;R) ∼= Rm is the universal cover for Tm, where the eigenspace W u(p)
of ψ0 is the span of the eigenform ωψ. On the other hand, from the proof
of Theorem 4.3.2 we know that the Plante group P (Fψ) is generated by the
coordinates of vector ωψ; the matrix B is nothing but the matrix ψ0 written
in a new basis of P (Fψ). Each change of basis in the Z-module P (Fψ) is
given by an integer invertible matrix S; therefore, B = S−1ψ0S. Lemma
4.3.4 follows. �

Let ψ : Tm → Tm be a hyperbolic diffeomorphism; the mapping torus Tmψ
will be called a (hyperbolic) torus bundle of dimension m. Let k = |Gal (Aψ)|;
it follows from the Galois theory, that 1 < k ≤ m!. Denote ti the cardinality
of a subgroup Gi ⊆ Gal (Aψ).

Corollary 2.3.2 There are no (non-trivial) continuous map Tmψ → Tm
′

ϕ ,
whenever t′i - k for all G′i ⊆ Gal (Aϕ).

Proof. If h : Tmψ → Tm
′

ϕ was a continuous map to a torus bundle of dimension
m′ < m, then, by Theorem 4.3.3 and Corollary 4.3.1, the Aut (Q(λB′)) (or,
Gal (Aϕ)) were a non-trivial subgroup (or, normal subgroup) of the group
Gal (Aψ); since k = |Gal (Aψ)|, one concludes that one of t′i divides k. This
contradicts our assumption. �
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Definition 2.3.6 The torus bundle Tmψ is called robust, if there exists m′ <

m, such that no continuous map Tmψ → Tm
′

ϕ is possible.

Remark 2.3.5 Are there robust bundles? It is shown in this section, that
for m = 2, 3 and 4 there are infinitely many robust bundles.

Case m = 2

This case is trivial; ψ0 is a hyperbolic matrix and always tight. The char (ψ0) =
char (B) is an irreducible quadratic polynomial with two real roots; Gal (Aψ) ∼=
Z2 and, therefore, |Gal (Aψ)| = 2. Formally, T 2

ψ is robust, since no torus bun-
dle of a smaller dimension is defined.

Case m = 3

The ψ0 is hyperbolic; it is always tight, since one root of char (ψ0) is real
and isolated inside or outside the unit circle.

Corollary 2.3.3 Let

ψ0(b, c) =

−b 1 0
−c 0 1
−1 0 0


be such, that char (ψ0(b, c)) = x3+bx2+cx+1 is irreducible and −4b3+b2c2+
18bc − 4c3 − 27 is the square of an integer; then T 3

ψ admits no continuous
map to any T 2

ϕ.

Proof. The char (ψ0(b, c)) = x3 + bx2 + cx + 1 and the discriminant D =
−4b3 + b2c2 + 18bc − 4c3 − 27. By [Morandi 1996] [55], Theorem 13.1, we
have Gal (Aψ) ∼= Z3 and, therefore, k = |Gal (Aψ)| = 3. For m′ = 2, it was
shown that Gal (Aϕ) ∼= Z2 and, therefore, t′1 = 2. Since 2 - 3, Corollary 4.3.2
says that no continuous map T 3

ψ → T 2
ϕ can be constructed. Corollary 4.3.3

follows. �

Example 2.3.1 There are infinitely many matrices ψ0(b, c) satisfying the
assumptions of Corollary 4.3.3; below are a few numerical examples of robust
bundles: 0 1 0

3 0 1
−1 0 0

 ,
 1 1 0

2 0 1
−1 0 0

 ,
 2 1 0

1 0 1
−1 0 0

 ,
 3 1 0

0 0 1
−1 0 0

 .
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Remark 2.3.6 Notice that the above matrices are not pairwise similar; it
can be gleaned from their traces; thus they represent topologically distinct
torus bundles.

Case m = 4

Let p(x) = x4 + ax3 + bx2 + cx + d be a quartic. Consider the associated
cubic polynomial r(x) = x3− bx2 + (ac− 4d)x+ 4bd− a2d− c2; denote by L
the splitting field of r(x).

Corollary 2.3.4 Let

ψ0(a, b, c) =


−a 1 0 0
−b 0 1 0
−c 0 0 1
−1 0 0 0


be tight and such, that char (ψ0(a, b, c)) = x4 +ax3 +bx2 +cx+1 is irreducible
and one of the following holds: (i) L = Q; (ii) r(x) has a unique root t ∈ Q
and h(x) = (x2−tx+1)[x2 +ax+(b−t)] splits over L; (iii) r(x) has a unique
root t ∈ Q and h(x) does not split over L. Then T 4

ψ admits no continuous
map to any T 3

ϕ with D > 0.

Proof. According to [Morandi 1996] [55], Theorem 13.4, Gal (Aψ) ∼= Z2 ⊕ Z2

in case (i); Gal (Aψ) ∼= Z4 in case (ii); and Gal (Aψ) ∼= D4 (the dihedral
group) in case (iii). Therefore, k = |Z2 ⊕ Z2| = |Z4| = 4 or k = |D4| = 8.
On the other hand, for m′ = 3 with D > 0 (all roots are real), we have
t′1 = |Z3| = 3 and t′2 = |S3| = 6. Since 3; 6 - 4; 8, corollary 4.3.2 says that
continuous map T 4

ψ → T 3
ϕ is impossible. Corollary 4.3.4 follows. �

Example 2.3.2 There are infinitely many matrices ψ0, which satisfy the
assumption of corollary 4.3.4; indeed, consider a family

ψ0(a, c) =


−2a 1 0 0
−a2 − c2 0 1 0
−2c 0 0 1
−1 0 0 0

 ,

where a, c ∈ Z. The associated cubic becomes r(x) = x[x2−(a2+c2)x+4(ac−
1)], so that t = 0 is a rational root; then h(x) = (x2 + 1)[x2 + 2ax+ a2 + c2].
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The matrix ψ0(a, c) satisfies one of the conditions (i)-(iii) of corollary 4.3.4
for each a, c ∈ Z; it remains to eliminate the (non-generic) matrices, which
are not tight or irreducible. Thus, ψ0(a, c) defines a family of topologically
distinct robust bundles.

Guide to the literature. The Anosov diffeomorphisms were introduced
and studied in [Anosov 1967] [2]; for a classical account of the differentiable
dynamical systems see [Smale 1967] [98]. An excellent survey of foliations
has been compiled by [Lawson 1974] [50]. The Galois theory is covered in
the textbook by [Morandi 1996] [55]. The original proof of Theorem 4.3.3
and obstruction theory for Anosov’s bundles can be found in [73].

Exercises, problems and conjectures

1. Verify that F : φ 7→ Aφ is a well-defined function on the set of all Anosov
automorphisms given by the hyperbolic matrices with the non-negative
entries.

2. Verify that the definition of the AF-algebra Aφ for the pseudo-Anosov
maps coincides with the one for the Anosov maps. (Hint: the Jacobi-
Perron fractions of dimension n = 2 coincide with the regular continued
fractions.)

3. p-adic invariants of pseudo-Anosov maps. Let φ ∈Mod (X) be
pseudo-Anosov automorphism of a surface X. If λφ is the dilatation
of φ, then one can consider a Z-module m = Zv(1) + . . . + Zv(n) in
the number field K = Q(λφ) generated by the normalized eigenvector
(v(1), . . . , v(n)) corresponding to the eigenvalue λφ. The trace function
on the number field K gives rise to a symmetric bilinear form q(x, y)
on the module m. The form is defined over the field Q. It has been
shown that a pseudo-Anosov automorphism φ′, conjugate to φ, yields
a form q′(x, y), equivalent to q(x, y), i.e. q(x, y) can be transformed to
q′(x, y) by an invertible linear substitution with the coefficients in Z. It
is well known that two rational bilinear forms q(x, y) and q′(x, y) are
equivalent whenever the following conditions are satisfied:

(i) ∆ = ∆′, where ∆ is the determinant of the form;
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(ii) for each prime number p (including p =∞) certain p-adic equation
between the coefficients of forms q, q′ must be satisfied, see e.g. [Bore-
vich & Shafarevich 1966] [11], Chapter 1, §7.5. (In fact, only a finite
number of such equations have to be verified.)

Condition (i) has been already used to discern between the conjugacy
classes of the pseudo-Anosov automorphisms. One can use condition
(ii) to discern between the pseudo-Anosov automorphisms with ∆ = ∆′;
in other words, one gets a problem:

To define p-adic invariants of the pseudo-Anosov maps.

4. The signature of a pseudo-Anosov map. The signature is an im-
portant and well-known invariant connected to the chirality and knot-
ting number of knots and links, see e.g. [Reidemeister 1932] [87]. It will
be interesting to find a geometric interpretation of the signature Σ for
the pseudo-Anosov automorphisms; one can ask the following question:

To find geometric interpretation of the invariant Σ.

5. The number of conjugacy classes of pseudo-Anosov maps with
the same dilatation. The dilatation λφ is an invariant of the conju-
gacy class of the pseudo-Anosov automorphism φ ∈Mod (X). On the
other hand, it is known that there exist non-conjugate pseudo-Anosov’s
with the same dilatation and the number of such classes is finite, see
[Thurston 1988] [105], p.428. It is natural to expect that the invariants
of operator algebras can be used to evaluate the number; we have the
following

Conjecture 2.3.1 Let (Λ, [I], K) be the triple corresponding to a pseudo-
Anosov map φ ∈ Mod (X). Then the number of the conjugacy classes
of the pseudo-Anosov automorphisms with the dilatation λφ is equal to
the class number hΛ = |Λ/[I]| of the integral order Λ.



Chapter 3

Algebraic Geometry

The NCG-valued functors arise in algebraic geometry; what is going on con-
ceptually? Remember the covariant functor GLn : CRng → Grp from the
category of commutative rings R to the category of groups; functor GLn pro-
duces a multiplicative group of all n × n invertible matrices with entries in
R and preserves homomorphisms between the objects in the respective cat-
egories, see Example 2.3.4. The NCG-valued functors take one step further:
they deal with the natural embedding Grp ↪→ Grp-Rng, where Grp-Rng
is the category of associative group rings; thus we have

CRng
GLn−→ Grp ↪→ Grp-Rng,

where Grp-Rng is an associative ring, i.e. the NCG. (Of course this simple
observation would be of little use if the objects in Grp-Rng was fuzzy and
nothing concrete can be said about them; note also that the abelianization
Grp-Rng/[•, •] of Grp-Rng is naturally isomorphic to CRng.) For n = 2
and CRng being the coordinate ring of elliptic curves, the category Grp-
Rng consists of the noncommutative tori (with scaled units); this fact will
be proved in Section 5.1 in two independent ways. For the higher genus
algebraic curves the category Grp-Rng consists of the so-called toric AF-
algebras, see Section 5.2. The general case of complex projective varieties
is considered in Section 5.3 and Grp-Rng consists of the Serre C∗-algebras.
In Section 5.4 we use the stable isomorphism group of toric AF-algebras to
prove Harvey’s conjecture on the linearity of the mapping class groups.

69
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3.1 Elliptic curves

Let us repeat some known facts. We will be working with the ground field
of complex numbers C; by an elliptic curve we shall understand the subset
of the complex projective plane of the form

E(C) = {(x, y, z) ∈ CP 2 | y2z = 4x3 + axz2 + bz3},

where a and b are some constant complex numbers. One can visualize the
real points of E(C) as it is shown in Figure 5.1.

�
�

a < 0 a > 0

Figure 3.1: The real points of an affine elliptic curve y2 = 4x3 + ax.

Remark 3.1.1 It is known that each elliptic curve E(C) is isomorphic to the
set of points of intersection of two quadric surfaces in the complex projective
space CP 3 given by the system of homogeneous equations{

u2 + v2 + w2 + z2 = 0,
Av2 +Bw2 + z2 = 0,

where A and B are some constant complex numbers and (u, v, w, z) ∈ CP 3;
the system is called the Jacobi form of elliptic curve E(C).

Definition 3.1.1 By a complex torus one understands the space C/(Zω1 +
Zω2), where ω1 and ω2 are linearly independent vectors in the complex plane
C, see Fig. 5.2; the ratio τ = ω2/ω1 is called a complex modulus.

Remark 3.1.2 Two complex tori C/(Z+Zτ) and C/(Z+Zτ ′) are isomorphic
if and only if

τ ′ =
aτ + b

cτ + d
for some matrix

(
a b
c d

)
∈ SL2(Z).
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Figure 3.2: Complex torus C/(Z + Zτ).

The complex analytic manifold C/(Z + Zτ) can be embedded into an n-
dimensional complex projective space as an algebraic variety. For n = 2 we
have the following classical result, which relates complex torus C/(Z + Zτ)
with an elliptic curve E(C) in the projective plane CP 2.

Theorem 3.1.1 (Weierstrass) There exists a holomorphic embedding

C/(Z + Zτ) ↪→ CP 2

given by the formula

z 7→
{

(℘(z), ℘′(z), 1) for z 6∈ Lτ := Z + Zτ ,
(0, 1, 0) for z ∈ Lτ

,

which is an isomorphism between complex torus C/(Z+Zτ) and elliptic curve

E(C) = {(x, y, z) ∈ CP 2 | y2z = 4x3 + axz2 + bz3},

where ℘(z) is the Weierstrass function defined by the convergent series

℘(z) =
1

z2
+

∑
ω∈Lτ−{0}

(
1

(z − ω)2
− 1

ω2

)
.

and {
a = −60

∑
ω∈Lτ−{0}

1
ω4 ,

b = −140
∑
ω∈Lτ−{0}

1
ω6 .

Remark 3.1.3 The Weierstrass Theorem identifies elliptic curves E(C) and
complex tori C/(Zω1 + Zω2); we shall write Eτ to denote elliptic curve corre-
sponding to the complex torus of modulus τ = ω2/ω1.
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Definition 3.1.2 By Ell we shall mean the category of all elliptic curves Eτ ;
the arrows of Ell are identified with the isomorphisms between elliptic curves
Eτ . We shall write NC-Tor to denote the category of all noncommutative
tori Aθ; the arrows of NC-Tor are identified with the stable isomorphisms
(Morita equivalences) between noncommutative tori Aθ.

? ?
-

-

Aθ

F F

Aθ′=aθ+b
cθ+d

Eτ Eτ ′=aτ+b
cτ+d

stably

isomorphic

isomorphic

Figure 3.3: Functor on elliptic curves.

Theorem 3.1.2 (Functor on elliptic curves) There exists a covariant
functor

F : Ell −→ NC-Tor,

which maps isomorphic elliptic curves Eτ to the stably isomorphic (Morita
equivalent) noncommutative tori Aθ, see Fig. 5.3; the functor F is non-
injective and Ker F ∼= (0,∞).

Theorem 5.1.2 will be proved in Section 5.1.1 using the Sklyanin algebras
and in Section 5.1.2 using measured foliations and the Teichmüller theory.

3.1.1 Noncommutative tori via Sklyanin algebras

Definition 3.1.3 ([Sklyanin 1982] [96]) By the Sklyanin algebra S(α, β, γ)
one understands a free C-algebra on four generators x1, . . . , x4 and six quadratic
relations 

x1x2 − x2x1 = α(x3x4 + x4x3),
x1x2 + x2x1 = x3x4 − x4x3,
x1x3 − x3x1 = β(x4x2 + x2x4),
x1x3 + x3x1 = x4x2 − x2x4,
x1x4 − x4x1 = γ(x2x3 + x3x2),
x1x4 + x4x1 = x2x3 − x3x2,
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where α + β + γ + αβγ = 0.

Remark 3.1.4 ([Smith & Stafford 1992] [99], p. 260) The algebra
S(α, β, γ) is isomorphic to a twisted homogeneous coordinate ring of elliptic
curve Eτ ⊂ CP 3 given in its Jacobi form{

u2 + v2 + w2 + z2 = 0,
1−α
1+β

v2 + 1+α
1−γw

2 + z2 = 0,

i.e. S(α, β, γ) satisfies an isomorphism

Mod (S(α, β, γ))/Tors ∼= Coh (Eτ ),

where Coh is the category of quasi-coherent sheaves on Eτ , Mod the category
of graded left modules over the graded ring S(α, β, γ) and Tors the full sub-
category of Mod consisting of the torsion modules, see [Serre 1955] [91]. The
algebra S(α, β, γ) defines a natural automorphism σ : Eτ → Eτ of the elliptic
curve Eτ , see e.g. [Stafford & van den Bergh 2001] [100], p. 173.

Lemma 3.1.1 If σ4 = Id, then algebra S(α, β, γ) is isomorphic to a free
algebra C〈x1, x2, x3, x4〉 modulo an ideal generated by six skew-symmetric
quadratic relations 

x3x1 = µe2πiθx1x3,
x4x2 = 1

µ
e2πiθx2x4,

x4x1 = µe−2πiθx1x4,
x3x2 = 1

µ
e−2πiθx2x3,

x2x1 = x1x2,
x4x3 = x3x4,

where θ ∈ S1 and µ ∈ (0,∞).

Proof. (i) Since σ4 = Id, the Sklyanin algebra S(α, β, γ) is isomorphic
to a free algebra C〈x1, x2, x3, x4〉 modulo an ideal generated by the skew-
symmetric relations 

x3x1 = q13x1x3,
x4x2 = q24x2x4,
x4x1 = q14x1x4,
x3x2 = q23x2x3,
x2x1 = q12x1x2,
x4x3 = q34x3x4,
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where qij ∈ C \ {0}, see [Feigin & Odesskii 1989] [26], Remark 1 and [Feigin
& Odesskii 1993] [27], §2 for the proof.

(ii) It is verified directly, that above relations are invariant of the in-
volution x∗1 = x2, x

∗
3 = x4, if and only if, the following restrictions on the

constants qij hold 

q13 = (q̄24)−1,
q24 = (q̄13)−1,
q14 = (q̄23)−1,
q23 = (q̄14)−1,
q12 = q̄12,
q34 = q̄34,

where q̄ij means the complex conjugate of qij ∈ C \ {0}.

Remark 3.1.5 The skew-symmetric relations invariant of the involution
x∗1 = x2, x

∗
3 = x4 define an involution on the Sklyanin algebra; we shall call

such an algebra a Sklyanin ∗-algebra.

(iii) Consider a one-parameter family S(q13) of the Sklyanin ∗-algebras
defined by the following additional constraints{

q13 = q̄14,
q12 = q34 = 1.

It is not hard to see, that the ∗-algebras S(q13) are pairwise non-isomorphic
for different values of complex parameter q13; therefore the family S(q13)
is a normal form of the Sklyanin ∗-algebra S(α, β, γ) with σ4 = Id. It
remains to notice, that one can write complex parameter q13 in the polar
form q13 = µe2πiθ, where θ = Arg (q13) and µ = |q13|. Lemma 5.1.1 follows.
�

Lemma 3.1.2 The system of relations
x3x1 = e2πiθx1x3,
x1x2 = x2x1 = e,
x3x4 = x4x3 = e
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defining the noncommutative torus Aθ is equivalent to the following system
of quadratic relations 

x3x1 = e2πiθx1x3,
x4x2 = e2πiθx2x4,
x4x1 = e−2πiθx1x4,
x3x2 = e−2πiθx2x3,
x2x1 = x1x2 = e,
x4x3 = x3x4 = e.

Proof. Indeed, the first and the two last equations of both systems coincide;
we shall proceed stepwise for the rest of the equations.

(i) Let us prove that equations for Aθ imply x1x4 = e2πiθx4x1. It follows
from x1x2 = e and x3x4 = e that x1x2x3x4 = e. Since x1x2 = x2x1 we can
bring the last equation to the form x2x1x3x4 = e and multiply the both sides
by the constant e2πiθ; thus one gets the equation x2(e2πiθx1x3)x4 = e2πiθ. But
e2πiθx1x3 = x3x1 and our main equation takes the form x2x3x1x4 = e2πiθ.

We can multiply on the left the both sides of the equation by the element
x1 and thus get the equation x1x2x3x1x4 = e2πiθx1; since x1x2 = e one arrives
at the equation x3x1x4 = e2πiθx1.

Again one can multiply on the left the both sides by the element x4 and
thus get the equation x4x3x1x4 = e2πiθx4x1; since x4x3 = e one gets the
required identity x1x4 = e2πiθx4x1.

(ii) Let us prove that equations for Aθ imply x2x3 = e2πiθx3x2. As in
the case (i), it follows from the equations x1x2 = e and x3x4 = e that
x3x4x1x2 = e. Since x3x4 = x4x3 we can bring the last equation to the form
x4x3x1x2 = e and multiply the both sides by the constant e−2πiθ; thus one
gets the equation x4(e−2πiθx3x1)x2 = e−2πiθ. But e−2πiθx3x1 = x1x3 and our
main equation takes the form x4x1x3x2 = e−2πiθ.

We can multiply on the left the both sides of the equation by the element
x3 and thus get the equation x3x4x1x3x2 = e−2πiθx3; since x3x4 = e one
arrives at the equation x1x3x2 = e−2πiθx3.

Again one can multiply on the left the both sides by the element x2 and
thus get the equation x2x1x3x2 = e−2πiθx2x3; since x2x1 = e one gets the
equation x3x2 = e−2πiθx2x3. Multiplying both sides by constant e2πiθ we
obtain the required identity x2x3 = e2πiθx3x2.

(iii) Let us prove that equations for Aθ imply x4x2 = e2πiθx2x4. Indeed,
it was proved in (i) that x1x4 = e2πiθx4x1; we shall multiply this equation
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on the right by the equation x2x1 = e. Thus one arrives at the equation
x1x4x2x1 = e2πiθx4x1.

Notice that in the last equation one can cancel x1 on the right thus
bringing it to the simpler form x1x4x2 = e2πiθx4.

We shall multiply on the left both sides of the above equation by the
element x2; one gets therefore x2x1x4x2 = e2πiθx2x4. But x2x1 = e and the
left hand side simplifies giving the required identity x4x2 = e2πiθx2x4.

Lemma 5.1.2 follows. �

Lemma 3.1.3 (Basic isomorphism) The system of relations for noncom-
mutative torus Aθ 

x3x1 = e2πiθx1x3,
x4x2 = e2πiθx2x4,
x4x1 = e−2πiθx1x4,
x3x2 = e−2πiθx2x3,
x2x1 = x1x2 = e,
x4x3 = x3x4 = e,

is equivalent to the system of relations for the Sklyanin ∗-algebra

x3x1 = µe2πiθx1x3,
x4x2 = 1

µ
e2πiθx2x4,

x4x1 = µe−2πiθx1x4,
x3x2 = 1

µ
e−2πiθx2x3,

x2x1 = x1x2,
x4x3 = x3x4,

modulo the following “scaled unit relation”

x1x2 = x3x4 =
1

µ
e.

Proof. (i) Using the last two relations, one can bring the noncommutative
torus relations to the form

x3x1x4 = e2πiθx1,
x4 = e2πiθx2x4x1,

x4x1x3 = e−2πiθx1,
x2 = e−2πiθx4x2x3,
x1x2 = x2x1 = e,
x3x4 = x4x3 = e.
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(ii) The system of relations for the Sklyanin ∗-algebra complemented by
the scaled unit relation, i.e.

x3x1 = µe2πiθx1x3,
x4x2 = 1

µ
e2πiθx2x4,

x4x1 = µe−2πiθx1x4,
x3x2 = 1

µ
e−2πiθx2x3,

x2x1 = x1x2 = 1
µ
e,

x4x3 = x3x4 = 1
µ
e

is equivalent to the system

x3x1x4 = e2πiθx1,
x4 = e2πiθx2x4x1,

x4x1x3 = e−2πiθx1,
x2 = e−2πiθx4x2x3,
x2x1 = x1x2 = 1

µ
e,

x4x3 = x3x4 = 1
µ
e

by using multiplication and cancellation involving the last two equations.

(iii) For each µ ∈ (0,∞) consider a scaled unit e′ := 1
µ
e of the Sklyanin ∗-

algebra S(q13) and the two-sided ideal Iµ ⊂ S(q13) generated by the relations
x1x2 = x3x4 = e′. Comparing the defining relations for S(q13) with such for
the noncommutative torus Aθ, one gets an isomorphism

S(q13) / Iµ ∼= Aθ,

see items (i) and (ii). The isomorphism maps generators x1, . . . , x4 of ∗-
algebra S(q13) to such of the C∗-algebra Aθ and the scaled unit e′ ∈ S(q13)
to the ordinary unit of algebra Aθ. Lemma 5.1.3 follows. �

To finish the proof of Theorem 5.1.2, recall that the Sklyanin ∗-algebra
S(q13) satisfies the fundamental isomorphism Mod (S(q13))/Tors ∼= Coh (Eτ ).
Using the isomorphism S(q13)/Iµ ∼= Aθ established in Lemma 5.1.3, we con-
clude that

Iµ\Coh (Eτ ) ∼= Mod (Iµ\S(q13))/Tors ∼= Mod (Aθ)/Tors.

Thus one gets an isomorphism Coh (Eτ )/Iµ ∼= Mod (Aθ)/ Tors, which
defines a map F : Ell → NC-Tor. Moreover, map F is a functor because
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isomorphisms in the category Mod (Aθ) give rise to the stable isomorphisms
(Morita equivalences) in the category NC-Tor. The second part of Theorem
5.1.2 is due to the fact that F forgets scaling of the unit, i.e. for each
µ ∈ (0,∞) we have a constant map

S(q13) 3 e′ := 1

µ
e 7−→ e ∈ Aθ.

Thus Ker F ∼= (0,∞). Theorem 5.1.2 is proved. �

3.1.2 Noncommutative tori via measured foliations

Definition 3.1.4 ([Thurston 1988] [105]) By a measured foliation F on a
surface X one understands partition of X into the singular points x1, . . . , xn
of order k1, . . . , kn and the regular leaves, i.e. 1-dimensional submanifolds
of X; on each open cover Ui of X\{x1, . . . , xn} there exists a non-vanishing
real-valued closed 1-form φi such that:

(i) φi = ±φj on Ui ∩ Uj;
(ii) at each xi there exists a local chart (u, v) : V → R2 such that for

z = u+ iv, it holds φi = Im (z
ki
2 dz) on V ∩ Ui for some branch of z

ki
2 .

The pair (Ui, φi) is called an atlas for measured foliation F . A measure µ
is assigned to each segment (t0, t) ∈ Ui; the measure is transverse to the
leaves of F and is defined by the integral µ(t0, t) =

∫ t
t0
φi. Such a measure is

invariant along the leaves of F , hence the name.

Remark 3.1.6 In case X ∼= T 2 (a torus) each measured foliation is given
by a family of parallel lines of a slope θ > 0 as shown in Fig. 5.4.

��

�
��

�

��
�
�

��
��

��

Figure 3.4: A measured foliation on the torus R2/Z2.

Let T (g) be the Teichmüller space of surface X of genus g ≥ 1, i.e. the space
of the complex structures on X. Consider the vector bundle p : Q → T (g)
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over T (g), whose fiber above a point S ∈ Tg is the vector space H0(S,Ω⊗2).
Given a non-zero q ∈ Q above S, we can consider the horizontal measured
foliation Fq ∈ ΦX of q, where ΦX denotes the space of the equivalence classes
of the measured foliations on X. If {0} is the zero section of Q, the above
construction defines a map Q − {0} −→ ΦX . For any F ∈ ΦX , let EF ⊂
Q − {0} be the fiber above F . In other words, EF is a subspace of the
holomorphic quadratic forms, whose horizontal trajectory structure coincides
with the measured foliation F .

Remark 3.1.7 If F is a measured foliation with the simple zeroes (a generic
case), then EF ∼= Rn−0 and T (g) ∼= Rn, where n = 6g−6 if g ≥ 2 and n = 2
if g = 1.

Theorem 3.1.3 ([Hubbard & Masur 1979] [41]) The restriction of p to
EF defines a homeomorphism (an embedding) hF : EF → T (g).

Corollary 3.1.1 There exists a canonical homeomorphism h : ΦX → T (g)−
{pt}, where pt = hF(0) and ΦX

∼= Rn − 0 is the space of equivalence classes
of measured foliations F ′ on X.

Proof. Denote by F ′ a vertical trajectory structure of q. Since F and F ′
define q, and F = Const for all q ∈ EF , one gets a homeomorphism between
T (g)− {pt} and ΦX . Corollary 5.1.1 follows. �

Remark 3.1.8 The homeomorphism h : ΦX → T (g) − {pt} depends on a
foliation F ; yet there exists a canonical homeomorphism h = hF as follows.
Let Sp (S) be the length spectrum of the Riemann surface S and Sp (F ′)
be the set positive reals inf µ(γi), where γi runs over all simple closed curves,
which are transverse to the foliation F ′. A canonical homeomorphism h =
hF : ΦX → T (g)− {pt} is defined by the formula Sp (F ′) = Sp (hF(F ′)) for
∀F ′ ∈ ΦX .

Let X ∼= T 2; then T (1) ∼= H := {z = x + iy ∈ C | y > 0}. Since q 6= 0
there are no singular points and each q ∈ H0(S,Ω⊗2) has the form q = ω2,
where ω is a nowhere zero holomorphic differential on the complex torus S.
Note that ω is just a constant times dz, and hence its vertical trajectory
structure is just a family of the parallel lines of a slope θ, see e.g. [Strebel
1984] [101], pp. 54–55. Therefore, ΦT 2 consists of the equivalence classes of
the non-singular measured foliations on the two-dimensional torus. It is well
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known (the Denjoy theory), that every such foliation is measure equivalent to
the foliation of a slope θ and a transverse measure µ > 0, which is invariant
along the leaves of the foliation Thus one obtains a canonical bijection

h : ΦT 2 −→ H− {pt}.

Definition 3.1.5 (Category of lattices) By a lattice in the complex plane
C one understands a triple (Λ,C, j), where Λ ∼= Z2 and j : Λ → C is an
injective homomorphism with the discrete image. A morphism of lattices
(Λ,C, j) → (Λ′,C, j′) is the identity j ◦ ψ = ϕ ◦ j′ where ϕ is a group ho-
momorphism and ψ is a C-linear map. It is not hard to see, that any iso-
morphism class of a lattice contains a representative given by j : Z2 → C
such that j(1, 0) = 1, j(0, 1) = τ ∈ H. The category of lattices L con-
sists of Ob (L), which are lattices (Λ,C, j) and morphisms H(L,L′) between
L,L′ ∈ Ob (L) which coincide with the morphisms of lattices specified above.
For any L,L′, L′′ ∈ Ob (L) and any morphisms ϕ′ : L → L′, ϕ′′ : L′ → L′′

a morphism φ : L → L′′ is the composite of ϕ′ and ϕ′′, which we write as
φ = ϕ′′ϕ′. The identity morphism, 1L, is a morphism H(L,L).

Remark 3.1.9 The lattices are bijective with the complex tori (and elliptic
curves) via the formula (Λ,C, j) 7→ C/j(Λ); thus L ∼= Ell.

Definition 3.1.6 (Category of pseudo-lattices) By a pseudo- lattice (of
rank 2) in the real line R one understands a triple (Λ,R, j), where Λ ∼= Z2 and
j : Λ→ R is a homomorphism. A morphism of the pseudo-lattices (Λ,R, j)→
(Λ′,R, j′) is the identity j ◦ ψ = ϕ ◦ j′, where ϕ is a group homomorphism
and ψ is an inclusion map (i.e. j′(Λ′) ⊆ j(Λ)). Any isomorphism class of
a pseudo-lattice contains a representative given by j : Z2 → R, such that
j(1, 0) = λ1, j(0, 1) = λ2, where λ1, λ2 are the positive reals. The pseudo-
lattices make up a category, which we denote by PL.

Lemma 3.1.4 The pseudo-lattices are bijective with the measured foliations
on torus via the formula (Λ,R, j) 7→ Fλ1λ2/λ1, where Fλ1λ2/λ1 is a foliation of the
slope θ = λ2/λ1 and measure µ = λ1.

Proof. Define a pairing by the formula (γ,Re ω) 7→
∫
γ Re ω, where γ ∈

H1(T 2,Z) and ω ∈ H0(S; Ω). The trajectories of the closed differential φ :=
Re ω define a measured foliation on T 2. Thus, in view of the pairing, the
linear spaces ΦT 2 and Hom (H1(T 2, Z);R) are isomorphic. Notice that the
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latter space coincides with the space of the pseudo-lattices. To obtain an
explicit bijection formula, let us evaluate the integral:∫

Zγ1+Zγ2
φ = Z

∫
γ1
φ+ Z

∫
γ2
φ = Z

∫ 1

0
µdx+ Z

∫ 1

0
µdy,

where {γ1, γ2} is a basis in H1(T 2,Z). Since dy
dx

= θ, one gets:{ ∫ 1
0 µdx = µ = λ1∫ 1
0 µdy =

∫ 1
0 µθdx = µθ = λ2.

Thus, µ = λ1 and θ = λ2
λ1

. Lemma 5.1.4 follows. �

Remark 3.1.10 It follows from Lemma 5.1.4 and the canonical bijection
h : ΦT 2 → H− {pt}, that L ∼= PL are the equivalent categories.

Definition 3.1.7 (Category of projective pseudo-lattices) By a pro-
jective pseudo- lattice (of rank 2) one understands a triple (Λ,R, j), where
Λ ∼= Z2 and j : Λ → R is a homomorphism. A morphism of the projective
pseudo-lattices (Λ,C, j)→ (Λ′,R, j′) is the identity j ◦ ψ = ϕ ◦ j′, where ϕ is
a group homomorphism and ψ is an R-linear map. (Notice, that unlike the
case of the pseudo-lattices, ψ is a scaling map as opposite to an inclusion
map. Thus, the two pseudo-lattices can be projectively equivalent, while being
distinct in the category PL.) It is not hard to see that any isomorphism class
of a projective pseudo-lattice contains a representative given by j : Z2 → R
such that j(1, 0) = 1, j(0, 1) = θ, where θ is a positive real. The projective
pseudo-lattices make up a category, which we shall denote by PPL.

Lemma 3.1.5 PPL ∼= NC-Tor, i.e projective pseudo-lattices and noncom-
mutative tori are equivalent categories.

Proof. Notice that projective pseudo-lattices are bijective with the noncom-
mutative tori, via the formula (Λ,R, j) 7→ Aθ. An isomorphism ϕ : Λ → Λ′

acts by the formula 1 7→ a+bθ, θ 7→ c+dθ, where ad−bc = 1 and a, b, c, d ∈ Z.
Therefore, θ′ = c+dθ

a+bθ
. Thus, isomorphic projective pseudo-lattices map to the

stably isomorphic (Morita equivalent) noncommutative tori. Lemma 5.1.5
follows. �

To define a map F : Ell → NC-Tor, we shall consider a composition of
the following morphisms

Ell
∼−→ L ∼−→ PL F−→ PPL ∼−→ NC-Tor,
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where all the arrows, but F , have been defined. To define F , let PL ∈ PL be
a pseudo-lattice, such that PL = PL(λ1, λ2), where λ1 = j(1, 0), λ2 = j(0, 1)
are positive reals. Let PPL ∈ PPL be a projective pseudo-lattice, such that
PPL = PPL(θ), where j(1, 0) = 1 and j(0, 1) = θ is a positive real. Then

F : PL → PPL is given by the formula PL(λ1, λ2) 7−→ PPL
(
λ2
λ1

)
. It is

easy to see, that Ker F ∼= (0,∞) and F is not an injective map. Since all
the arrows, but F , are the isomorphisms between the categories, one gets a
map

F : Ell −→ NC-Tor.

Lemma 3.1.6 (Basic lemma) The map F : Ell→ NC-Tor is a covariant
functor which maps isomorphic complex tori to the stably isomorphic (Morita
equivalent) noncommutative tori; the functor is non-injective functor and
Ker F ∼= (0,∞).

Proof. (i) Let us show that F maps isomorphic complex tori to the stably
isomorphic noncommutative tori. Let C/(Zω1 + Zω2) be a complex torus.
Recall that the periods ω1 =

∫
γ1
ωE and ω2 =

∫
γ2
ωE, where ωE = dz is an

invariant (Néron) differential on the complex torus and {γ1, γ2} is a basis in
H1(T 2,Z). The map F can be written as

C/L(
∫
γ2
ωE)/(

∫
γ1
ωE)

F7−→ A(
∫
γ2
φ)/(

∫
γ1
φ),

where Lω2/ω1 is a lattice and φ = Re ω is a closed differential defined earlier.
Note that every isomorphism in the category Ell is induced by an orienta-
tion preserving automorphism, ϕ, of the torus T 2. The action of ϕ on the
homology basis {γ1, γ2} of T 2 is given by the formula:{

γ′1 = aγ1 + bγ2

γ′2 = cγ1 + dγ2
, where

(
a b
c d

)
∈ SL2(Z).

The functor F acts by the formula:

τ =

∫
γ2
ωE∫

γ1
ωE
7−→ θ =

∫
γ2
φ∫

γ1
φ
.

(a) From the left-hand side of the above equation, one obtains{
ω′1 =

∫
γ′1
ωE =

∫
aγ1+bγ2

ωE = a
∫
γ1
ωE + b

∫
γ2
ωE = aω1 + bω2

ω′2 =
∫
γ′2
ωE =

∫
cγ1+dγ2

ωE = c
∫
γ1
ωE + d

∫
γ2
ωE = cω1 + dω2,
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and therefore τ ′ =

∫
γ′
2
ωE∫

γ′
1
ωE

= c+dτ
a+bτ

.

(b) From the right-hand side, one obtains{
λ′1 =

∫
γ′1
φ =

∫
aγ1+bγ2

φ = a
∫
γ1
φ+ b

∫
γ2
φ = aλ1 + bλ2

λ′2 =
∫
γ′2
φ =

∫
cγ1+dγ2

φ = c
∫
γ1
φ+ d

∫
γ2
φ = cλ1 + dλ2,

and therefore θ′ =

∫
γ′
2
φ∫

γ′
1
φ

= c+dθ
a+bθ

. Comparing (a) and (b), one concludes that F

maps isomorphic complex tori to the stably isomorphic (Morita equivalent)
noncommutative tori.

(ii) Let us show that F is a covariant functor, i.e. F does not reverse
the arrows. Indeed, it can be verified directly using the above formulas, that
F (ϕ1ϕ2) = ϕ1ϕ2 = F (ϕ1)F (ϕ2) for any pair of the isomorphisms ϕ1, ϕ2 ∈
Aut (T 2).

(iii) Since F : PL → PPL is given by the formula PL(λ1, λ2) 7−→
PPL

(
λ2
λ1

)
, one gets Ker F ∼= (0,∞) and F is not an injective map. Lemma

5.1.6 is proved. �

Theorem 5.1.2 follows from Lemma 5.1.6. �

Guide to the literature. The basics of elliptic curves are covered by
[Husemöller 1986] [42], [Knapp 1992] [44], [Koblitz 1984] [46], [Silverman
1985] [93], [Silverman 1994] [94], [Silverman & Tate 1992] [95] and others.
More advanced topics are discussed in the survey papers [Cassels 1966] [14],
[Mazur 1986] [53] and [Tate 1974] [103]. The Sklyanin algebras were intro-
duced and studied in [Sklyanin 1982] [96] and [Sklyanin 1983] [97]; for a
detailed account, see [Feigin & Odesskii 1989] [26] and [Feigin & Odesskii
1993] [27]. The general theory is covered by [Stafford & van den Bergh
2001] [100]. The basics of measured foliations and the Teichmüller theory
can be found in [Thurston 1988] [105] and [Hubbard & Masur 1979] [41].
The functor from elliptic curves to noncommutative tori was constructed in
[64] and [66] using measured foliations and in [74] using Sklyanin’s algebras.
The idea of infinite-dimensional representations of Sklyanin’s algebras by the
linear operators on a Hilbert space H belongs to [Sklyanin 1982] [96], the end
of Section 3.
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3.2 Higher genus algebraic curves

By a complex algebraic curve one understands a subset of the complex pro-
jective plane of the form

C = {(x, y, z) ∈ CP 2 | P (x, y, z) = 0},

where P (x, y, z) is a homogeneous polynomial with complex coefficients; such
curves are isomorphic to the complex 2-dimensional manifolds, i.e. the Rie-
mann surfaces S. We shall construct a functor F on a generic set of complex
algebraic curves with values in the category of toric AF-algebras; the functor
maps isomorphic algebraic curves to the stably isomorphic (Morita equiva-
lent) toric AF-algebras. For genus g = 1 algebraic (i.e. elliptic) curves, the
toric AF-algebras are isomorphic to the Effros-Shen algebras Aθ; such AF-
algebras are known to contain the noncommutative torus Aθ, see Theorem
3.5.3. The functor F will be used to prove Harvey’s conjecture by construc-
tion of a faithful representation of the mapping class group of genus g ≥ 2
in the matrix group GL(6g − 6,Z), see Section 5.4.

3.2.1 Toric AF-algebras

We repeat some facts of the Teichmüller theory, see e.g. [Hubbard & Masur
1979] [41]. Denote by TS(g) the Teichmüller space of genus g ≥ 1 (i.e.
the space of all complex 2-dimensional manifolds of genus g) endowed with
a distinguished point S. Let q ∈ H0(S,Ω⊗2) be a holomorphic quadratic
differential on the Riemann surface S, such that all zeroes of q (if any) are
simple. By S̃ we understand a double cover of S ramified over the zeroes of
q and by Hodd

1 (S̃) the odd part of the integral homology of S̃ relatively the
zeroes. Note that Hodd

1 (S̃) ∼= Zn, where n = 6g − 6 if g ≥ 2 and n = 2 if
g = 1. It is known that

TS(g) ∼= Hom (Hodd
1 (S̃);R)− {0},

where 0 is the zero homomorphism [Hubbard & Masur 1979] [41]. Denote by
λ = (λ1, . . . , λn) the image of a basis of Hodd

1 (S̃) in the real line R, such that
λ1 6= 0.

Remark 3.2.1 The claim λ1 6= 0 is not restrictive, because the zero homo-
morphism is excluded.
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We let θ = (θ1, . . . , θn−1), where θi = λi−1/λ1. Recall that, up to a scalar
multiple, vector (1, θ) ∈ Rn is the limit of a generically convergent Jacobi-
Perron continued fraction [Bernstein 1971] [7](

1
θ

)
= lim

k→∞

(
0 1
I b1

)
. . .
(

0 1
I bk

)(
0
I

)
,

where bi = (b
(i)
1 , . . . , b

(i)
n−1)T is a vector of the non-negative integers, I the unit

matrix and I = (0, . . . , 0, 1)T .

Definition 3.2.1 By a toric AF-algebra Aθ one understands the AF-algebra
given by the Bratteli diagram in Fig. 5.5, where numbers b

(i)
j indicate the

multiplicity of edges of the graph.
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Figure 3.5: Toric AF-algebra Aθ (case g = 2).

Remark 3.2.2 Note that in the case g = 1, the Jacobi-Perron fraction
coincides with the regular continued fraction and Aθ becomes the Effros-Shen
algebra, see Example 3.5.2.

Definition 3.2.2 By Alg-Gen we shall mean the maximal subset of TS(g)
such that for each complex algebraic curve C ∈ Alg-Gen the corresponding
Jacobi-Perron continued fraction is convergent; the arrows of Alg-Gen are
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isomorphisms between complex algebraic curves C. We shall write AF-Toric
to denote the category of all toric AF-algebras Aθ; the arrows of AF-Toric
are stable isomorphisms (Morita equivalences) between toric AF-algebras Aθ.
By F we understand a map given by the formula C 7→ Aθ; in other words,
we have a map

F : Alg-Gen −→ AF-Toric.

Theorem 3.2.1 (Functor on algebraic curves) The set Alg-Gen is a
generic subset of TS(g) and the map F has the following properties:

(i) Alg-Gen ∼= AF-Toric × (0,∞) is a trivial fiber bundle, whose pro-
jection map p : Alg-Gen → AF-Toric coincides with F ;

(ii) F : Alg-Gen → AF-Toric is a covariant functor, which maps iso-
morphic complex algebraic curves C,C ′ ∈ Alg-Gen to the stably isomorphic
(Morita equivalent) toric AF-algebras Aθ,Aθ′ ∈ AF-Toric.

3.2.2 Proof of Theorem 5.2.1

We shall repeat some known facts and notation. Let S be a Riemann surface,
and q ∈ H0(S,Ω⊗2) a holomorphic quadratic differential on S. The lines
Re q = 0 and Im q = 0 define a pair of measured foliations on R, which are
transversal to each other outside the set of singular points. The set of singular
points is common to both foliations and coincides with the zeroes of q. The
above measured foliations are said to represent the vertical and horizontal
trajectory structure of q, respectively. Denote by T (g) the Teichmüller space
of the topological surface X of genus g ≥ 1, i.e. the space of the complex
structures on X. Consider the vector bundle p : Q→ T (g) over T (g) whose
fiber above a point S ∈ Tg is the vector space H0(S,Ω⊗2). Given non-zero
q ∈ Q above S, we can consider horizontal measured foliation Fq ∈ ΦX of
q, where ΦX denotes the space of equivalence classes of measured foliations
on X. If {0} is the zero section of Q, the above construction defines a map
Q − {0} −→ ΦX . For any F ∈ ΦX , let EF ⊂ Q − {0} be the fiber above
F . In other words, EF is a subspace of the holomorphic quadratic forms
whose horizontal trajectory structure coincides with the measured foliation
F . If F is a measured foliation with the simple zeroes (a generic case), then
EF ∼= Rn− 0, while T (g) ∼= Rn, where n = 6g− 6 if g ≥ 2 and n = 2 if g = 1.
The restriction of p to EF defines a homeomorphism (an embedding)

hF : EF → T (g).
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The above result implies that the measured foliations parametrize the space
T (g) − {pt}, where pt = hF(0). Indeed, denote by F ′ a vertical trajectory
structure of q. Since F and F ′ define q, and F = Const for all q ∈ EF , one
gets a homeomorphism between T (g) − {pt} and ΦX , where ΦX

∼= Rn − 0
is the space of equivalence classes of the measured foliations F ′ on X. Note
that the above parametrization depends on a foliation F . However, there
exists a unique canonical homeomorphism h = hF as follows. Let Sp (S)
be the length spectrum of the Riemann surface S and Sp (F ′) be the set
positive reals inf µ(γi), where γi runs over all simple closed curves, which are
transverse to the foliation F ′. A canonical homeomorphism h = hF : ΦX →
T (g)− {pt} is defined by the formula Sp (F ′) = Sp (hF(F ′)) for ∀F ′ ∈ ΦX .
Thus, there exists a canonical homeomorphism

h : ΦX → T (g)− {pt}.

Recall that ΦX is the space of equivalence classes of measured foliations on
the topological surface X. Following [Douady & Hubbard 1975] [20], we con-
sider the following coordinate system on ΦX . For clarity, let us make a generic
assumption that q ∈ H0(S,Ω⊗2) is a non-trivial holomorphic quadratic dif-
ferential with only simple zeroes. We wish to construct a Riemann surface
of
√
q, which is a double cover of S with ramification over the zeroes of

q. Such a surface, denoted by S̃, is unique and has an advantage of car-
rying a holomorphic differential ω, such that ω2 = q. We further denote
by π : S̃ → S the covering projection. The vector space H0(S̃,Ω) splits
into the direct sum H0

even(S̃,Ω)⊕H0
odd(S̃,Ω) in view of the involution π−1 of

S̃, and the vector space H0(S,Ω⊗2) ∼= H0
odd(S̃,Ω). Let Hodd

1 (S̃) be the odd
part of the homology of S̃ relatively the zeroes of q. Consider the pairing
Hodd

1 (S̃) × H0(S,Ω⊗2) → C, defined by the integration (γ, q) 7→
∫
γ ω. We

shall take the associated map ψq : H0(S,Ω⊗2) → Hom (Hodd
1 (S̃);C) and let

hq = Re ψq.

Lemma 3.2.1 ([Douady & Hubbard 1975] [20]) The map

hq : H0(S,Ω⊗2) −→ Hom (Hodd
1 (S̃);R)

is an R-isomorphism.

Remark 3.2.3 Since each F ∈ ΦX is the vertical foliation Re q = 0 for
a q ∈ H0(S,Ω⊗2), Lemma 5.2.1 implies that ΦX

∼= Hom (Hodd
1 (S̃);R). By
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formulas for the relative homology, one finds that Hodd
1 (S̃) ∼= Zn, where

n = 6g − 6 if g ≥ 2 and n = 2 if g = 1. Each h ∈ Hom (Zn;R) is given by
the reals λ1 = h(e1), . . . , λn = h(en), where (e1, . . . , en) is a basis in Zn. The
numbers (λ1, . . . , λn) are the coordinates in the space ΦX and, therefore, in
the Teichmüller space T (g).

To prove Theorem 5.2.1, we shall consider the following categories: (i) generic
complex algebraic curves Alg-Gen; (ii) pseudo-lattices PL; (iii) projective
pseudo-lattices PPL and (iv) category AF-Toric of the toric AF-algebras.
First, we show that Alg-Gen ∼= PL are equivalent categories, such that
isomorphic complex algebraic curves C,C ′ ∈ Alg-Gen map to isomorphic
pseudo-lattices PL, PL′ ∈ PL. Next, a non-injective functor F : PL →
PPL is constructed. The F maps isomorphic pseudo-lattices to isomorphic
projective pseudo-lattices and Ker F ∼= (0,∞). Finally, it is shown that a
subcategory U ⊆ PPL and AF-Toric are equivalent categories. In other
words, we have the following diagram

Alg-Gen
α−→ PL F−→ U

β−→ AF-Toric,

where α is an injective map, β is a bijection and Ker F ∼= (0,∞).

Definition 3.2.3 Let Mod X be the mapping class group of the surface X.
A complex algebraic curve is a triple (X,C, j), where X is a topological sur-
face of genus g ≥ 1, j : X → C is a complex (conformal) parametrization
of X and C is a Riemann surface. A morphism of complex algebraic curves
(X,C, j)→ (X,C ′, j′) is the identity j◦ψ = ϕ◦j′, where ϕ ∈Mod X is a dif-
feomorphism of X and ψ is an isomorphism of Riemann surfaces. A category
of generic complex algebraic curves, Alg-Gen, consists of Ob (Alg-Gen)
which are complex algebraic curves C ∈ TS(g) and morphisms H(C,C ′) be-
tween C,C ′ ∈ Ob (Alg-Gen) which coincide with the morphisms specified
above. For any C,C ′, C ′′ ∈ Ob (Alg-Gen) and any morphisms ϕ′ : C → C ′,
ϕ′′ : C ′ → C ′′ a morphism φ : C → C ′′ is the composite of ϕ′ and ϕ′′, which
we write as φ = ϕ′′ϕ′. The identity morphism, 1C, is a morphism H(C,C).

Definition 3.2.4 By a pseudo-lattice (of rank n) one undestands the triple
(Λ,R, j), where Λ ∼= Zn and j : Λ → R is a homomorphism. A morphism of
pseudo-lattices (Λ,R, j)→ (Λ,R, j′) is the identity j ◦ψ = ϕ◦j′, where ϕ is a
group homomorphism and ψ is an inclusion map, i.e. j′(Λ′) ⊆ j(Λ). Any iso-
morphism class of a pseudo-lattice contains a representative given by j : Zn →
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R such that j(1, 0, . . . , 0) = λ1, j(0, 1, . . . , 0) = λ2, . . . , j(0, 0, . . . , 1) =
λn, where λ1, λ2, . . . , λn are positive reals. The pseudo-lattices of rank n make
up a category, which we denote by PLn.

Lemma 3.2.2 (Basic lemma) Let g ≥ 2 (g = 1) and n = 6g − 6 (n = 2).
There exists an injective covariant functor α : Alg-Gen→ PLn, which maps
isomorphic complex algebraic curves C,C ′ ∈ Alg-Gen to the isomorphic
pseudo-lattices PL, PL′ ∈ PLn.

Proof. Recall that we have a map α : T (g) − {pt} → Hom (Hodd
1 (S̃);R) −

{0}; α is a homeomorphism and, therefore, α is injective. Let us find the
image α(ϕ) ∈ Mor (PL) of ϕ ∈ Mor (Alg-Gen). Let ϕ ∈ Mod X be a
diffeomorphism of X, and let X̃ → X be the ramified double cover of X. We
denote by ϕ̃ the induced mapping on X̃. Note that ϕ̃ is a diffeomorphism
of X̃ modulo the covering involution Z2. Denote by ϕ̃∗ the action of ϕ̃ on
Hodd

1 (X̃) ∼= Zn. Since ϕ̃ mod Z2 is a diffeomorphism of X̃, ϕ̃∗ ∈ GLn(Z).
Thus, α(ϕ) = ϕ̃∗ ∈ Mor (PL). Let us show that α is a functor. Indeed,
let C,C ′ ∈ Alg-Gen be isomorphic complex algebraic curves, such that
C ′ = ϕ(C) for a ϕ ∈Mod X. Let aij be the elements of matrix ϕ̃∗ ∈ GLn(Z).

Recall that λi =
∫
γi
φ for a closed 1-form φ = Re ω and γi ∈ Hodd

1 (X̃). Then

γj =
∑n
i=1 aijγi, j = 1, . . . , n are the elements of a new basis in Hodd

1 (X̃).
By integration rules we have

λ′j =
∫
γj
φ =

∫∑
aijγi

φ =
n∑
i=1

aijλi.

Let j(Λ) = Zλ1 + . . . + Zλn and j′(Λ) = Zλ′1 + . . . + Zλ′n. Since λ′j =∑n
i=1 aijλi and (aij) ∈ GLn(Z), we conclude that j(Λ) = j′(Λ) ⊂ R. In

other words, the pseudo-lattices (Λ,R, j) and (Λ,R, j′) are isomorphic. Hence,
α : Alg-Gen → PL maps isomorphic complex algebraic curves to the iso-
morphic pseudo-lattices, i.e. α is a functor. Let us show that α is a covariant
functor. Indeed, let ϕ1, ϕ2 ∈ Mor(Alg-Gen). Then α(ϕ1ϕ2) = (ϕ̃1ϕ2)∗ =
ϕ̃∗1ϕ̃

∗
2 = α(ϕ1)α(ϕ2). Lemma 5.2.2 follows. �

Definition 3.2.5 By a projective pseudo-lattice (of rank n) one understands
a triple (Λ,R, j), where Λ ∼= Zn and j : Λ → R is a homomorphism. A
morphism of projective pseudo-lattices (Λ,C, j) → (Λ,R, j′) is the identity
j ◦ ψ = ϕ ◦ j′, where ϕ is a group homomorphism and ψ is an R-linear map.
It is not hard to see that any isomorphism class of a projective pseudo-lattice
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contains a representative given by j : Zn → R such that j(1, 0, . . . , 0) =
1, j(0, 1, . . . , 0) = θ1, . . . , j(0, 0, . . . , 1) = θn−1, where θi are positive
reals. The projective pseudo-lattices of rank n make up a category, which we
denote by PPLn.

Remark 3.2.4 Notice that unlike the case of pseudo-lattices, ψ is a scaling
map as opposite to an inclusion map. This allows to the two pseudo-lattices
to be projectively equivalent, while being distinct in the category PLn.

Definition 3.2.6 Finally, the toric AF-algebras Aθ, modulo stable isomor-
phism (Morita equivalences), make up a category which we shall denote by
AF-Toric.

Lemma 3.2.3 Let Un ⊆ PPLn be a subcategory consisting of the projec-
tive pseudo-lattices PPL = PPL(1, θ1, . . . , θn−1) for which the Jacobi-Perron
fraction of the vector (1, θ1, . . . , θn−1) converges to the vector. Define a map
β : Un → AF-Toric by the formula PPL(1, θ1, . . . , θn−1) 7→ Aθ, where
θ = (θ1, . . . , θn−1). Then β is a bijective functor, which maps isomorphic
projective pseudo-lattices to the stably isomorphic toric AF-algebras.

Proof. It is evident that β is injective and surjective. Let us show that β
is a functor. Indeed, according to [Effros 1981] [21], Corollary 4.7, every
totally ordered abelian group of rank n has form Z + θ1Z + . . .+ Zθn−1. The
latter is a projective pseudo-lattice PPL from the category Un. On the other
hand, by Theorem 3.5.2 the PPL defines a stable isomorphism class of the
toric AF-algebra Aθ ∈ AF-Toric. Therefore, β maps isomorphic projective
pseudo-lattices (from the set Un) to the stably isomorphic toric AF-algebras,
and vice versa. Lemma 5.2.3 follows. �

Lemma 3.2.4 Let F : PLn → PPLn be a map given by formula

PL(λ1, λ2, . . . , λn) 7→ PPL

(
1,
λ2

λ1

, . . . ,
λn
λ1

)
,

where PL(λ1, λ2, . . . , λn) ∈ PLn and PPL(1, θ1, . . . , θn−1) ∈ PPLn. Then
Ker F = (0,∞) and F is a functor which maps isomorphic pseudo-lattices
to isomorphic projective pseudo-lattices.
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Proof. Indeed, F can be thought as a map from Rn to RP n. Hence Ker F =
{λ1 : λ1 > 0} ∼= (0,∞). The second part of lemma is evident. Lemma 5.2.4
is proved. �

Theorem 5.2.1 follows from Lemmas 5.2.2 - 5.2.4 with n = 6g− 6 (n = 2)
for g ≥ 2 (g = 1). �

Guide to the literature. An excellent introduction to complex algebraic
curves is the book by [Kirwan 1992] [43]. For measured foliations and their
relation to the Teichmüller theory the reader is referred to [Hubbard & Masur
1979] [41]. Functor F : Alg-Gen → AF-Toric was constructed in [65]; the
term toric AF-algebras was coined by Yu. Manin (private communication).

3.3 Complex projective varieties

We shall generalize functors constructed in Sections 5.1 and 5.2 to arbitrary
complex projective varieties X. Namely, for the category Proj-Alg of all
such varieties (of fixed dimension n) we construct a covariant functor

F : Proj-Alg −→ C*-Serre,

where C*-Serre is a category of the Serre C∗-algebras, AX , attached to
variety X. In particular, if X ∼= Eτ is an elliptic curve, then AX ∼= Aθ is
a noncommutative torus and if X ∼= C is a complex algebraic curve, then
AX ∼= Aθ is a toric AF-algebra. For n ≥ 2 the description of AX in terms
of its semigroup K+

0 (AX) is less satisfactory (so far?) but using the Takai
duality for crossed product C∗-algebras, it is possible to prove the following
general result. If B is the commutative coordinate ring of variety X, then
it is well known that X ∼= Spec (B), where Spec is the space of prime
ideals of B; an analog of this important formula for AX is proved to be
X ∼= Irred (AX oα̂ Ẑ), where α̂ is an automorphism of AX and Irred the
space of all irreducible representations of the crossed product C∗-algebra.
We illustrate the formula in an important special case AX ∼= ARM , i.e the
case of noncommutative torus with real multiplication.
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3.3.1 Serre C∗-algebras

Let X be a projective scheme over a field k, and let L be the invertible sheaf
OX(1) of linear forms on X. Recall that the homogeneous coordinate ring of
X is a graded k-algebra, which is isomorphic to the algebra

B(X,L) =
⊕
n≥0

H0(X, L⊗n).

Denote by Coh the category of quasi-coherent sheaves on a scheme X and by
Mod the category of graded left modules over a graded ring B. If M = ⊕Mn

and Mn = 0 for n >> 0, then the graded module M is called right bounded.
The direct limit M = limMα is called a torsion, if each Mα is a right bounded
graded module. Denote by Tors the full subcategory of Mod of the torsion
modules. The following result is the fundamental fact about the graded ring
B = B(X,L).

Theorem 3.3.1 ([Serre 1955] [91])

Mod (B(X,L)) / Tors ∼= Coh (X).

Definition 3.3.1 Let α be an automorphism of a projective scheme X; the
pullback of sheaf L along α will be denoted by Lα, i.e. Lα(U) := L(αU) for
every U ⊂ X. We shall set

B(X,L, α) =
⊕
n≥0

H0(X, L ⊗ Lα ⊗ . . .⊗ Lαn).

The multiplication of sections is defined by the rule

ab = a⊗ bαm ,

whenever a ∈ Bm and b ∈ Bn. Given a pair (X,α) consisting of a Noetherian
scheme X and an automorphism α of X, an invertible sheaf L on X is
called α-ample, if for every coherent sheaf F on X, the cohomology group
Hq(X, L ⊗ Lα ⊗ . . .⊗ Lαn−1 ⊗F) vanishes for q > 0 and n >> 0. (Notice,
that if α is trivial, this definition is equivalent to the usual definition of ample
invertible sheaf, see [Serre 1955] [91].) If α : X → X is an automorphism
of a projective scheme X over k and L is an α-ample invertible sheaf on X,
then B(X,L, α) is called a twisted homogeneous coordinate ring of X.
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Theorem 3.3.2 ([Artin & van den Bergh 1990] [4])

Mod (B(X,L, α)) / Tors ∼= Coh (X).

Remark 3.3.1 Theorem 5.3.2 extends Theorem 5.3.1 to the
non-commutative rings; hence the name for ring B(X,L, α). The question of
which invertible sheaves are α-ample is fairly subtle, and there is no charac-
terization of the automorphisms α for which such an invertible sheaf exists.
However, in many important special cases this problem is solvable, see [Artin
& van den Bergh 1990] [4], Corollary 1.6.

Remark 3.3.2 In practice, any twisted homogeneous coordinate ring
B(X,L, α) of a projective scheme X can be constructed as follows. Let
R be a commutative graded ring, such that X = Spec (R). Consider the
ring B(X,L, α) := R[t, t−1;α], where R[t, t−1;α] is the ring of skew Laurent
polynomials defined by the commutation relation bαt = tb, for all b ∈ R;
here bα ∈ R is the image of b under automorphism α. The ring B(X,L, α)
satisfies the isomorphism Mod (B(X,L, α))/Tors ∼= Coh (X), i.e. is the
twisted homogeneous coordinate ring of projective scheme X, see Lemma
5.3.1.

Example 3.3.1 Let k be a field and U∞(k) the algebra of polynomials over
k in two non-commuting variables x1 and x2, and a quadratic relation x1x2−
x2x1 − x2

1 = 0; let P1(k) be the projective line over k. Then B(X,L, α) =
U∞(k) and X = P1(k) satisfy equation Mod (B(X,L, α))/Tors ∼= Coh (X).
The ring U∞(k) corresponds to the automorphism α(u) = u + 1 of the pro-
jective line P1(k). Indeed, u = x2x

−1
1 = x−1

1 x2 and, therefore, α maps x2 to
x1 +x2; if one substitutes t = x1, b = x2 and bα = x1 +x2 in equation bαt = tb
(see Remark 5.3.2), then one gets the defining relation x1x2 − x2x1 − x2

1 = 0
for the algebra U∞(k).

To get a C∗-algebra from the ring B(X,L, α), we shall consider infinite-
dimensional representations of B(X,L, α) by bounded linear operators on a
Hilbert space H; as usual, let B(H) stay for the algebra of all bounded linear
operators on H. For a ring of skew Laurent polynomials R[t, t−1;α] described
in Remark 5.3.2, we shall consider a homomorphism

ρ : R[t, t−1;α] −→ B(H).

Recall that algebra B(H) is endowed with a ∗-involution; such an involution
is the adjoint with respect to the scalar product on the Hilbert space H.
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Definition 3.3.2 The representation ρ will be called ∗-coherent if:

(i) ρ(t) and ρ(t−1) are unitary operators, such that ρ∗(t) = ρ(t−1);

(ii) for all b ∈ R it holds (ρ∗(b))α(ρ) = ρ∗(bα), where α(ρ) is an automor-
phism of ρ(R) induced by α.

Example 3.3.2 The ring U∞(k) has no ∗-coherent representations. Indeed,
involution acts on the generators of U∞(k) by formula x∗1 = x2; the latter
does not preserve the defining relation x1x2 − x2x1 − x2

1 = 0.

Definition 3.3.3 By a Serre C∗-algebra AX of the projective scheme X one
understands the norm-closure of an ∗-coherent representation ρ(B(X,L, α))
of the twisted homogeneous coordinate ring B(X,L, α) ∼= R[t, t−1;α] of scheme
X.

Example 3.3.3 For X ∼= Eτ is an elliptic curve, the ring R[t, t−1;α] is
isomorphic to the Sklyanin algebra, see Section 5.1.1. For such algebras
there exists a ∗-coherent representation ibid.; the resulting Serre C∗-algebra
AX ∼= Aθ, where Aθ is the noncommutative torus.

Remark 3.3.3 (Functor on complex projective varieties) If Proj-
Alg is the category of all complex projective varieties X (of dimension n)
and C*-Serre the category of all Serre C∗-algebras AX , then the formula
X 7→ AX gives rise to a map

F : Proj-Alg −→ C*-Serre.

The map F is actually a functor which takes isomorphisms between projec-
tive varieties to the stable isomorphisms (Morita equivalences) between the
corresponding Serre C∗-algebras; the proof repeats the argument for elliptic
curves given in Section 5.1.1 and is left to the reader.

Let Spec (B(X,L)) be the space of all prime ideals of the commutative
homogeneous coordinate ring B(X,L) of a complex projective variety X, see
Theorem 5.3.1. To get an analog of the classical formula

X ∼= Spec (B(X,L))

for the Serre C∗-algebras AX , we shall recall that for each continuous homo-
morphism α : G→ Aut (A) of a locally compact group G into the group of
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automorphisms of a C∗-algebra A, there exists a crossed product C∗-algebra
A oα G, see e.g. Section 3.2. Let G = Z and let Ẑ ∼= S1 be its Pontryagin
dual. We shall write Irred for the set of all irreducible representations of
given C∗-algebra.

Theorem 3.3.3 For each Serre C∗-algebra AX there exists α̂ ∈ Aut (AX),
such that:

X ∼= Irred (AX oα̂ Ẑ).

Remark 3.3.4 Note that a naive generalization X ∼= Spec (AX) is wrong,
because most of the Serre C∗-algebras are simple, i.e. have no ideals what-
soever.

3.3.2 Proof of theorem 5.3.3

Lemma 3.3.1 B(X,L, α) ∼= R[t, t−1;α], where X = Spec (R).

Proof. Let us write the twisted homogeneous coordinate ring B(X,L, α) of
projective variety X in the following form:

B(X,L, α) =
⊕
n≥0

H0(X,Bn),

where Bn = L⊗Lα⊗ . . .⊗Lαn and H0(X,Bn) is the zero sheaf cohomology
of X, i.e. the space of sections Γ(X,Bn); compare with [Artin & van den
Bergh 1990] [4], formula (3.5). If one denotes by O the structure sheaf of X,
then

Bn = Otn

can be interpreted as a free left O-module of rank one with basis {tn}, see
[Artin & van den Bergh 1990] [4], p. 252. Recall, that spaces Bi = H0(X,Bi)
have been endowed with the multiplication rule between the sections a ∈ Bm

and b ∈ Bn, see Definition 5.3.1; such a rule translates into the formula

atmbtn = abα
m

tm+n.

One can eliminate a and tn on the both sides of the above equation; this
operation gives us the following equation

tmb = bα
m

tm.
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First notice, that our ring B(X,L, α) contains a commutative subring R,
such that Spec (R) = X. Indeed, let m = 0 in formula tmb = bα

m
tm;

then b = bId and, thus, α = Id. We conclude therefore, that R = B0 is a
commutative subring of B(X,L, α), and Spec (R) = X.

Let us show that equations bαt = tb of Remark 5.3.2 and tmb = bα
m
tm

are equivalent. First, let us show that bαt = tb implies tmb = bα
m
tm. Indeed,

equation bαt = tb can be written as bα = tbt−1. Then:
bα

2
= tbαt−1 = t2bt−2,

bα
3

= tbα
2
t−1 = t3bt−3,

...

bα
m

= tbα
m−1

t−1 = tmbt−m.

The last equation of the above system is equivalent to equation tmb = bα
m
tm.

The converse is evident; one sets m = 1 in tmb = bα
m
tm and obtains equation

bαt = tb. Thus, bαt = tb and tmb = bα
m
tm are equivalent equations. It is

easy now to establish an isomorphism B(X,L, α) ∼= R[t, t−1;α]. For that,
take b ∈ R ⊂ B(X,L, α); then B(X,L, α) coincides with the ring of the skew
Laurent polynomials R[t, t−1;α], since the commutation relation bαt = tb is
equivalent to equation tmb = bα

m
tm. Lemma 5.3.1 follows. �

Lemma 3.3.2 AX ∼= C(X) oα Z, where C(X) is the C∗-algebra of all con-
tinuous complex-valued functions on X and α is a ∗-coherent automorphism
of X.

Proof. By definition of the Serre algebra AX , the ring of skew Laurent
polynomials R[t, t−1;α] is dense in AX ; roughly speaking, one has to show
that this property defines a crossed product structure on AX . We shall
proceed in the following steps.

(i) Recall that R[t, t−1;α] consists of the finite sums∑
bkt

k, bk ∈ R,

subject to the commutation relation

bαk t = tbk.

Because of the ∗-coherent representation, there is also an involution on
R[t, t−1;α], subject to the following rules{

(i) t∗ = t−1,
(ii) (b∗k)

α = (bαk )∗.
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(ii) Following [Williams 2007] [110], p.47, we shall consider the set Cc(Z, R)
of continuous functions from Z to R having a compact support; then the finite
sums can be viewed as elements of Cc(Z, R) via the identification

k 7−→ bk.

It can be verified, that multiplication operation of the finite sums translates
into a convolution product of functions f, g ∈ Cc(Z, R) given by the formula

(fg)(k) =
∑
l∈Z

f(l)tlg(k − l)t−l,

while involution translates into an involution on Cc(Z, R) given by the formula

f ∗(k) = tkf ∗(−k)t−k.

It is easy to see, that the multiplication given by the convolution product
and involution turn Cc(Z, R) into an ∗-algebra, which is isomorphic to the
algebra R[t, t−1;α].

(iii) There exists the standard construction of a norm on Cc(Z, R); we
omit it here referring the reader to [Williams 2007] [110], Section 2.3. The
completion of Cc(Z, R) in that norm defines a crossed product C∗-algebra
R oα Z [Williams 2007] [110], Lemma 2.27.

(iv) Since R is a commutative C∗-algebra and X = Spec (R), one con-
cludes that R ∼= C(X). Thus, one obtains AX = C(X) oα Z. Lemma 5.3.2
follows. �

Remark 3.3.5 It is easy to prove, that equations bαk t = tbk and t∗ = t−1

imply equation (b∗k)
α = (bαk )∗; in other words, if involution does not commute

with automorphism α, representation ρ cannot be unitary, i.e. ρ∗(t) 6= ρ(t−1).

Lemma 3.3.3 There exists α̂ ∈ Aut (AX), such that:

X ∼= Irred (AX oα̂ Ẑ).

Proof. The above formula is an implication of the Takai duality for the
crossed products, see e.g. [Williams 2007] [110], Section 7.1; for the sake of
clarity, we shall repeat this construction. Let (A,G, α) be a C∗-dynamical
system with G locally compact abelian group; let Ĝ be the dual of G. For
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each γ ∈ Ĝ, one can define a map âγ : Cc(G,A) → Cc(G,A) given by the
formula:

âγ(f)(s) = γ̄(s)f(s), ∀s ∈ G.
In fact, âγ is a ∗-homomorphism, since it respects the convolution product
and involution on Cc(G,A) [Williams 2007] [110]. Because the crossed prod-
uct A oα G is the closure of Cc(G,A), one gets an extension of âγ to an
element of Aut (A oα G) and, therefore, a homomorphism:

α̂ : Ĝ→ Aut (A oα G).

The Takai duality asserts, that

(A oα G) oα̂ Ĝ ∼= A⊗K(L2(G)),

where K(L2(G)) is the algebra of compact operators on the Hilbert space
L2(G). Let us substitute A = C0(X) and G = Z in the above equation; one
gets the following isomorphism

(C0(X) oα Z) oα̂ Ẑ ∼= C0(X)⊗K(L2(Z)).

Lemma 5.3.2 asserts that C0(X) oα Z ∼= AX ; therefore one arrives at the
following isomorphism

AX oα̂ Ẑ ∼= C0(X)⊗K(L2(Z)).

Consider the set of all irreducible representations of the C∗-algebras in the
above equation; then one gets the following equality of representations

Irred (AX oα̂ Ẑ) = Irred (C0(X)⊗K(L2(Z))).

Let π be a representation of the tensor product C0(X) ⊗ K(L2(Z)) on the
Hilbert space H ⊗ L2(Z); then π = ϕ ⊗ ψ, where ϕ : C0(X) → B(H) and
ψ : K → B(L2(Z)). It is known, that the only irreducible representation of
the algebra of compact operators is the identity representation. Thus, one
gets:

Irred (C0(X)⊗K(L2(Z))) = Irred (C0(X))⊗ {pt} =

= Irred(C0(X)).

Further, the C∗-algebra C0(X) is commutative, hence the following equations
are true

Irred (C0(X)) = Spec (C0(X)) = X.
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Putting together the last three equations, one obtains:

Irred (AX oα̂ Ẑ) ∼= X.

The conclusion of lemma 5.3.3 follows from the above equation. �

Theorem 5.3.3 follows from Lemma 5.3.3. �

3.3.3 Real multiplication revisited

We shall test Theorem 5.3.3 for AX ∼= ARM , i.e a noncommutative torus with
real multiplication; notice that ARM is the Serre C∗-algebra, see Example
5.3.3.

Theorem 3.3.4
Irred (ARM oα̂ Ẑ) ∼= E(K),

where E(K) is non-singular elliptic curve defined over a field of algebraic
numbers K.

Proof. We shall view the crossed product ARM oα̂ Ẑ as a C∗-dynamical sys-
tem (ARM , Ẑ, α̂), see [Williams 2007] [110] for the details. Recall that the
irreducible representations of C∗-dynamical system (ARM , Ẑ, α̂) are in the
one-to-one correspondence with the minimal sets of the dynamical system
(i.e. closed α̂-invariant sub-C∗-algebras of ARM not containing a smaller ob-
ject with the same property). To calculate the minimal sets of (ARM , Ẑ, α̂),
let θ be quadratic irrationality such that ARM ∼= Aθ. It is known that
every non-trivial sub-C∗-algebra of Aθ has the form Anθ for some posi-
tive integer n, see [Rieffel 1981] [88], p. 419. It is easy to deduce that
the maximal proper sub-C∗-algebra of Aθ has the form Apθ, where p is a
prime number. (Indeed, each composite n = n1n2 cannot be maximal since
An1n2θ ⊂ An1θ ⊂ Aθ or An1n2θ ⊂ An2θ ⊂ Aθ, where all inclusions are strict.)
We claim that (Apθ, Ẑ, α̂π(p)) is the minimal C∗-dynamical system, where π(p)
is certain power of the automorphism α̂. Indeed, the automorphism α̂ of Aθ
corresponds to multiplication by the fundamental unit, ε, of pseudo-lattice
Λ = Z + θZ. It is known that certain power, π(p), of ε coincides with the
fundamental unit of pseudo-lattice Z + (pθ)Z, see e.g. [Hasse 1950] [37], p.
298. Thus one gets the minimal C∗-dynamical system (Apθ, Ẑ, α̂π(p)), which is
defined on the sub-C∗-algebra Apθ of Aθ. Therefore we have an isomorphism

Irred (ARM oα̂ Ẑ) ∼=
⋃
p∈P

Irred (Apθ oα̂π(p) Ẑ),
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where P is the set of all (but a finite number) of primes. To simplify the RHS
of the above equation, let us introduce some notation. Recall that matrix
form of the fundamental unit ε of pseudo-lattice Λ coincides with the matrix
A, see above. For each prime p ∈ P consider the matrix

Lp =
(

tr (Aπ(p))− p p
tr (Aπ(p))− p− 1 p

)
,

where tr is the trace of matrix. Let us show, that

Apθ oα̂π(p) Ẑ ∼= Aθ oLp Ẑ,

where Lp is an endomorphism of Aθ (of degree p) induced by matrix Lp.
Indeed, because deg (Lp) = p the endomorphism Lp maps pseudo-lattice
Λ = Z + θZ to a sub-lattice of index p; any such can be written in the form
Λp = Z + (pθ)Z, see e.g. [Borevich & Shafarevich 1966] [11], p.131. Notice
that pseudo-lattice Λp corresponds to the sub-C∗-algebra Apθ of algebra Aθ
and Lp induces a shift automorphism of Apθ, see e.g. [Cuntz 1977] [17]
beginning of Section 2.1 for terminology and details of this construction. It
is not hard to see, that the shift automorphism coincides with α̂π(p). Indeed,
it is verified directly that tr (α̂π(p)) = tr (Aπ(p)) = tr (Lp); thus one gets a
bijection between powers of α̂π(p) and such of Lp. But α̂π(p) corresponds to
the fundamental unit of pseudo-lattice Λp; therefore the shift automorphism
induced by Lp must coincide with α̂π(p). The required isomorphism is proved
and, therefore, our last formula can be written in the form

Irred (ARM oα̂ Ẑ) ∼=
⋃
p∈P

Irred (ARM oLp Ẑ).

To calculate irreducible representations of the crossed product C∗-algebra
ARM oLp Ẑ at the RHS of the above equation, recall that such are in a one-
to-one correspondence with the set of invariant measures on a subshift of
finite type given by the positive integer matrix Lp, see [Bowen & Franks
1977] [12] and [Cuntz 1977] [17]; the measures make an abelian group under
the addition operation. Such a group is isomorphic to Z2 / (I − Lp)Z2,
where I is the identity matrix, see [Bowen & Franks 1977] [12], Theorem 2.2.
Therefore our last equation can be written in the form

Irred (ARM oα̂ Ẑ) ∼=
⋃
p∈P

Z2

(I − Lp)Z2
.
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Let E(K) be a non-singular elliptic curve defined over the algebraic number
field K; let E(Fp) be the reduction of E(K) modulo prime ideal over a “good”
prime number p. Recall that |E(Fp)| = det (I−Frp), where Frp is an integer
two-by-two matrix corresponding to the action of Frobenius endomorphism
on the `-adic cohomology of E(K), see e.g. [Tate 1974] [103], p. 187. Since
|Z2/(I − Lp)Z2| = det (I − Lp), one can identify Frp and Lp and, therefore,
one obtains an isomorphism E(Fp) ∼= Z2/(I − Lp)Z2. Thus our equation can
be written in the form

Irred (ARM oα̂ Ẑ) ∼=
⋃
p∈P
E(Fp).

Finally, consider an arithmetic scheme, X, corresponding to E(K); the latter
fibers over Z, see [Silverman 1994] [101], Example 4.2.2 for the details. It
can be immediately seen, that the RHS of our last equation coincides with
the scheme X, where the regular fiber over p corresponds to E(Fp) ibid. The
argument finishes the proof of Theorem 5.3.4. �

Guide to the literature. The standard reference to complex projective
varieties is the monograph [Hartshorne 1977] [35]. Twisted homogeneous
coordinate rings of projective varieties are covered in the excellent survey
by [Stafford & van den Bergh 2001] [100]. The Serre C∗-algebras were
introduced and studied in [75].

3.4 Application: Mapping class groups

In the foreword it was asked: Why does NCG matter? We shall answer this
question by solving a problem of classical geometry (Harvey’s conjecture)
using invariants attached to the functor F : Alg-Gen → AF-Toric, see
Theorem 5.2.1; the author is unaware of a “classical” proof of this result. The
invariant in question is the stable isomorphism group of toric AF-algebra Aθ.

3.4.1 Harvey’s conjecture

The mapping class group has been introduced in the 1920-ies by M. Dehn
[Dehn 1938] [19]. Such a group, Mod (X), is defined as the group of isotopy
classes of the orientation-preserving diffeomorphisms of a two-sided closed
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surface X of genus g ≥ 1. The group is known to be prominent in algebraic
geometry [Hain & Looijenga 1997] [31], topology [Thurston 1982] [104] and
dynamics [Thurston 1988] [105]. When X is a torus, the Mod (X) is iso-
morphic to the group SL(2,Z). (The SL(2, Z) is called a modular group,
hence our notation for the mapping class group.) A little is known about the
representations of Mod (X) beyond the case g = 1. Recall, that the group
is called linear, if there exists a faithful representation into the matrix group
GL(m,R), where R is a commutative ring. The braid groups are known to
be linear [Bigelow 2001] [8]. Using a modification of the argument for the
braid groups, it is possible to prove, that Mod (X) is linear in the case g = 2
[Bigelow & Budney 2001] [9].

Definition 3.4.1 ([Harvey 1979] [36], p.267) By Harvey’s conjecture we
understand the claim that the mapping class group is linear for g ≥ 3.

Recall that a covariant functor F : Alg-Gen → AF-Toric from a category
of generic Riemann surfaces (i.e. complex algebraic curves) to a category
of toric AF-algebras was constructed in Section 5.2; the functor maps any
pair of isomorphic Riemann surfaces to a pair of stably isomorphic (Morita
equivalent) toric AF-algebras. Since each isomorphism of Riemann surfaces
is given by an element of Mod (X) [Hain & Looijenga 1997] [31], it is natural
to ask about a representation of Mod (X) by the stable isomorphisms of
toric AF-algebras. Recall that the stable isomorphisms of toric AF-algebras
are well understood and surprisingly simple; provided the automorphism
group of the algebra is trivial (this is true for a generic algebra), its group
of stable isomorphism admits a faithful representation into the matrix group
GL(m,Z), see e.g. [Effros 1981] [21]. This fact, combined with the properties
of functor F , implies a positive solution to the Harvey conjecture.

Theorem 3.4.1 For every surface X of genus g ≥ 2, there exists a faithful
representation ρ : Mod (X)→ GL(6g − 6, Z).

3.4.2 Proof of Theorem 5.4.1

Let AF-Toric denote the set of all toric AF-algebras of genus g ≥ 2. Let G
be a finitely presented group and

G×AF-Toric −→ AF-Toric
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be its action on AF-Toric by the stable isomorphisms (Morita equivalences)
of toric AF-algebras; in other words, γ(Aθ)⊗ K ∼= Aθ ⊗ K for all γ ∈ G and
all Aθ ∈ AF-Toric. The following preparatory lemma will be important.

Lemma 3.4.1 For each Aθ ∈ AF-Toric, there exists a representation

ρAθ : G→ GL(6g − 6,Z).

Proof. The proof of lemma is based on the following well known criterion of
the stable isomorphism for the (toric) AF-algebras: a pair of such algebras
Aθ,Aθ′ are stably isomorphic if and only if their Bratteli diagrams coincide,
except (possibly) a finite part of the diagram, see e.g. [Effros 1981] [21],
Theorem 2.3.

Remark 3.4.1 Note that the order isomorphism between the dimension
groups ibid., translates to the language of the Bratteli diagrams as stated.

Let G be a finitely presented group on the generators {γ1, . . . , γm} sub-
ject to relations r1, . . . , rn. Let Aθ ∈ AF-Toric. Since G acts on the
toric AF-algebra Aθ by stable isomorphisms, the toric AF-algebras Aθ1 :=
γ1(Aθ), . . . ,Aθm := γm(Aθ) are stably isomorphic to Aθ; moreover, by tran-
sitivity, they are also pairwise stably isomorphic. Therefore, the Bratteli
diagrams of Aθ1 , . . . ,Aθm coincide everywhere except, possibly, some finite
parts. We shall denote by Aθmax ∈ AF-Toric a toric AF-algebra, whose
Bratteli diagram is the maximal common part of the Bratteli diagrams of Aθi
for 1 ≤ i ≤ m; such a choice is unique and defined correctly because the set
{Aθi} is a finite set. By the Definition 5.2.1 of a toric AF-algebra, the vectors

θi = (1, θ
(i)
1 , . . . , θ

(i)
6g−7) are related to the vector θmax = (1, θ

(max)
1 , . . . , θ

(max)
6g−7 )

by the formula
1
θ

(i)
1
...

θ
(i)
6g−7

 =


0 0 . . . 0 1
1 0 . . . 0 b

(1)(i)
1

...
...

...
...

0 0 . . . 1 b
(1)(i)
6g−7

 . . .


0 0 . . . 0 1
1 0 . . . 0 b

(k)(i)
1

...
...

...
...

0 0 . . . 1 b
(k)(i)
6g−7


︸ ︷︷ ︸

Ai


1

θ
(max)
1

...
θ

(max)
6g−7



The above expression can be written in the matrix form θi = Aiθmax, where
Ai ∈ GL(6g − 6,Z). Thus, one gets a matrix representation of the generator
γi, given by the formula

ρAθ(γi) := Ai.
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The map ρAθ : G → GL(6g − 6,Z) extends to the rest of the group G via
its values on the generators; namely, for every g ∈ G one sets ρAθ(g) =
Ak11 . . . Akmm , whenever g = γk11 . . . γkmm . Let us verify, that the map ρAθ is a
well defined homomorphism of groups G and GL(6g − 6,Z). Indeed, let us
write g1 = γk11 . . . γkmm and g2 = γs11 . . . γsmm for a pair of elements g1, g2 ∈ G;
then their product g1g2 = γk11 . . . γkmm γs11 . . . γsmm = γl11 . . . γ

lm
m , where the last

equality is obtained by a reduction of words using the relations r1, . . . , rn.
One can write relations ri in their matrix form ρAθ(ri); thus, one gets the
matrix equality Al11 . . . A

lm
m = Ak11 . . . Akmm As11 . . . Asmm . It is immediate from

the last equation, that ρAθ(g1g2) = Al11 . . . A
lm
m = Ak11 . . . Akmm As11 . . . Asmm =

ρAθ(g1)ρAθ(g2) for ∀g1, g2 ∈ G, i.e. ρAθ is a homomorphism. Lemma 5.4.1
follows. �

Let AF-Toric-Aper ⊂ AF-Toric be a set consisting of the toric AF-
algebras, whose Bratteli diagrams are not periodic; these are known as non-
stationary toric AF-algebras (Section 3.5.2) and they are generic in the set
AF-Toric endowed with the natural topology.

Definition 3.4.2 The action of group G on the toric AF-algebra Aθ ∈ AF-
Toric will be called free, if γ(Aθ) = Aθ implies γ = Id.

Lemma 3.4.2 If Aθ ∈ AF-Toric-Aper and the action of group G on the
Aθ is free, then ρAθ is a faithful representation.

Proof. Since the action of G is free, to prove that ρAθ is faithful, it remains
to show, that in the formula θi = Aiθmax, it holds Ai = I, if and only if,
θi = θmax, where I is the unit matrix. Indeed, it is immediate that Ai = I
implies θi = θmax. Suppose now that θi = θmax and, let to the contrary,
Ai 6= I. One gets θi = Aiθmax = θmax. Such an equation has a non-trivial
solution, if and only if, the vector θmax has a periodic Jacobi-Perron fraction;
the period of such a fraction is given by the matrix Ai. This is impossible,
since it has been assumed, that Aθmax ∈ AF-Toric-Aper. The contradiction
proves Lemma 5.4.2. �

Let G = Mod (X), where X is a surface of genus g ≥ 2. The group G
is finitely presented, see [Dehn 1938] [19]; it acts on the Teichmueller space
T (g) by isomorphisms of the Riemann surfaces. Moreover, the action of G is
free on a generic set, U ⊂ T (g), consisting of the Riemann surfaces with the
trivial group of automorphisms. On the other hand, there exists a functor

F : Alg-Gen −→ AF-Toric
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between the Riemann surfaces (complex algebraic curves) and toric AF-
algebras, see Theorem 5.2.1.

Lemma 3.4.3 The pre-image F−1(AF-Toric-Aper) is a generic set in the
space T (g).

Proof. Note, that the set of stationary toric AF-algebras is a countable set.
The functor F is a surjective map, which is continuous with respect to the
natural topology on the sets Alg-Gen and AF-Toric. Therefore, the pre-
image of the complement of a countable set is a generic set. Lemma 5.4.3
follows. �

Consider the set U ∩ F−1(AF-Toric-Aper); this set is non-empty, since it
is the intersection of two generic subsets of T (g), see Lemma 5.4.3. Let

S ∈ U ∩ F−1(AF-Toric-Aper)

be a point (a Riemann surface) in the above set. In view of Lemma 5.4.1,
group G acts on the toric AF-algebra Aθ = F (S) by the stable isomorphisms.
By the construction, the action is free and Aθ ∈ AF-Toric-Aper. In view
of Lemma 5.4.2, one gets a faithful representation ρ = ρAθ of the group
G ∼= Mod (X) into the matrix group GL(6g−6,Z). Theorem 5.4.1 is proved.
�

Guide to the literature. The mapping class groups were introduced by
M. Dehn [Dehn 1938] [19]. For a primer on the mapping class groups we
refer the reader to the textbook [Farb & Margalit 2011] [25]. The Harvey
conjecture was formulated in [Harvey 1979] [36]. Some infinite-dimensional
(asymptotic) faithfulness of the mapping class groups was proved by [An-
derson 2006] [1]. A faithful representation of Mod (X) in the matrix group
GL(6g − 6,Z) was constructed in [76].
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Exercises

1. Prove that the skew-symmetric relations



x3x1 = q13x1x3,
x4x2 = q24x2x4,
x4x1 = q14x1x4,
x3x2 = q23x2x3,
x2x1 = q12x1x2,
x4x3 = q34x3x4,

are invariant of the involution x∗1 = x2, x
∗
3 = x4, if and only if, the

following restrictions on the constants qij hold



q13 = (q̄24)−1,
q24 = (q̄13)−1,
q14 = (q̄23)−1,
q23 = (q̄14)−1,
q12 = q̄12,
q34 = q̄34,

where q̄ij means the complex conjugate of qij ∈ C \ {0}.

2. Prove that a family of free algebras C〈x1, x2, x3, x4〉 modulo an ideal
generated by six skew-symmetric quadratic relations



x3x1 = µe2πiθx1x3,
x4x2 = 1

µ
e2πiθx2x4,

x4x1 = µe−2πiθx1x4,
x3x2 = 1

µ
e−2πiθx2x3,

x2x1 = x1x2,
x4x3 = x3x4,

consists of the pairwise non-isomorphic algebras for different values of
θ ∈ S1 and µ ∈ (0,∞).
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3. Prove that the system of relations for noncommutative torus Aθ

x3x1 = e2πiθx1x3,
x4x2 = e2πiθx2x4,
x4x1 = e−2πiθx1x4,
x3x2 = e−2πiθx2x3,
x2x1 = x1x2 = e,
x4x3 = x3x4 = e.

is equivalent to the system of relations

x3x1x4 = e2πiθx1,
x4 = e2πiθx2x4x1,

x4x1x3 = e−2πiθx1,
x2 = e−2πiθx4x2x3,
x1x2 = x2x1 = e,
x3x4 = x4x3 = e.

(Hint: use the last two relations.)

4. Prove that the system of relations for the Sklyanin ∗-algebra plus the
scaled unit relation, i.e.

x3x1 = µe2πiθx1x3,
x4x2 = 1

µ
e2πiθx2x4,

x4x1 = µe−2πiθx1x4,
x3x2 = 1

µ
e−2πiθx2x3,

x2x1 = x1x2 = 1
µ
e,

x4x3 = x3x4 = 1
µ
e

is equivalent to the system

x3x1x4 = e2πiθx1,
x4 = e2πiθx2x4x1,

x4x1x3 = e−2πiθx1,
x2 = e−2πiθx4x2x3,
x2x1 = x1x2 = 1

µ
e,

x4x3 = x3x4 = 1
µ
e.

(Hint: use multiplication and cancellation involving the last two equa-
tions.)
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5. If Proj-Alg is the category of all complex projective varieties X (of
dimension n) and C*-Serre the category of all Serre C∗-algebras AX ,
then the formula X 7→ AX gives rise to a map

F : Proj-Alg −→ C*-Serre.

Prove that the map F is actually a functor which takes isomorphisms
between projective varieties to the stable isomorphisms (Morita equiv-
alences) between the corresponding Serre C∗-algebras. (Hint: repeat
the argument for elliptic curves given in Section 5.1.1.)

6. Prove Remark 5.3.5, i.e. that equations bαk t = tbk and t∗ = t−1 imply
equation (b∗k)

α = (bαk )∗.



Chapter 4

Number Theory

The most elegant functors (with values in NCG) are acting on the arith-
metic schemes X. We start with the simplest case of X being elliptic curve
with complex multiplication by the number field k = Q(f

√
−D); in this case

X ∼= E(K), where K is the Hilbert class field of k [Serre 1967] [92]. We prove
in Section 6.1 that functor F sends E(K) to noncommutative torus with real
multiplication by the number field Q(f

√
D). It is proved in Section 6.2 that

the so-called arithmetic complexity of such a torus is linked by a simple for-
mula to the rank of elliptic curve E(K) whenever D ≡ 3 mod 4 is a prime
number and f = 1. In Section 6.3 we introduce an L-function L(ARM , s)
associated to the noncommutative torus with real multiplication and prove
that any such coincides with the classical Hasse-Weil function L(ECM , s) of an
elliptic curve with complex multiplication; a surprising localization formula
tells us that the crossed products replace prime (or maximal) ideals famil-
iar from the commutative algebra. In Section 6.4 a functor F : Alg-Num
→ NC-Tor from a category of the finite Galois extensions E of the field
Q to the category of even-dimensional noncommutative tori with real multi-
plication A2n

RM is defined. An L-function L(A2n
RM , s) is constructed and it is

conjectured that if A2n
RM = F (E), then L(A2n

RM , s) ≡ L(σ, s), where L(σ, s)
is the Artin L-function of E corresponding to an irreducible representation
σ : Gal (E|Q) → GLn(C). We prove the conjecture for n = 1 (resp., n = 0)
and E being the Hilbert class field of an imaginary quadratic field k (resp.,
field Q). Thus we deal with an analog of the Langlands program, where the
“automorphic cuspidal representations of group GLn” are replaced by the
noncommutative tori A2n

RM , see [Gelbart 1984] [28] for an introduction to the
Langlands program. In Section 6.5 we compute the number of points of pro-

109
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jective variety V (Fq) over a finite field Fq in terms of invariants of the Serre
C∗-algebra associated to the complex projective variety V (C), see Section
5.3.1; the calculation involves an explicit formula for the traces of Frobenius
map of V (Fq) being linked to the Weil Conjectures, see e.g. [Hartshorne 1977]
[35], Appendix C for an introduction. Finally, in Section 6.6 we apply our
functor F : Ell → NC-Tor to a problem of the transcendental number the-
ory, see e.g. [Baker 1975] [5] for an introduction. Namely, we use the formula

F (E (−D,f)
CM ) = A(D,f)

RM of Section 6.1 to prove that the transcendental function
J (θ, ε) = e2πiθ+log log ε takes algebraic values for the algebraic arguments θ
and ε. Moreover, these values of J (θ, ε) belong to the Hilbert class field of
the imaginary quadratic field Q(

√
−D) for all but a finite set of values of D.

4.1 Complex multiplication

We recall that an elliptic curve is the subset of the complex projective plane
of the form E(C) = {(x, y, z) ∈ CP 2 | y2z = 4x3 − g2xz

2 − g3z
3}, where g2

and g3 are some constant complex numbers. The j-invariant of E(C) is the
complex number

j(E(C)) =
1728g3

2

g3
2 − 27g2

3

,

which is constant only on isomorphic elliptic curves. The Weierstrass function
℘(z) defines an isomorphism E(C) ∼= C/(Z + Zτ) between elliptic curves and
complex tori of modulus τ ∈ H := {z = x + iy ∈ C | y > 0}, see Theorem
5.1.1; by Eτ we understand an elliptic curve of complex modulus τ .

Definition 4.1.1 By an isogeny between elliptic curves Eτ and Eτ ′ one un-
derstands an analytic map ϕ : Eτ → Eτ ′, such that ϕ(0) = 0. Clearly, the
invertible isogeny corresponds to an isomorphism between elliptic curves.

Remark 4.1.1 The elliptic curves Eτ and Eτ ′ are isogenous if and only if

τ ′ =
aτ + b

cτ + d
for some matrix

(
a b
c d

)
∈M2(Z) with ad− bc > 0.

The case of an invertible matrix (i.e. ad − bc = 1) corresponds to an iso-
morphism between elliptic curves. (We leave the proof to the reader. Hint:
notice that z 7→ αz is an invertible holomorphic map for each α ∈ C− {0}.)
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An endomorphism of Eτ is a multiplication of the lattice Lτ := Z + Zτ ⊂ C
by complex number z such that

zLτ ⊆ Lτ .

In other words, the endomorphism is an isogeny of the elliptic curve into
itself. The sum and product of two endomorphisms is an endomorphism of
Eτ ; thus one gets a commutative ring of all endomorphisms of Eτ denoted by
End (Eτ ). Typically End (Eτ ) ∼= Z, i.e. the only endomorphisms of Eτ are
the multiplication-by-m endomorphisms; however, for a countable set of τ

End (Eτ ) ∼= Z + fOk,

where k = Q(
√
−D) is an imaginary quadratic field, Ok its ring of integers

and f ≥ 1 is the conductor of a finite index subring of Ok. (The proof of
this simple but fundamental fact is left to the reader.) It is easy to see that
in such a case τ ∈ End (Eτ ), i.e. complex modulus itself is an imaginary
quadratic number.

Definition 4.1.2 Elliptic curve Eτ is said to have complex multiplication if
End (Eτ ) ∼= Z + fOk, i.e. τ is an imaginary quadratic number; such a curve

will be denoted by E (−D,f)
CM .

Remark 4.1.2 There is a finite number of pairwise non-isomorphic elliptic
curves with the same ring of non-trivial endomorphisms R := End (Eτ );
such a number is equal to |Cl (R)|, where Cl (R) is the class group of ring

R. This fact is extremely important, because the j-invariant j(E (−D,f)
CM ) is

known to be an algebraic number and, therefore, Gal (K|k) ∼= Cl (R), where

K = k(j(E (−D,f)
CM )) and Gal (K|k) is the Galois group of the field extension

K|k. In other words, the number field K is the Hilbert class field of imaginary
quadratic field k. Moreover,

E (−D,f)
CM

∼= E(K),

i.e. the complex constants g2 and g3 in the cubic equation for E (−D,f)
CM must

belong to the number field K.
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4.1.1 Functor on elliptic curves with complex multipli-
cation

Definition 4.1.3 By Ell-Isgn we shall mean the category of all elliptic
curves Eτ ; the arrows of Ell-Isgn are identified with the isogenies between
elliptic curves Eτ . We shall write NC-Tor-Homo to denote the category
of all noncommutative tori Aθ; the arrows of NC-Tor-Homo are identified
with the stable homomorphisms between noncommutative tori Aθ.

Remark 4.1.3 The noncommutative tori Aθ and Aθ′ are stably homomor-
phic if and only if

θ′ =
aθ + b

cθ + d
for some matrix

(
a b
c d

)
∈M2(Z) with ad− bc > 0.

The case of an invertible matrix (i.e. ad − bc = 1) corresponds to a stable
isomorphism (Morita equivalence) between noncommutative tori. (We leave
the proof to the reader. Hint: follow and modify the argument of [Rieffel
1981] [88].)

? ?
-

-

Aθ

F F

Aθ′=aθ+b
cθ+d

Eτ Eτ ′=aτ+b
cτ+d

stably

homomorphic

isogenous

Figure 4.1: Functor on isogenous elliptic curves.

Theorem 4.1.1 (Functor on isogenous elliptic curves) There exists a
covariant functor

F : Ell-Isgn −→ NC-Tor-Homo,

which maps isogenous elliptic curves Eτ to the stably homomorphic noncom-
mutative tori Aθ, see Fig. 6.1; the functor F is non-injective and Ker F ∼=
(0,∞). In particular, F maps isomorphic elliptic curves to the stably iso-
morphic (Morita equivalent) noncommutative tori.
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Theorem 4.1.2 (Functor on elliptic curves with complex multipli-
cation) If Isom (ECM) := {Eτ ∈ Ell-Isgn | Eτ ∼= ECM} is the isomorphism
class of an elliptic curve with complex multiplication and mCM := µCM(Z +
ZθCM) ⊂ R is a Z-module such that AθCM = F (ECM) and µCM ∈ Ker F ,
then:

(i) mCM is an invariant of Isom (ECM);

(ii) mCM is a full module in the real quadratic number field.

In particular, AθCM is a noncommutative torus with real multiplication.

Definition 4.1.4 If A(D,f)
RM is a noncommutative torus with real multipli-

cation, then the Riemann surface X(A(D,f)
RM ) is called associated to A(D,f)

RM

whenever the covering of geodesic spectrum of X(A(D,f)
RM ) on the half-plane H

contains the set {γ̃(x, x̄) : ∀x ∈ mCM}, where

γ̃(x, x̄) =
xe

t
2 + ix̄e−

t
2

e
t
2 + ie−

t
2

, −∞ ≤ t ≤ ∞

is the geodesic half-circle through the pair of conjugate quadratic irrationali-
ties x, x̄ ∈ mCM ⊂ ∂H, see Definition 6.1.5.

Theorem 4.1.3 (Functor on noncommutative tori with real multi-
plication) For each square-free integer D > 1 and integer f ≥ 1 there exists

a holomorphic map F−1 : X(A(D,f)
RM )→ E (−D,f)

CM , where F (E (−D,f)
CM ) = A(D,f)

RM .

Remark 4.1.4 Roughly speaking, Theorem 6.1.3 is an explicit form of func-
tor F constructed in Theorem 6.1.2; moreover, Theorem 6.1.3 says the F is
a bijection by constructing an explicit inverse functor F−1.

4.1.2 Proof of Theorem 6.1.1

The proof is a modification of the one for Theorem 5.1.2; we freely use the
notation and facts of the Teichmüller theory introduced in Section 5.1.2. Let
φ = Re ω be a 1-form defined by a holomorphic form ω on the complex torus
S. Since ω is holomorphic, φ is a closed 1-form on topological torus T 2. The
R-isomorphism hq : H0(S,Ω) → Hom (H1(T 2);R), as explained, is given by
the formulas: {

λ1 =
∫
γ1
φ

λ2 =
∫
γ2
φ,
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where {γ1, γ2} is a basis in the first homology group of T 2. We further assume
that, after a proper choice of the basis, λ1, λ2 are positive real numbers.
Denote by ΦT 2 the space of measured foliations on T 2. Each F ∈ ΦT 2 is
measure equivalent to a foliation by a family of the parallel lines of a slope θ
and the invariant transverse measure µ, see Fig. 6.2.

��

��
��

�
��

�

��
�
�

��

Figure 4.2: Measured foliation F on T 2 = R2/Z2.

We use the notation Fµθ for such a foliation. There exists a simple relationship
between the reals (λ1, λ2) and (θ, µ). Indeed, the closed 1-form φ = Const
defines a measured foliation, Fµθ , so that{

λ1 =
∫
γ1
φ =

∫ 1
0 µdx

λ2 =
∫
γ2
φ =

∫ 1
0 µdy

, where
dy

dx
= θ.

By the integration: {
λ1 =

∫ 1
0 µdx = µ

λ2 =
∫ 1

0 µθdx = µθ.

Thus, one gets µ = λ1 and θ = λ2
λ1

. Recall that the Hubbard-Masur theory
establishes a homeomorphism h : TS(1) → ΦT 2 , where TS(1) ∼= H = {τ :
Im τ > 0} is the Teichmüller space of the torus, see Corollary 5.1.1. Denote
by ωN an invariant (Néron) differential of the complex torus C/(ω1Z + ω2Z).
It is well known that ω1 =

∫
γ1
ωN and ω2 =

∫
γ2
ωN , where γ1 and γ2 are

the meridians of the torus. Let π be a projection acting by the formula
(θ, µ) 7→ θ. An explicit formula for the functor F : Ell-Isgn → NC-Tor-
Homo is given by the composition F = π◦h, where h is the Hubbard-Masur
homeomorphism. In other words, one gets the following explicit correspon-
dence between the complex and noncommutative tori:

Eτ = E(
∫
γ2
ωN )/(

∫
γ1
ωN )

h7−→ F
∫
γ1
φ

(
∫
γ2
φ)/(

∫
γ1
φ)

π7−→ A(
∫
γ2
φ)/(

∫
γ1
φ) = Aθ,

where Eτ = C/(Z + Zτ). Let

ϕ : Eτ −→ Eτ ′
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be an isogeny of the elliptic curves. The action of ϕ on the homology basis
{γ1, γ2} of T 2 is given by the formulas{

γ′1 = aγ1 + bγ2

γ′2 = cγ1 + dγ2
, where

(
a b
c d

)
∈M2(Z).

Recall that the functor F : Ell-Isgn → NC-Tor-Homo is given by the
formula

τ =

∫
γ2
ωN∫

γ1
ωN
7−→ θ =

∫
γ2
φ∫

γ1
φ
,

where ωN is an invariant differential on Eτ and φ = Re ω is a closed 1-form
on T 2.

(i) From the left-hand side of the above equation, one obtains{
ω′1 =

∫
γ′1
ωN =

∫
aγ1+bγ2

ωN = a
∫
γ1
ωN + b

∫
γ2
ωN = aω1 + bω2

ω′2 =
∫
γ′2
ωN =

∫
cγ1+dγ2

ωN = c
∫
γ1
ωN + d

∫
γ2
ωN = cω1 + dω2,

and therefore τ ′ =

∫
γ′
2
ωN∫

γ′
1
ωN

= c+dτ
a+bτ

.

(ii) From the right-hand side, one obtains{
λ′1 =

∫
γ′1
φ =

∫
aγ1+bγ2

φ = a
∫
γ1
φ+ b

∫
γ2
φ = aλ1 + bλ2

λ′2 =
∫
γ′2
φ =

∫
cγ1+dγ2

φ = c
∫
γ1
φ+ d

∫
γ2
φ = cλ1 + dλ2,

and therefore θ′ =

∫
γ′
2
φ∫

γ′
1
φ

= c+dθ
a+bθ

. Comparing (i) and (ii), one gets the con-

clusion of the first part of Theorem 6.1.1. To prove the second part, recall
that the invertible isogeny is an isomorphism of the elliptic curves. In this

case
(
a b
c d

)
∈ SL2(Z) and θ′ = θ mod SL2(Z). Therefore F sends the iso-

morphic elliptic curves to the stably isomorphic noncommutative tori. The
second part of Theorem 6.1.1 is proved. It follows from the proof that F :
Ell-Isgn→ NC-Tor-Homo is a covariant functor. Indeed, F preserves the
morphisms and does not reverse the arrows: F (ϕ1ϕ2) = ϕ1ϕ2 = F (ϕ1)F (ϕ2)
for any pair of the isogenies ϕ1, ϕ2 ∈Mor (Ell-Isgn). Theorem 6.1.1 follows.
�
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4.1.3 Proof of Theorem 6.1.2

Lemma 4.1.1 Let m ⊂ R be a module of the rank 2, i.e m = Zλ1 + Zλ2,
where θ = λ2

λ1
6∈ Q. If m′ ⊆ m is a submodule of the rank 2, then m′ = km,

where either:

(i) k ∈ Z− {0} and θ ∈ R− Q, or

(ii) k and θ are the irrational numbers of a quadratic number field.

Proof. Any rank 2 submodule of m can be written as m′ = λ′1Z + λ′2Z, where{
λ′1 = aλ1 + bλ2

λ′2 = cλ1 + dλ2
and

(
a b
c d

)
∈M2(Z).

(i) Let us assume that b 6= 0. Let ∆ = (a + d)2 − 4(ad − bc) and ∆′ =
(a+ d)2 − 4bc. We shall consider the following cases.

Case 1: ∆ > 0 and ∆ 6= m2, m ∈ Z − {0}. The real number k can be
determined from the equations:{

λ′1 = kλ1 = aλ1 + bλ2

λ′2 = kλ2 = cλ1 + dλ2.

Since θ = λ2
λ1

, one gets the equation θ = c+dθ
a+bθ

by taking the ratio of two

equations above. A quadratic equation for θ writes as bθ2 + (a− d)θ− c = 0.
The discriminant of the equation coincides with ∆ and therefore there exist

real roots θ1,2 = d−a±
√

∆
2b

. Moreover, k = a + bθ = 1
2
(a + d ±

√
∆). Since ∆

is not the square of an integer, k and θ are irrationalities of the quadratic
number field Q(

√
∆).

Case 2: ∆ > 0 and ∆ = m2, m ∈ Z − {0}. Note that θ = a−d±|m|
2c

is a
rational number. Since θ does not satisfy the rank assumption of the lemma,
the case should be omitted.

Case 3: ∆ = 0. The quadratic equation has a double root θ = a−d
2c
∈ Q.

This case leads to a module of the rank 1, which is contrary to an assumption
of the lemma.

Case 4: ∆ < 0 and ∆′ 6= m2, m ∈ Z − {0}. Let us define a new basis
{λ′′1, λ′′2} in m′ so that {

λ′′1 = λ′1
λ′′2 = −λ′2.
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Then: {
λ′′1 = aλ1 + bλ2

λ′′2 = −cλ1 − dλ2,

and θ =
λ′′2
λ′′1

= −c−dθ
a+bθ

. The quadratic equation for θ has the form bθ2 + (a +

d)θ + c = 0, whose discrimimant is ∆′ = (a + d)2 − 4bc. Let us show that
∆′ > 0. Indeed, ∆ = (a + d)2 − 4(ad − bc) < 0 and the evident inequality
−(a − d)2 ≤ 0 have the same sign, and we shall add them up. After an
obvious elimination, one gets bc < 0. Therefore ∆′ is a sum of the two
positive integers, which is always a positive integer. Thus, there exist the

real roots θ1,2 = −a−d±
√

∆′

2b
. Moreover, k = a + bθ = 1

2
(a − d ±

√
∆′). Since

∆′ is not the square of an integer, k and θ are the irrational numbers in the
quadratic field Q(

√
∆′).

Case 5: ∆ < 0 and ∆′ = m2, m ∈ Z−{0}. Note that θ = −a−d±|m|
2b

is a
rational number. Since θ does not satisfy the rank assumption of the lemma,
the case should be omitted.

(ii) Assume that b = 0.

Case 1: a− d 6= 0. The quadratic equation for θ degenerates to a linear
eauation (a − d)θ + c = 0. The root θ = c

d−a ∈ Q does not satisfy the rank
assumption again, and we omit the case.

Case 2: a = d and c 6= 0. It is easy to see, that the set of the solutions
for θ is an empty set.

Case 3: a = d and c = 0. Finally, in this case all coefficients of the
quadratic equation vanish, so that any θ ∈ R − Q is a solution. Note that
k = a = d ∈ Z. Thus, one gets case (i) of the lemma. Since there are no
other possiblities left, Lemma 6.1.1 is proved. �

Lemma 4.1.2 Let ECM be an elliptic curve with complex multiplication and
consider a Z-module F (Isom (ECM)) = µCM(Z + ZθCM) := mCM . Then:

(i) θCM is a quadratic irrationality,

(ii) µCM ∈ Q (up to a choice of map F ).

Proof. (i) Since ECM has complex multiplication, one gets End (ECM) > Z.
In particular, there exists a non-trivial isogeny

ϕ : ECM −→ ECM ,
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i.e an endomorphism which is not the multiplication by k ∈ Z. By Theorem
6.1.1 and Remark 6.1.3, each isogeny ϕ defines a rank 2 submodule m′ of
module mCM . By Lemma 6.1.1, m′ = kmCM for a k ∈ R. Because ϕ is a
non-trivial endomorphism, we get k 6∈ Z; thus, option (i) of Lemma 6.1.1 is
excluded. Therefore, by the item (ii) of Lemma 6.1.1, real number θCM must
be a quadratic irrationality.

(ii) Recall that EF ⊂ Q − {0} is the space of holomorphic differentials
on the complex torus, whose horizontal trajectory structure is equivalent
to given measured foliation F = Fµθ . We shall vary Fµθ , thus varying the
Hubbard-Masur homeomorphism h = h(Fµθ ) : EF → T (1), see Section 6.1.2.
Namely, consider a 1-parameter continuous family of such maps h = hµ,
where θ = Const and µ ∈ R. Recall that µCM = λ1 =

∫
γ1
φ, where φ = Re ω

and ω ∈ EF . The family hµ generates a family ωµ = h−1
µ (C), where C is a

fixed point in T (1). Denote by φµ and λµ1 the corresponding families of the
closed 1-forms and their periods, respectively. By the continuity, λµ1 takes on
a rational value for a µ = µ′. (Actually, every neighborhood of µ0 contains
such a µ′.) Thus, µCM ∈ Q for the Hubbard-Masur homeomorphism h = hµ′ .
Lemma 6.1.2 follows. �

The claim (ii) of Theorem 6.1.2 follows from (i) of Lemma 6.1.2 and claim
(i) of Theorem 6.1.2. To prove claim (i) of Theorem 6.1.2, notice that when-
ever E1, E2 ∈ Isom(ECM) the respective Z-modules coincide, i.e. m1 = m2;
this happens because an isomorphism between elliptic curves corresponds to
a change of basis in the module m, see Theorem 6.1.1 and Remark 6.1.3.
Theorem 6.1.2 is proved. �

4.1.4 Proof of Theorem 6.1.3

Let us recall some classical facts and notation, and give an exact definition of
the Riemann surface X(A(D,f)

RM ). Let N ≥ 1 be an integer; recall that Γ1(N)
is a subgroup of the modular group SL2(Z) consisting of matrices of the form{(

a b
c d

)
∈ SL2(Z) | a, d ≡ 1 mod N, c ≡ 0 mod N

}
;

the corresponding Riemann surface H/Γ1(N) will be denoted by X1(N). Con-
sider the geodesic spectrum of X1(N), i.e the set Spec X1(N) consisting of
all closed geodesics of the surface X1(N); each geodesic γ ∈ Spec X1(N)
is the image under the covering map H → H/Γ1(N) of a geodesic half-circle
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γ̃ ∈ H passing through the points x and x̄ fixed by the linear fractional trans-
formation x 7→ ax+b

cx+d
, where matrix (a, b, c, d) ∈ Γ1(N). It is not hard to see,

that x and x̄ are quadratic irrational numbers; the numbers are real when
|a+ d| > 2.

Definition 4.1.5 We shall say that the Riemann surface X is associated to

the noncommutative torus A(D,f)
RM , if {γ̃(x, x̄) : ∀x ∈ m

(D,f)
RM } ⊂ S̃pec X,

where S̃pec X ⊂ H is the set of geodesic half-circles covering the geodesic
spectrum of X and m

(D,f)
RM is a Z-module (a pseudo-lattice) in R generated by

torus A(D,f)
RM ; the associated Riemann surface will be denoted by X(A(D,f)

RM ).

Lemma 4.1.3 X(A(D,f)
RM ) ∼= X1(fD).

Proof. Recall that m
(D,f)
RM is a Z-module (a pseudo-lattice) with real multipli-

cation by an order R in the real quadratic number field Q(
√
D); it is known,

that m
(D,f)
RM ⊆ R and R = Z + (fω)Z, where f ≥ 1 is the conductor of R and

ω =

{
1+
√
D

2
if D ≡ 1 mod 4,√

D if D ≡ 2, 3 mod 4,

see e.g. [Borevich & Shafarevich 1988] [11], pp. 130-131. Recall that matrix
(a, b, c, d) ∈ SL2(Z) has a pair of real fixed points x and x̄ if and only if
|a + d| > 2 (the hyperbolic matrix); the fixed points can be found from the
equation x = (ax+ b)(cx+ d)−1 by the formulas

x =
a− d

2c
+

√
(a+ d)2 − 4

4c2
, x̄ =

a− d
2c
−
√

(a+ d)2 − 4

4c2
.

Case I. If D ≡ 1 mod 4, then the above formulas imply that R = (1+ f
2
)Z+√

f2D

2
Z. If x ∈ m

(D,f)
RM is fixed point of a transformation (a, b, c, d) ∈ SL2(Z),

then {
a−d
2c

= (1 + f
2
)z1

(a+d)2−4
4c2

= f2D
4
z2

2

for some integer numbers z1 and z2. The second equation can be written in
the form (a + d)2 − 4 = c2f 2Dz2

2 ; we have therefore (a + d)2 ≡ 4 mod (fD)
and a + d ≡ ±2 mod (fD). Without loss of generality we assume a + d ≡
2 mod (fD) since matrix (a, b, c, d) ∈ SL2(Z) can be multiplied by−1. Notice
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that the last equation admits a solution a = d ≡ 1 mod (fD). The first
equation yields us a−d

c
= (2 + f)z1, where c 6= 0 since the matrix (a, b, c, d)

is hyperbolic. Notice that a− d ≡ 0 mod (fD); since the ratio a−d
c

must be
integer, we conclude that c ≡ 0 mod (fD). Summing up, we get:

a ≡ 1 mod (fD), d ≡ 1 mod (fD), c ≡ 0 mod (fD).

Case II. If D ≡ 2 or 3 mod 4, then R = Z + (
√
f 2D) Z. If x ∈ m

(D,f)
RM is

fixed point of a transformation (a, b, c, d) ∈ SL2(Z), then{
a−d
2c

= z1
(a+d)2−4

4c2
= f 2Dz2

2

for some integer numbers z1 and z2. The second equation gives (a+d)2−4 =
4c2f 2Dz2

2 ; therefore (a + d)2 ≡ 4 mod (fD) and a + d ≡ ±2 mod (fD).
Again without loss of generality we assume a+d ≡ 2 mod (fD) since matrix
(a, b, c, d) ∈ SL2(Z) can be multiplied by −1. The last equation admits a
solution a = d ≡ 1 mod (fD). The first equation is a−d

c
= 2z1, where c 6= 0.

Since a− d ≡ 0 mod (fD) and the ratio a−d
c

must be integer, one concludes
that c ≡ 0 mod (fD). All together, one gets

a ≡ 1 mod (fD), d ≡ 1 mod (fD), c ≡ 0 mod (fD).

Since all possible cases are exhausted, Lemma 6.1.3 follows. �

Remark 4.1.5 There exist other finite index subgroups of SL2(Z) whose

geodesic spectrum contains the set {γ̃(x, x̄) : ∀x ∈ m
(D,f)
RM }; however Γ1(fD)

is a unique group with such a property among subgroups of the principal
congruence group.

Remark 4.1.6 Not all geodesics of X1(fD) have the above form; thus the
set
{γ̃(x, x̄) : ∀x ∈ m

(D,f)
RM } is strictly included in the geodesic spectrum of

modular curve X1(fD).

Definition 4.1.6 The group

Γ(N) :=
{(

a b
c d

)
∈ SL2(Z) | a, d ≡ 1 mod N, b, c ≡ 0 mod N

}
is called a principal congruence group of level N ; the corresponding compact
modular curve will be denoted by X(N) = H/Γ(N).
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Lemma 4.1.4 (Hecke) There exists a holomorphic map X(fD)→ E (−D,f)
CM .

Proof. A detailed proof of this beautiful fact is given in [Hecke 1928] [38].
For the sake of clarity, we shall give an idea of the proof. Let R be an order of
conductor f ≥ 1 in the imaginary quadratic number field Q(

√
−D); consider

an L-function attached to R

L(s, ψ) =
∏

P⊂R

1

1− ψ(P)
N(P)s

, s ∈ C,

where P is a prime ideal in R, N(P) its norm and ψ a Grössencharacter. A
crucial observation of Hecke says that the series L(s, ψ) converges to a cusp
form w(s) of the principal congruence group Γ(fD). By the Deuring The-

orem, L(E (−D,f)
CM , s) = L(s, ψ)L(s, ψ̄), where L(E (−D,f)

CM , s) is the Hasse-Weil
L-function of the elliptic curve and ψ̄ a conjugate of the Grössencharacter,
see e.g. [Silverman 1994] [94], p. 175; moreover L(E (−D,f)

CM , s) = L(w, s),
where L(w, s) :=

∑∞
n=1

cn
ns

and cn the Fourier coefficients of the cusp form

w(s). In other words, E (−D,f)
CM is a modular elliptic curve. One can now apply

the modularity principle: if Aw is an abelian variety given by the periods of
holomorphic differential w(s)ds (and its conjugates) on X(fD), then the dia-

gram in Fig. 6.3 is commutative. The holomorphic map X(fD)→ E (−D,f)
CM is

obtained as a composition of the canonical embedding X(fD)→ Aw with the

subsequent holomorphic projection Aw → E (−D,f)
CM . Lemma 6.1.4 is proved.

�

?

HH
HHHHj

-

E (−D,f)
CM

X(fD) Aw

canonical
embedding

holomorphic
projection

Figure 4.3: Hecke lemma.

Lemma 4.1.5 The functor F acts by the formula E (−D,f)
CM 7→ A(D,f)

RM .
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Proof. Let LCM be a lattice with complex multiplication by an order R =
Z + (fω)Z in the imaginary quadatic field Q(

√
−D); the multiplication by

α ∈ R generates an endomorphism (a, b, c, d) ∈ M2(Z) of the lattice LCM .
It is known from Section 6.1.3, Case 4, that the endomorphisms of lattice
LCM and endomorphisms of the pseudo-lattice mRM = F (LCM) are related
by the following explicit map(

a b
c d

)
∈ End (LCM) 7−→

(
a b
−c −d

)
∈ End (mRM),

Moreover, one can always assume d = 0 in a proper basis of LCM . We shall
consider the following two cases.

Case I. If D ≡ 1 mod 4 then we have R = Z + (
f+
√
−f2D
2

)Z; thus

α = 2m+fn
2

+
√
−f2Dn2

4
for some m,n ∈ Z. Therefore multiplication by α

corresponds to an endomorphism (a, b, c, 0) ∈M2(Z), where
a = Tr(α) = α + ᾱ = 2m+ fn
b = −1

c = N(α) = αᾱ =
(

2m+fn
2

)2
+ f2Dn2

4
.

To calculate a primitive generator of endomorphisms of the lattice LCM one
should find a multiplier α0 6= 0 such that

|α0| = min
m.n∈Z

|α| = min
m.n∈Z

√
N(α).

From the equation for c the minimum is attained at m = −f
2

and n = 1 if f
is even or m = −f and n = 2 if f is odd. Thus

α0 =

{
±f

2

√
−D, if f is even

±f
√
−D, if f is odd.

To find the matrix form of the endomorphism α0, we shall substitute in the
corresponding formula a = d = 0, b = −1 and c = f2D

4
if f is even or c = f 2D

if f is odd. Thus functor F maps the multiplier α0 into

F (α0) =

{
±f

2

√
D, if f is even

±f
√
D, if f is odd.

Comparing the above equations, one verifies that formula F (E (−D,f)
CM ) =

A(D,f)
RM is true in this case.
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Case II. If D ≡ 2 or 3 mod 4 then R = Z+(
√
−f 2D) Z; thus the multiplier

α = m +
√
−f 2Dn2 for some m,n ∈ Z. A multiplication by α corresponds

to an endomorphism (a, b, c, 0) ∈M2(Z), where
a = Tr(α) = α + ᾱ = 2m
b = −1
c = N(α) = αᾱ = m2 + f 2Dn2.

We shall repeat the argument of Case I; then from the equation for c the
minimum of |α| is attained at m = 0 and n = ±1. Thus α0 = ±f

√
−D.

To find the matrix form of the endomorphism α0 we substitute in the corre-
sponding equation a = d = 0, b = −1 and c = f 2D. Thus functor F maps
the multiplier α0 = ±f

√
−D into F (α0) = ±f

√
D. In other words, formula

F (E (−D,f)
CM ) = A(D,f)

RM is true in this case as well. Since all possible cases are
exhausted, Lemma 6.1.5 is proved. �

Lemma 4.1.6 For every N ≥ 1 there exists a holomorphic map X1(N) →
X(N).

Proof. Indeed, Γ(N) is a normal subgroup of index N of the group Γ1(N);
therefore there exists a degree N holomorphic map X1(N)→ X(N). Lemma
6.1.6 follows. �

Theorem 6.1.3 follows from Lemmas 6.1.3-6.1.5 and Lemma 6.1.6 for N =
fD. �

Guide to the literature. D. Hilbert counted complex multiplication as
not only the most beautiful part of mathematics but also of entire science;
it surely does as it links complex analysis and number theory. One cannot
beat [Serre 1967] [92] for an introduction, but more comprehensive [Silverman
1994] [94], Chapter 2 is the must. Real multiplication has been introduced
in [Manin 2004] [52]. The link between the two was the subject of [66] and
the inverse functor F−1 was constructed in [71].

4.2 Ranks of the K-rational elliptic curves

We are working in the category of elliptic curves with complex multiplication;
such curves were denoted by E (−D,f)

CM , where f ≥ 1 is the conductor of an order
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in the imaginary quadratic field k = Q(
√
−D). Recall that E (−D,f)

CM
∼= E(K),

where K = k(j(E (−D,f)
CM )) is the Hilbert class field of k, see e.g. [Serre 1967]

[92]. In other words, we deal with a K-rational projective curve

E(K) = {(x, y, z) ∈ CP 2 | y2z = 4x3 − g2xz
2 − g3z

3},

where constants g2 and g3 belong to the number field K. It is well known,
that any pair of points p, p′ ∈ E(K) defines a sum p + p′ ∈ E(K) and an
inverse −p ∈ E(K) so that E(K) has the structure of an abelian group; the
next result is now a standard fact, see e.g. [Tate 1974] [103], p. 192.

Theorem 4.2.1 (Mordell-Néron) The E(K) is finitely generated abelian
group.

Definition 4.2.1 By rk (E (−D,f)
CM ) we understand the integer number equal

to the rank of abelian group E(K).

Remark 4.2.1 The rk (E (−D,f)
CM ) is an invariant of the K-isomorphism class

of E (−D,f)
CM but not of the general isomorphism class; those variations of

the rank are known as twists of E (−D,f)
CM . Of course, if two curves are K-

isomorphic, they are also isomorphic over C.

In what remains, we calculate rk (E (−D,f)
CM ) in terms of invariants of the non-

commutative torus A(D,f)
RM = F (E (−D,f)

CM ); one such invariant called an arith-
metic complexity will be introduced below.

4.2.1 Arithmetic complexity of noncommutative tori

Let θ be a quadratic irrationality, i.e. irrational root of a quadratic polyno-
mial ax2 + bx+ c = 0, where a, b, c ∈ Z; denote by Per (θ) := (a1, a2, . . . , aP )
the minimal period of continued fraction of θ taken up to a cyclic permuta-
tion. Fix P and suppose for a moment that θ is a function of its period

θ(x0, x1, . . . , xP ) = [x0, x1, . . . , xP ],

where xi ≥ 1 are integer variables; then θ(x0, . . . , xP ) ∈ Q +
√
Q, where

√
Q

are square roots of positive rationals. Consider a constraint (a restriction)
x1 = xP−1, x2 = xP−2, . . . , xP = 2x0; then θ(x0, x1, x2, . . . , x2, x1, 2x0) ∈

√
Q,

see e.g. [Perron 1954] [82], p. 79. Notice, that in this case there are 1
2
P + 1
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independent variables, if P is even and 1
2
(P + 1), if P is odd. The number of

independent variables will further decrease, if θ is square root of an integer; let
us introduce some notation. For a regular fraction [a0, a1, . . .] one associates
the linear equations 

y0 = a0y1 + y2

y1 = a1y2 + y3

y2 = a2y3 + y4
...

One can put above equations in the form{
yj = Ai−1,jyi+j + ai+jAi−2,jyi+j+1

yj+1 = Bi−1,jyi+j + ai+jBi−2,jyi+j+1,

where the polynomials Ai,j, Bi,j ∈ Z[a0, a1, . . .] are called Muir’s symbols, see
[Perron 1954] [82], p.10. The following lemma will play an important rôle.

Lemma 4.2.1 ([Perron 1954] [82], pp. 88 and 107) There exists a
square-free integer D > 0, such that

[x0, x1, . . . , x1, xP ] =

{√
D, if xP = 2x0 and D = 2, 3 mod 4,√
D+1
2

, if xP = 2x0 − 1 and D = 1 mod 4,

if and only if xP satisfies the diophantine equation

xP = mAP−2,1 − (−1)PAP−3,1BP−3,1,

for an integer m > 0; moreover, in this case D = 1
4
x2
P+mAP−3,1−(−1)PB2

P−3,1.

Let (x∗0, . . . , x
∗
P ) be a solution of the diophantine equation of Lemma 6.2.1.

By dimension, d, of this solution one understands the maximal number of
variables xi, such that for every s ∈ Z there exists a solution of the above dio-
phantine equation of the form (x0, . . . , x

∗
i+s, . . . , xP ). In geometric terms, d is

equal to dimension of a connected component through the point (x∗0, . . . , x
∗
P )

of an affine variety Vm (i.e. depending on m) defined by the diophantine
equation. For the sake of clarity, let us consider a simple example.

Example 4.2.1 ([Perron 1954] [82], p. 90) If P = 4, then Muir’s sym-
bols are: AP−3,1 = A1,1 = x1x2 + 1, BP−3,1 = B1,1 = x2 and AP−2,1 = A2,1 =
x1x2x3 +x1 +x3 = x2

1x2 +2x1, since x3 = x1. Thus, our diophantine equation
takes the form

2x0 = m(x2
1x2 + 2x1)− x2(x1x2 + 1),
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and, therefore,
√
x2

0 +m(x1x2 + 1)− x2
2 = [x0, x1, x2, x1, 2x0]. First, let us

show that the affine variety defined by the last equation is not connected.
Indeed, by Lemma 6.2.1, parameter m must be integer for all (integer) values
of x0, x1 and x2. This is not possible in general, since from our last equation
one obtains m = (2x0 + x2(x1x2 + 1))(x2

1x2 + 2x1)−1 is a rational number.
However, a restriction to x1 = 1, x2 = x0− 1 defines a (maximal) connected
component of the variety corresponding to our equation, since in this case
m = x0 is always an integer. Thus, one gets a family of solutions of of the form√

(x0 + 1)2 − 2 = [x0, 1, x0 − 1, 1, 2x0], where each solution has dimension
d = 1.

Definition 4.2.2 By an arithmetic complexity c(A(D,f)
RM ) of the noncommuta-

tive torus A(D,f)
RM one understands an integer equal to dimension d of solution

(x∗0, . . . , x
∗
P ) of diophantine equation xP = mAP−2,1 − (−1)PAP−3,1BP−3,1; if

Aθ has no real multiplication, then the arithmetic complexity is assumed to
be infinite.

4.2.2 Q-curves

For the sake of simplicity, we shall restrict our considerations to a family of
elliptic curves E (−D,f)

CM known as the Q-curves; a general result exists only in
a conjectural form so far, see Exercises, problems and conjectures.

Definition 4.2.3 ([Gross 1980] [29]) Let (E (−D,f)
CM )σ, σ ∈ Gal (k|Q) be the

Galois conjugate of the curve E (−D,f)
CM ; by a Q-curve one understands E (−D,f)

CM ,

such that there exists an isogeny between (E (−D,f)
CM )σ and E (−D,f)

CM for each
σ ∈ Gal (k|Q).

Remark 4.2.2 The curve E (−p,1)
CM is a Q-curve, whenever p ≡ 3 mod 4 is

a prime number, see [Gross 1980] [29], p. 33; we shall write P
3 mod 4

to
denote the set of all such primes.

Remark 4.2.3 The rank of E (−p,1)
CM is always divisible by 2hk, where hk is

the class number of number field k := Q(
√
−p), see [Gross 1980] [29], p. 49.

Definition 4.2.4 By a Q-rank of E (−p,1)
CM one understands the integer

rkQ(E (−p,1)
CM ) :=

1

2hk
rk (E (−p,1)

CM ).



4.2. RANKS OF THE K-RATIONAL ELLIPTIC CURVES 127

The following result links invariants of noncommutative tori and geometry
of the K-rational elliptic curves; namely, the arithmetic complexity plus one
is equal to the Q-rank of the corresponding elliptic curve.

Theorem 4.2.2 rkQ (E (−p,1)
CM ) + 1 = c(A(p,1)

RM ) whenever p ≡ 3 mod 4.

Remark 4.2.4 The general formula rk (E (−D,f)
CM ) + 1 = c(A(D,f)

RM ) for all
D ≥ 2 and f ≥ 1 is known as the rank conjecture, see Exercises, problems
and conjectures.

4.2.3 Proof of Theorem 6.2.2

Lemma 4.2.2 If [x0, x1, . . . , xk, . . . , x1, 2x0] ∈
√

P
3 mod 4

, then:

(i) P = 2k is an even number, such that:

(a) P ≡ 2 mod 4, if p ≡ 3 mod 8;

(b) P ≡ 0 mod 4, if p ≡ 7 mod 8;

(ii) either of two is true:

(a) xk = x0 (a culminating period);

(b) xk = x0 − 1 and xk−1 = 1 (an almost-culminating period).

Proof. (i) Recall that if p 6= 2 is a prime, then one and only one of the
following diophantine equations is solvable:

x2 − py2 = −1,
x2 − py2 = 2,
x2 − py2 = −2,

see e.g. [Perron 1954] [82], Satz 3.21. Since p ≡ 3 mod 4, one concludes that
x2−py2 = −1 is not solvable [Perron 1954] [82], Satz 3.23-24; this happens if
and only if P = 2k is even (for otherwise the continued fraction of

√
p would

provide a solution).
It is known, that for even periods P = 2k the convergents Ai/Bi satisfy

the diophantine equation A2
k−1 − pB2

k−1 = (−1)k 2, see [Perron 1954] [82],
p.103; thus if P ≡ 0 mod 4, the equation x2 − py2 = 2 is solvable and if
P ≡ 2 mod 4, then the equation x2 − py2 = −2 is sovable. But equation
x2 − py2 = 2 (equation x2 − py2 = −2, resp.) is solvable if and only if
p ≡ 7 mod 8 (p ≡ 3 mod 8, resp.), see [Perron 1954] [82], Satz 3.23 (Satz
3.24, resp.). Item (i) follows.
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(ii) The equation A2
k−1 − pB2

k−1 = (−1)k 2 is a special case of equation
A2
k−1−pB2

k−1 = (−1)k Qk, where Qk is the full quotient of continued fraction
[Perron 1954] [82], p.92; therefore, Qk = 2. One can now apply [Perron 1954]
[82], Satz 3.15, which says that for P = 2k and Qk = 2 the continued fraction
of
√
P

3 mod 4
is either culminating (i.e. xk = x0) or almost-culminating (i.e.

xk = x0 − 1 and xk−1 = 1). Lemma 6.2.2 follows. �

Lemma 4.2.3 If p ≡ 3 mod 8, then c(A(p,1)
RM ) = 2.

Proof. The proof proceeds by induction in period P , which is in this case
P ≡ 2 mod 4 by Lemma 6.2.2. We shall start with P = 6, since P = 2
reduces to it, see item (i) below.

(i) Let P = 6 be a culminating period; then the diophantine equation
in Definition 6.2.2 admits a general solution [x0, x1, 2x1, x0, , 2x1, x1, 2x0] =√
x2

0 + 4nx1 + 2, where x0 = n(2x2
1 + 1) + x1, see [Perron 1954] [82], p. 101.

The solution depends on two integer variables x1 and n, which is the maximal
possible number of variables in this case; therefore, the dimension of the
solution is d = 2, so as complexity of the corresponding torus. Notice that
the case P = 2 is obtained from P = 6 by restriction to n = 0; thus the
complexity for P = 2 is equal to 2.

(ii) Let P = 6 be an almost-culminating period; then the diophantine
equation in Definition 6.2.2 has a solution [3s + 1, 2, 1, 3s, 1, 2, 6s+ 2] =√

(3s+ 1)2 + 2s+ 1, where s is an integer variable [Perron 1954] [82], p.
103. We encourage the reader to verify, that this solution is a restriction of
solution (i) to x1 = −1 and n = s+ 1; thus, the dimension of our solution is
d = 2, so as the complexity of the corresponding torus.

(iii) Suppose a solution [x0, x1, . . . , xk−1, xk, xk−1, . . . , x1, 2x0] with the
(culminating or almost-culminating) period P0 ≡ 3 mod 8 has dimension
d = 2; let us show that a solution

[x0, y1, x1, . . . , xk−1, yk−1, xk, yk−1, xk−1, . . . , x1, y1, 2x0]

with period P0 + 4 has also dimension d = 2. According to [Weber 1926]
[108], if above fraction is a solution to the diophantine equation in Definition
6.2.2, then either (i) yk−1 = 2y1 or (ii) yk−1 = 2y1 + 1 and x1 = 1. We
proceed by showing that case (i) is not possible for the square roots of prime
numbers.
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Indeed, let to the contrary yk−1 = 2y1; then the following system of
equations must be compatible:

A2
k−1 − pB2

k−1 = −2,
Ak−1 = 2y1Ak−2 + Ak−3,
Bk−1 = 2y1Bk−2 +Bk−3,

where Ai, Bi are convergents and the first equation is solvable since p ≡
3 mod 8. From the first equation, both convergents Ak−1 and Bk−1 are odd
numbers. (They are both odd or even, but even excluded, since Ak−1 and
Bk−1 are relatively prime.) From the last two equations, the convergents Ak−3

and Bk−3 are also odd. Then the convergents Ak−2 and Bk−2 must be even,
since among six consequent convergents Ak−1, Bk−1, Ak−2, Bk−2, Ak−3, Bk−3

there are always two even; but this is not possible, because Ak−2 and Bk−2

are relatively prime. Thus, yk−1 6= 2y1.
Therefore the above equations give a solution of the diophantine equation

in Definition 6.2.2 if and only if yk−1 = 2y1 + 1 and x1 = 1; the dimension of
such a solution coincides with the dimension of solution

[x0, x1, . . . , xk−1, xk, xk−1, . . . , x1, 2x0],

since for two new integer variables y1 and yk−1 one gets two new constraints.
Thus, the dimension of the above solution is d = 2, so as the complexity of
the corresponding torus. Lemma 6.2.3 follows. �

Lemma 4.2.4 If p ≡ 7 mod 8, then c(A(p,1)
RM ) = 1.

Proof. The proof proceeds by induction in period P ≡ 0 mod 4, see Lemma
6.2.2; we start with P = 4.

(i) Let P = 4 be a culminating period; then equation in Definition

6.2.2 admits a solution [x0, x1, x2, x1, 2x0] =
√
x2

0 +m(x1x2 + 1)− x2
2, where

x2 = x0, see Example 6.2.1 for the details. Since the polynomial m(x0x1 + 1)
under the square root represents a prime number, we have m = 1; the lat-
ter equation is not solvable in integers x0 and x1, since m = x0(x0x1 +
3)x−1

1 (x0x1 + 2)−1. Thus, there are no solutions of the diophantine equation
in Definition 6.2.2 with the culminating period P = 4.

(ii) Let P = 4 be an almost-culminating period; then equation in Def-

inition 6.2.2 admits a solution [x0, 1, x0 − 1, 1, 2x0] =
√

(x0 + 1)2 − 2. The
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dimension of this solution was proved to be d = 1, see Example 6.2.1; thus,
the complexity of the corresponding torus is equal to 1.

(iii) Suppose a solution [x0, x1, . . . , xk−1, xk, xk−1, . . . , x1, 2x0] with the
(culminating or almost-culminating) period P0 ≡ 7 mod 8 has dimension
d = 1. It can be shown by the same argument as in Lemma 6.2.3, that for a
solution of the form

[x0, y1, x1, . . . , xk−1, yk−1, xk, yk−1, xk−1, . . . , x1, y1, 2x0]

having the period P0 + 4 the dimension remains the same, i.e. d = 1; we
leave details to the reader. Thus, complexity of the corresponding torus is
equal to 1. Lemma 6.2.4 follows. �

Lemma 4.2.5 ([Gross 1980] [29], p. 78)

rkQ (E (−p,1)
CM ) =

{
1, if p ≡ 3 mod 8
0, if p ≡ 7 mod 8.

(4.1)

Theorem 6.2.2 follows from Lemmas 6.2.3-6.2.5. �

4.2.4 Numerical examples

To illustrate Theorem 6.2.2 by numerical examples, we refer the reader to
Fig. 6.4 with all Q-curves E (−p,1)

CM for p < 100; notice, that there are infinitely
many pairwise non-isomorphic Q-curves [Gross 1980] [29].

Guide to the literature. The problem of ranks of rational elliptic curves
was raised by [Poincaré 1901] [86], p. 493. It was proved by [Mordell
1922] [56] that ranks of rational and by [Néron 1952] [60] that ranks of
the K-rational elliptic curves are always finite. The ranks of individual
elliptic curves are calculated by the method of descent, see e.g. [Cassels
1966] [14], p.205. More conceptual approach uses an analytic object called
the Hasse-Weil L-function L(Eτ , s); it was conjectured by B. J. Birch and
H. P. F. Swinnerton-Dyer that the order of zero of such a function at s = 1
is equal to the rank of Eτ , see e.g. [Tate 1974] [103], p. 198. The rank conjec-
ture involving invariants of noncommutative tori was formulated in [66] and

proved in [72] for the Q-curves E (−p,1)
CM with prime p ≡ 3 mod 4.
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p ≡ 3 mod 4 rkQ(E (−p,1)
CM )

√
p c(A(p,1)

RM )

3 1 [1, 1, 2] 2
7 0 [2, 1, 1, 1, 4] 1
11 1 [3, 3, 6] 2
19 1 [4, 2, 1, 3, 1, 2, 8] 2
23 0 [4, 1, 3, 1, 8] 1
31 0 [5, 1, 1, 3, 5, 3, 1, 1, 10] 1
43 1 [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12] 2
47 0 [6, 1, 5, 1, 12] 1
59 1 [7, 1, 2, 7, 2, 1, 14] 2
67 1 [8, 5, 2, 1, 1, 7, 1, 1, 2, 5, 16] 2
71 0 [8, 2, 2, 1, 7, 1, 2, 2, 16] 1
79 0 [8, 1, 7, 1, 16] 1
83 1 [9, 9, 18] 2

Figure 4.4: The Q-curves E (−p,1)
CM with p < 100.

4.3 Non-commutative reciprocity

In the world of L-functions each equivalence between two L-functions is called
a reciprocity, see e.g. [Gelbart 1984] [28]. In this section we shall introduce
an L-function L(ARM , s) associated to the noncommutative torus with real
multiplication and prove that any such coincides with the classical Hasse-
Weil function L(ECM , s) of an elliptic curve with complex multiplication.
The necessary and sufficient condition for such a reciprocity is the relation

ARM = F (ECM),

where F : Ell → NC-Tor is the functor introduced in Section 6.1.1; we
shall call such a relation a non-commutative reciprocity, because it involves
invariants of the non-commutative algebra ARM . The reciprocity provides us
with explicit localization formulas for the torus ARM at each prime number
p; we shall use these formulas in the sequel.

Remark 4.3.1 The reader can think of the non-commutative reciprocity as
an analog of the Eichler-Shimura theory; recall that such a theory identifies
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the L-function coming from certain cusp form (of weight two) and the Hasse-
Weil function of a rational elliptic curve, see e.g. [Knapp 1992] [44], Chapter
XI.

4.3.1 L-function of noncommutative tori

Let p be a prime number and ECM be an elliptic curve with complex mul-
tiplication; denote by ECM(Fp) localization of the ECM at the prime ideal P

over p, see e.g. [Silverman 1994] [94], p.171. We are looking for a proper
concept of localization of the algebra ARM = F (ECM) corresponding to the
localization ECM(Fp) of elliptic curve ECM at prime p. To attain the goal, re-
call that the cardinals |ECM(Fp)| generate the Hasse-Weil function L(ECM , s)
of the curve ECM , see e.g. [Silverman 1994] [94], p.172; thus, we have to
define an L-function of the noncommutative torus ARM = F (ECM) equal to
the Hasse-Weil function of the curve ECM .

Definition 4.3.1 If ARM is a noncommutative torus with real multiplica-
tion, consider an integer matrix

A =
(
a1 1
1 0

)
. . .
(
ak 1
1 0

)
,

where (a1, . . . , ak) is the minimal period of continued fraction of a quadratic
irrationality θ corresponding to ARM . For each prime p consider an integer
matrix

Lp :=
(
tr (Aπ(p)) p
−1 0

)
,

where tr (•) is the trace of a matrix and π(n) is an integer-valued function
defined in the Supplement 6.3.3. By a local zeta function of torus ARM one
understands the analytic function

ζp(ARM , z) := exp

( ∞∑
n=1

|K0(Oεn)|
n

zn
)
, εn =

{
Lnp , if p - tr2(A)− 4
1− αn, if p | tr2(A)− 4,

where α ∈ {−1, 0, 1}, Oεn = ARM oεn Z is the Cuntz-Krieger algebra and
K0(•) its K0-group, see Section 3.7. By an L-function of the noncommutative
torus ARM we understand the analytic function

L(ARM , s) :=
∏
p

ζp(ARM , p−s), s ∈ C,

where p runs through the set of all prime numbers.
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Theorem 4.3.1 The following conditions are equivalent:

(i) ARM = F (ECM);

(ii) {
L(ARM , s) ≡ L(ECM , s),
K0(Oεn) ∼= ECM(Fpn),

where F : Ell→NC-Tor is the functor defined in Section 6.1.1 and L(ECM , s)
is the Hasse-Weil L-function of elliptic curve ECM .

Remark 4.3.2 (Non-commutative localization) Theorem 6.3.1 implies
a localization formula for the torusARM at a prime p, since the Cuntz-Krieger
algebra Oεn ∼= ARM oεn Z can be viewed as a non-commutative coordinate
ring of elliptic curve ECM(Fpn). Thus, to localize a non-commutative ring one
takes its crossed product rather than taking its prime (or maximal) ideal as
prescribed by the familiar formula for commutative rings.

4.3.2 Proof of Theorem 6.3.1

Let p be such, that ECM has a good reduction at P; the corresponding local
zeta function ζp(ECM , z) = (1 − tr (ψE(K)(P))z + pz2)−1, where ψE(K) is the
Grössencharacter on K and tr is the trace of algebraic number. We have to
prove, that ζp(ECM , z) = ζp(ARM , z) := (1 − tr (Aπ(p))z + pz2)−1; the last
equality is a consequence of definition of ζp(ARM , z). Let ECM ∼= C/LCM ,
where LCM = Z+Zτ is a lattice in the complex plane [Silverman 1994] [101],
pp. 95-96; let K0(ARM) ∼= mRM , where mRM = Z+Zθ is a pseudo-lattice in R,
see [Manin 2004] [52]. Roughly speaking, we construct an invertible element
(a unit) u of the ring End (mRM) attached to pseudo-lattice mRM = F (LCM),
such that

tr (ψE(K)(P)) = tr (u) = tr (Aπ(p)).

The latter will be achieved with the help of an explicit formula connecting
endomorphisms of lattice LCM with such of the pseudo-lattice mRM(

a b
c d

)
∈ End (LCM) 7−→

(
a b
−c −d

)
∈ End (mRM),

see proof of Lemma 6.1.5 for the details. We shall split the proof into a series
of lemmas, starting with the following elementary lemma.
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Lemma 4.3.1 Let A = (a, b, c, d) be an integer matrix with ad− bc 6= 0 and
b = 1. Then A is similar to the matrix (a+ d, 1, c− ad, 0).

Proof. Indeed, take a matrix (1, 0, d, 1) ∈ SL2(Z). The matrix realizes the
similarity, i.e. (

1 0
−d 1

)(
a 1
c d

)(
1 0
d 1

)
=
(
a+ d 1
c− ad 0

)
.

Lemma 6.3.1 follows. �

Lemma 4.3.2 The matrix A = (a+d, 1, c−ad, 0) is similar to its transpose
At = (a+ d, c− ad, 1, 0).

Proof. We shall use the following criterion: the (integer) matrices A and B
are similar, if and only if the characteristic matrices xI−A and xI−B have
the same Smith normal form. The calculation for the matrix xI − A gives(

x− a− d −1
ad− c x

)
∼
(

x− a− d −1
x2 − (a+ d)x+ ad− c 0

)
∼

∼
(

1 0
0 x2 − (a+ d)x+ ad− c

)
,

where ∼ are the elementary operations between the rows (columns) of the
matrix. Similarly, a calculation for the matrix xI − At gives(

x− a− d ad− c
−1 x

)
∼
(
x− a− d x2 − (a+ d)x+ ad− c
−1 0

)
∼

∼
(

1 0
0 x2 − (a+ d)x+ ad− c

)
.

Thus, (xI − A) ∼ (xI − At) and Lemma 6.3.2 follows. �

Corollary 4.3.1 The matrices (a, 1, c, d) and (a+d, c−ad, 1, 0) are similar.

Proof. The Corollary 6.3.1 follows from Lemmas 6.3.1–6.3.2. �

Recall that if E (−D,f)
CM is an elliptic curve with complex multiplication by

order R = Z+ fOk in imaginary quadratic field k = Q(
√
−D), then A(D,f)

RM =

F (E (−D,f)
CM ) is the noncommutative torus with real multiplication by the order

R = Z + fOk in real quadratic field k = Q(
√
D).
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Lemma 4.3.3 Each α ∈ R goes under F into an ω ∈ R, such that tr (α) =
tr (ω), where tr (x) = x+ x̄ is the trace of an algebraic number x.

Proof. Recall that each α ∈ R can be written in a matrix form for a given
base {ω1, ω2} of the lattice LCM . Namely,{

αω1 = aω1 + bω2

αω2 = cω1 + dω2,

where (a, b, c, d) is an integer matrix with ad−bc 6= 0. and tr (α) = a+d. The
first equation implies α = a + bτ ; since both α and τ are algebraic integers,
one concludes that b = 1. In view of Corollary 6.3.1, in a base {ω′1, ω′2},
the α has a matrix form (a + d, c − ad, 1, 0). To calculate a real quadratic
ω ∈ R corresponding to α, recall an explicit formula obtained in the proof of
Lemma 6.1.5; namely, each endomorphism (a, b, c, d) of the lattice LCM gives
rise to the endomorphism (a, b,−c,−d) of pseudo-lattice mRM = F (LCM).
Thus, one gets a map:

F :
(
a+ d c− ad

1 0

)
7−→

(
a+ d c− ad
−1 0

)
.

In other words, for a given base {λ1, λ2} of the pseudo-lattice Z+Zθ one can
write {

ωλ1 = (a+ d)λ1 + (c− ad)λ2

ωλ2 = −λ1.

It is easy to verify, that ω is a real quadratic integer with tr (ω) = a + d.
The latter coincides with the tr (α). Lemma 6.3.3 follows. �

Let ω ∈ R be an endomorphism of the pseudo-lattice mRM = Z + Zθ of
degree deg (ω) := ωω̄ = n. The endomorphism maps mRM to a sub-lattice
m0 ⊂ mRM of index n; any such has the form m0 = Z+(nθ)Z, see e.g. [Borevich
& Shafarevich 1966] [11], p.131. Moreover, ω generates an automorphism, u,
of the pseudo-lattice m0; the traces of ω and u are related.

Lemma 4.3.4 tr (u) = tr (ω).

Proof. Let us calculate the action of endomorphism ω = (a+d, c−ad,−1, 0)
on the pseudo-lattice m0 = Z + (nθ)Z. Since deg (ω) = c− ad = n, one gets(

a+ d n
−1 0

)(
1
θ

)
=
(
a+ d 1
−1 0

)(
1
nθ

)
,
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where {1, θ} and {1, nθ} are bases of the pseudo-lattices mRM and m0, re-
spectively, and u = (a + d, 1,−1, 0) is an automorphism of m0. It is easy to
see, that tr (u) = a+ d = tr (ω). Lemma 6.3.4 follows. �

Remark 4.3.3 (Second proof of Lemma 6.3.4) There exists a canonical
proof of Lemma 6.3.4 based on the notion of a subshift of finite type [Wagoner
1999] [106]; we shall give such a proof below, since it generalizes to pseudo-
lattices of any rank. Consider a dimension group ([Blackadar 1986] [10], p.55)
corresponding to the endomorphism ω of lattice Z2, i.e. the limit G(ω):

Z2 ω→ Z2 ω→ Z2 ω→ . . .

It is known that G(ω) ∼= Z[ 1
λ
], where λ > 1 is the Perron-Frobenius eigenvalue

of ω. We shall write ω̂ to denote the shift automorphism of dimension group

G(ω), ([Effros 1981] [21], p. 37) and ζω(t) = exp
(∑∞

k=1
tr (ωk)

k
tk
)

and ζω̂(t) =

exp
(∑∞

k=1
tr (ω̂k)

k
tk
)

the corresponding Artin-Mazur zeta functions [106], p.
273. Since the Artin-Mazur zeta function of the subshift of finite type is an
invariant of shift equivalence, we conclude that ζω(t) ≡ ζω̂(t); in particular,
tr (ω) = tr (ω̂). Hence the matrix form of ω̂ = (a + d, 1,−1, 0) = u and,
therefore, tr (u) = tr (ω). Lemma 6.3.4 is proved by a different method. �

Lemma 4.3.5 The automorphism u is a unit of the ring R0 := End (m0);
it is the fundamental unit of R0, whenever n = p is a prime number and
tr (u) = tr (ψE(K)(P)), where (ψE(K)(P)) is the Grössencharacter associated
to prime p, see Supplement 6.3.3.

Proof. (i) Since deg (u) = 1, the element u is invertible and, therefore, a unit
of the ring R0; in general, unit u is not the fundamental unit of R0, since it
is possible that u = εa, where ε is another unit of R0 and a ≥ 1.

(ii) When n = p is a prime number, then we let ψE(K)(P) be the corre-
sponding Grössencharacter on K attached to an elliptic curve ECM ∼= E(K),
see Supplement 6.3.3 for the notation. The Grössencharacter can be identified
with a complex number α ∈ k of the imaginary quadratic field k associated
to the complex multiplication. Let tr (u) = tr (ψE(K)(P)) and suppose to
the contrary, that u is not the fundamental unit of R0, i.e. u = εa for a unit
ε ∈ R0 and an integer a ≥ 1. Then there exists a Grössencharacter ψ′E(K)(P),
such that

tr (ψ′E(K)(P)) < tr (ψE(K)(P)).
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Since tr (ψE(K)(P)) = qP + 1 − #Ẽ(FP), one concludes that #Ẽ(F′P) >

#Ẽ(FP); in other words, there exists a non-trivial extension F′P ⊃ FP of the
finite field FP. The latter is impossible, since any extension of FP has the
form FPn for some n ≥ 1; thus a = 1, i.e. unit u is the fundamental unit of
the ring R0. Lemma 6.3.5 is proved. �

Lemma 4.3.6 tr (ψE(K)(P)) = tr (Aπ(p)).

Proof. Recall that the fundamental unit of the order R0 is given by the
formula εp = επ(p), where ε is the fundamental unit of the ring Ok and π(p)
an integer number, see Hasse’s Lemma 6.3.10 of Supplement 6.3.3. On the
other hand, matrix A =

∏n
i=1(ai, 1, 1, 0), where θ = (a1, . . . , an) is a purely

periodic continued fraction. Therefore

A
(

1
θ

)
= ε

(
1
θ

)
,

where ε > 1 is the fundamental unit of the real quadratic field k = Q(θ).
In other words, A is the matrix form of the fundamental unit ε. Therefore
the matrix form of the fundamental unit εp = επ(p) of R0 is given by matrix
Aπ(p). One can apply Lemma 6.3.5 and get

tr (ψE(K)(P)) = tr (εp) = tr (Aπ(p)).

Lemma 6.3.6 follows. �

One can finish the proof of Theorem 6.3.1 by comparing the local L-series
of the Hasse-Weil L-function for the ECM with that of the local zeta for the
ARM . The local L-series for ECM are LP(E(K), T ) = 1− aPT + qPT

2 if the
ECM has a good reduction at P and LP(E(K), T ) = 1− αT otherwise; here

qP = NK
Q P = #FP = p,

aP = qP + 1−#Ẽ(FP) = tr (ψE(K)(P)),
α ∈ {−1, 0, 1}.

Therefore,

LP(ECM , T ) =
{

1− tr (ψE(K)(P))T + pT 2, for good reduction
1− αT, for bad reduction.
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Lemma 4.3.7 For ARM = F (ECM), it holds

ζ−1
p (ARM , T ) = 1− tr (Aπ(p))T + pT 2,

whenever p - tr2(A)− 4.

Proof. By the formula K0(OB) = Z2/(I −Bt)Z2, one gets

|K0(OLnp )| =
∣∣∣∣∣ Z2

(I − (Lnp )t)Z2

∣∣∣∣∣ = |det(I − (Lnp )t)| = |Fix (Lnp )|,

where Fix (Lnp ) is the set of (geometric) fixed points of the endomorphism
Lnp : Z2 → Z2. Thus,

ζp(ARM , z) = exp

( ∞∑
n=1

|Fix (Lnp )|
n

zn
)
, z ∈ C.

But the latter series is an Artin-Mazur zeta function of the endomorphism
Lp; it converges to a rational function det−1(I − zLp), see e.g. [Hartshorn
1977] [35], p.455. Thus, ζp(ARM , z) = det−1(I − zLp). The substitution
Lp = (tr (Aπ(p)), p,−1, 0) gives us

det (I − zLp) = det
(

1− tr (Aπ(p))z −pz
z 1

)
= 1− tr (Aπ(p))z + pz2.

Put z = T and get ζp(ARM , T ) = (1 − tr (Aπ(p))T + pT 2)−1, which is a
conclusion of Lemma 6.3.7. �

Lemma 4.3.8 For ARM = F (ECM), it holds

ζ−1
p (ARM , T ) = 1− αT,

whenever p | tr2(A)− 4.

Proof. Indeed, K0(O1−αn) = Z/(1−1+αn)Z = Z/αnZ. Thus, |K0(O1−αn)| =
det (αn) = αn. By the definition,

ζp(ARM , z) = exp

( ∞∑
n=1

αn

n
zn
)

= exp

( ∞∑
n=1

(αz)n

n

)
=

1

1− αz
.

The substitution z = T gives the conclusion of Lemma 6.3.8. �
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Lemma 4.3.9 Let P ⊂ K be a prime ideal over p; then ECM = E(K) has a
bad reduction at P if and only if p | tr2(A)− 4.

Proof. Let k be a field of complex multiplication of the ECM ; its discrim-
inant we shall write as ∆k < 0. It is known, that whenever p | ∆k, the
ECM has a bad reduction at the prime ideal P over p. On the other hand,
the explicit formula for functor F applied to the matrix Lp gives us F :
(tr (Aπ(p)), p,−1, 0) 7→ (tr (Aπ(p)), p, 1, 0), see proof of Lemma 6.1.5. The
characteristic polynomials of the above matrices are x2− tr (Aπ(p))x+ p and
x2− tr (Aπ(p))x− p, respectively. They generate an imaginary (resp., a real)
quadratic field k (resp., k) with the discriminant ∆k = tr2(Aπ(p)) − 4p < 0
(resp., ∆k = tr2(Aπ(p)) + 4p > 0). Thus, ∆k − ∆k = 8p. It is easy to see,
that p | ∆k if and only if p | ∆k. It remains to express the discriminant
∆k in terms of the matrix A. Since the characteristic polynomial for A is
x2 − tr (A)x+ 1, it follows that ∆k = tr2(A)− 4. Lemma 6.3.9 follows. �

Let us prove that the first part of Theorem 6.3.1 implies the first claim of
its second part; notice, that the critical piece of information is provided by
Lemma 6.3.6, which says that tr (ψE(K)(P)) = tr (Aπ(p)). Thus, Lemmas
6.3.7–6.3.9 imply that LP(ECM , T ) ≡ ζ−1

p (ARM , T ). The first claim of part
(ii) of Theorem 6.3.1 follows.

A. Let p be a good prime. Let us prove the second claim of part (ii) of Theo-
rem 6.3.1 in the case n = 1. From the left side: K0(ARM oLp Z) ∼= K0(OLp) ∼=
Z2/(I − Ltp)Z

2, where Lp = (tr (Aπ(p)), p,−1, 0). To calculate the abelian
group Z2/(I − Ltp)Z2, we shall use a reduction of the matrix I − Ltp to the
Smith normal form:

I − Ltp =
(

1− tr (Aπ(p)) 1
−p 1

)
∼
(

1 + p− tr (Aπ(p)) 0
−p 1

)
∼

∼
(

1 0
0 1 + p− tr (Aπ(p))

)
.

Therefore, K0(OLp) ∼= Z1+p−tr (Aπ(p)). From the right side, the ECM(FP) is an
elliptic curve over the field of characteristic p. Recall, that the chord and
tangent law turns the ECM(FP) into a finite abelian group. The group is cyclic
and has the order 1+qP−aP. But qP = p and aP = tr (ψE(K)(P)) = tr (Aπ(p)),
see Lemma 6.3.6. Thus, ECM(FP) ∼= Z1+p−tr (Aπ(p)); therefore K0(OLp) ∼=
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ECM(Fp). The general case n ≥ 1 is treated likewise. Repeating the argument
of Lemmas 6.3.1–6.3.2, it follows that

Lnp =
(
tr (Anπ(p)) pn

−1 0

)
.

Then one gets K0(OLnp ) ∼= Z1+pn−tr (Anπ(p)) on the left side. From the right
side, |ECM(Fpn)| = 1+pn− tr (ψnE(K)(P)); but a repetition of the argument of

Lemma 6.3.6 yields us tr (ψnE(K)(P)) = tr (Anπ(p)). Comparing the left and
right sides, one gets that K0(OLnp ) ∼= ECM(Fpn). This argument finishes the
proof of the second claim of part (ii) of Theorem 6.3.1 for the good primes.

B. Let p be a bad prime. From the proof of Lemma 6.3.8, one gets for the left
side K0(Oεn) ∼= Zαn . From the right side, it holds |ECM(Fpn)| = 1 + qP − aP,
where qP = 0 and aP = tr (εn) = εn. Thus, |ECM(Fpn)| = 1− εn = 1− (1−
αn) = αn. Comparing the left and right sides, we conclude that K0(Oεn) ∼=
ECM(Fpn) at the bad primes.

All cases are exhausted; thus part (i) of Theorem 6.3.1 implies its part
(ii). The proof of converse consists in a step by step claims similar to just
proved and is left to the reader. Theorem 6.3.1 is proved. �

4.3.3 Supplement: Grössencharacters, units and π(n)

We shall briefly review the well known facts about complex multiplication
and units in subrings of the ring of integers in algebraic number fields; for
the detailed account, we refer the reader to [Silverman 1994] [94] and [Hasse
1950] [37], respectively.

Grössencharacters

Let ECM ∼= E(K) be elliptic curve with complex multiplication and K ∼=
k(j(ECM)) the Hilbert class field attached to ECM . For each prime ideal P

of K, let FP be a residue field of K at P and qP = NK
Q P = #FP, where NK

Q
is the norm of the ideal P. If E(K) has a good reduction at P, one defines
aP = qP +1−#Ẽ(FP), where Ẽ(FP) is a reduction of E(K) modulo the prime
ideal P. If E(K) has good reduction at P, the polynomial

LP(E(K), T ) = 1− aPT + qPT
2,
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is called the local L-series of E(K) at P. If E(K) has bad reduction at P,
the local L-series are LP(E(K), T ) = 1 − T (resp. LP(E(K), T ) = 1 + T ;
LP(E(K), T ) = 1) if E(K) has split multiplicative reduction at P (if E(K)
has non-split multiplicative reduction at P; if E(K) has additive reduction
at P).

Definition 4.3.2 By the Hasse-Weil L-function of elliptic curve E(K) one
understands the global L-series defined by the Euler product

L(E(K), s) =
∏
P

[LP(E(K), q−sP )]−1.

Definition 4.3.3 If A∗K be the idele group of the number field K, then by a
Grössencharacter on K one understands a continuous homomorphism

ψ : A∗K −→ C∗

with the property ψ(K∗) = 1; the asterisk denotes the group of invertible
elements of the corresponding ring. The Hecke L-series attached to the
Grössencharacter ψ : A∗K → C∗ is defined by the Euler product

L(s, ψ) =
∏
P

(1− ψ(P)q−sP )−1,

where the product is taken over all prime ideals of K.

Remark 4.3.4 For a prime ideal P of field K at which E(K) has good
reduction and Ẽ(FP) being the reduction of E(K) at P, we let

φP : Ẽ(FP) −→ Ẽ(FP)

denote the associated Frobenius map; if ψE(K) : A∗K → k∗ is the Grössen-
character attached to the ECM , then the diagram in Fig. 6.5 is known to
be commutative, see [Silverman 1994] [94], p.174. In particular, ψE(K)(P) is
an endomorphism of the E(K) given by the complex number αE(K)(P) ∈ R,
where R = Z + fOk is an order in imaginary quadratic field k . If ψE(K)(P)
is the conjugate Grössencharacter viewed as a complex number, then the
Deuring Theorem says that the Hasse-Weil L-function of the E(K) is related
to the Hecke L-series of the ψE(K) by the formula

L(E(K), s) ≡ L(s, ψE(K))L(s, ψE(K)).
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? ?
-

-

Ẽ(FP) Ẽ(FP)

E(K) E(K)

φP

ψE(K)(P)

Figure 4.5: The Grössencharacter ψE(K)(P).

Units and function π(n)

Let k = Q(
√
D) be a real quadratic number field and Ok its ring of integers.

For rational integer n ≥ 1 we shall write Rn ⊆ Ok to denote an order (i.e. a
subring containing 1) of Ok. The order Rn has a basis {1, nω}, where

ω =

{ √
D+1
2

if D ≡ 1 mod 4,√
D if D ≡ 2, 3 mod 4.

In other words, Rn = Z+(nω)Z. It is clear, that R1 = Ok and the fundamental
unit of Ok we shall denote by ε. Each Rn has its own fundamental unit, which
we shall write as εn; notice that εn 6= ε unless n = 1. There exists the well-
known formula, which relates εn to the fundamental unit ε, see e.g. [Hasse
1950] [37], p.297. Denote by Gn := U(Ok/nOk) the multiplicative group
of invertible elements (units) of the residue ring Ok/nOk; clearly, all units
of Ok map (under the natural mod n homomorphism) to Gn. Likewise let
gn := U(Rn/nRn) be the group of units of the residue ring Rn/nRn; it is not
hard to prove ([Hasse 1950] [37], p.296), that gn

∼= U(Z/nZ) the “rational”
unit group of the residue ring Z/nZ. Similarly, all units of the order Rn map
to gn. Since units of Rn are also units of Ok (but not vice versa), gn is a
subgroup of Gn; in particular, |Gn|/|gn| is an integer number and |gn| = ϕ(n),
where ϕ(n) is the Euler totient function. In general, the following formula is
true

|Gn|
|gn|

= n
∏
pi|n

(
1−

(
D

pi

)
1

pi

)
,

where
(
D
pi

)
is the Legendre symbol, see [Hasse 1950] [37], p. 351.
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Definition 4.3.4 By the function π(n) one understands the least integer
number dividing |Gn|/|gn| and such that επ(n) is a unit of Rn, i.e. belongs to
gn.

Lemma 4.3.10 ([Hasse 1950] [37], p.298) εn = επ(n).

Remark 4.3.5 Lemma 6.3.10 asserts existence of the number π(n) as one
of the divisors of |Gn|/|gn|, yet no analytic formula for π(n) is known; it
would be rather interesting to have such a formula.

Remark 4.3.6 In the special case n = p is a prime number, the following
formula is true

|Gp|
|gp|

= p−
(
D

p

)
.

Guide to the literature. The Hasse-Weil L-functions L(E(K), s) of the
K-rational elliptic curves are covered in the textbooks by [Husemöller 1986]
[42], [Knapp 1992] [44] and [Silverman 1994] [94]; see also the survey [Tate
1974] [103]. The reciprocity of L(E(K), s) with an L-function obtained from
certain cusp form of weight two is subject of the Eichler-Shimura theory,
see e.g. [Knapp 1992] [44], Chapter XI; such a reciprocity coupled with the
Shimura-Taniyama Conjecture was critical to solution of the Fermat Last
Theorem by A. Wiles. The non-commutative reciprocity of L(E(K), s) with
an L-function obtained from a noncommutative torus with real multiplication
was proved in [77].

4.4 Langlands program for noncommutative

tori

We dealt with functors on the arithmetic schemes X so far. In this section
we shall define a functor F on the category of all finite Galois extensions
E of the field Q; the functor ranges in a category of the even-dimensional
noncommutative tori with real multiplication. For such a torus, A2n

RM , we
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construct an L-function L(A2n
RM , s); it is conjectured that for each n ≥ 1 and

each irreducible representation

σ : Gal (E|Q) −→ GLn(C),

the corresponding Artin L-function L(σ, s) coincides with L(A2n
RM , s), when-

ever A2n
RM = F (E). Our main result Theorem 6.4.1 says that the conjecture

is true for n = 1 (resp., n = 0) and E being the Hilbert class field of an
imaginary quadratic field k (resp., the rational field Q) . Thus we are dealing
with an analog of the Langlands program, where the “automorphic cuspi-
dal representations of group GLn” are replaced by the noncommutative tori
A2n
RM , see [Gelbart 1984] [28] for an introduction.

4.4.1 L(A2n
RM , s)

The higher-dimensional noncommutative tori were introduced in Section
3.4.1; let us recall some notation. Let Θ = (θij) be a real skew symmet-
ric matrix of even dimension 2n; by A2n

Θ we shall mean the even-dimensional
noncommutaive torus defined by matrix Θ, i.e. a universal C∗-algebra on
the unitary generators u1, . . . , u2n and relations

ujui = e2πiθijuiuj, 1 ≤ i, j ≤ 2n.

It is known, that by the orthogonal linear transformations every (generic)
real even-dimensional skew symmetric matrix can be brought to the normal
form

Θ0 =


0 θ1

−θ1 0
. . .

0 θn
−θn 0


where θi > 0 are linearly independent over Q. We shall consider the noncom-
mutative tori A2n

Θ0
, given by matrix in the above normal form; we refer to the

family as a normal family. Recall that K0(A2n
Θ0

) ∼= Z22n−1
and the positive

cone K+
0 (A2n

Θ0
) is given by the pseudo-lattice

Z + θ1Z + . . .+ θnZ +
22n−1∑
i=n+1

pi(θ)Z ⊂ R,

where pi(θ) ∈ Z[1, θ1, . . . , θn], see e.g. [Elliott 1982] [23].
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Definition 4.4.1 The noncommutative torus A2n
Θ0

is said to have real mul-
tiplication if the endomorphism ring End (K+

0 (A2n
Θ0

)) is non-trivial, i.e. ex-
ceeds the ring Z; we shall denote such a torus by A2n

RM .

Remark 4.4.1 It is easy to see that if A2n
Θ0

has real multiplication, then θi
are algebraic integers; we leave the proof to the reader. (Hint: each endo-

morphism of K+
0 (A2n

Θ0
) ∼= Z+θ1Z+ . . .+θnZ+

∑22n−1

i=n+1 pi(θ)Z is multiplication
by a real number; thus the endomorphism is described by an integer matrix,
which defines a polynomial equation involving θi.)

Remark 4.4.2 Remark 6.4.1 says that θi are algebraic integers whenever
A2n

Θ0
has real multiplication; so will be the values of polynomials pi(θ) in

this case. Since such values belong to the number field Q(θ1, . . . , θn), one
concludes that

K+
0 (A2n

RM) ∼= Z + θ1Z + . . .+ θnZ ⊂ R.

Let A ∈ GLn+1(Z) be a positive matrix such that

A


1
θ1
...
θn

 = λA


1
θ1
...
θn

 ,

where λA is the Perron-Frobenius eigenvalue of A; in other words, A is a
matrix corresponding to the shift automorphism σA of K+

0 (A2n
RM) regarded

as a stationary dimension group, see Definition 3.5.4. For each prime number
p, consider the characteristic polynomial of matrix Aπ(p), where π(n) is the
integer-valued function introduced in Section 6.3.3; in other words,

Char(Aπ(p)) := det(xI − Aπ(p)) = xn+1 − a1x
n − . . .− anx− 1 ∈ Z[x].

Definition 4.4.2 By a local zeta function of the noncommutative torus A2n
RM

we understand the function

ζp(A2n
RM , z) :=

1

1− a1z + a2z2 − . . .− anzn + pzn+1
, z ∈ C.
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Remark 4.4.3 To explain the structure of ζp(A2n
RM , z), consider the com-

panion matrix

J =


a1 1 . . . 0 0
a2 0 1 0 0
...

...
. . .

...
...

an 0 . . . 0 1
1 0 . . . 0 0


of polynomial Char (Aπ(p)) = xn+1− a1x

n− . . .− anx− 1, i.e. the matrix J
such that det(xI−J) = xn+1−a1x

n− . . .−anx−1. It is not hard to see, that
the non-negative integer matrix J corresponds to the shift automorphism of
a stationary dimension group

Zn+1 Jp−→ Zn+1 Jp−→ Zn+1 Jp−→ . . .

where

Jp =


a1 1 . . . 0 0
a2 0 1 0 0
...

...
. . .

...
...

an 0 . . . 0 1
p 0 . . . 0 0

 .

On the other hand, the companion matrix of polynomial Char (σ(Frp)) =
det(xI − σ(Frp)) = xn+1 − a1x

n + . . .− anx+ p has the form

Wp =


a1 1 . . . 0 0
−a2 0 1 0 0

...
...

. . .
...

...
an 0 . . . 0 1
−p 0 . . . 0 0

 ,

see Section 6.4.3 for the meaning of σ(Frp). Thus the action of functor F :
Alg-Num→ NC-Tor on the corresponding companion matrices Wp and Jp
is given by the formula

F :


a1 1 . . . 0 0
−a2 0 1 0 0

...
...

. . .
...

...
an 0 . . . 0 1
−p 0 . . . 0 0

 7→

a1 1 . . . 0 0
a2 0 1 0 0
...

...
. . .

...
...

an 0 . . . 0 1
p 0 . . . 0 0

 .
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It remains to compare our formula for ζp(A2n
RM , z) with the well-known for-

mula for the Artin zeta function

ζp(σn, z) =
1

det(In − σn(Frp)z)
,

where z = x−1, see [Gelbart 1984] [28], p. 181.

Definition 4.4.3 By an L-function of the noncommutative torus A2n
RM one

understand the product

L(A2n
RM , s) :=

∏
p

ζp(A2n
RM , p

−s), s ∈ C,

over all but a finite number of primes p.

Conjecture 4.4.1 (Langlands conjecture for noncommutative tori)
For each finite extension E of the field of rational numbers Q with the Galois
group Gal (E|Q) and each irreducible representation

σn+1 : Gal (E|Q)→ GLn+1(C),

there exists a 2n-dimensional noncommutative torus with real multiplication
A2n
RM , such that

L(σn+1, s) ≡ L(A2n
RM , s),

where L(σn+1, s) is the Artin L-function attached to representation σn+1 and
L(A2n

RM , s) is the L-function of the noncommutative torus A2n
RM .

Remark 4.4.4 Roughly speaking, Conjecture 6.4.1 says that the Galois
extensions (abelian or not) of the field Q are in a one-to-one correspondence
with the even-dimensional noncommutative tori with real multiplication. In
the context of the Langlands program, the noncommutative torus A2n

RM can
be regarded as an analog of the “automorphic cuspidal representation πσn+1

of the group GL(n + 1)”. This appearance of A2n
RM is not random because

the noncommutative tori classify the irreducible infinite-dimensional repre-
sentations of the Lie group GL(n+1), see the remarkable paper by [Poguntke
1983] [85]; such representations are known to be at the heart of the Langlands
philosophy, see [Gelbart 1984] [28] .

Theorem 4.4.1 Conjecture 6.4.1 is true for n = 1 (resp., n = 0) and E
abelian extension of an imaginary quadratic field k (resp., the rational field
Q).



148 CHAPTER 4. NUMBER THEORY

4.4.2 Proof of Theorem 6.4.1

Case n = 1

Roughly speaking, this case is equivalent to Theorem 6.3.1; it was a model
example for Conjecture 6.4.1. Using the Grössencharacters, one can iden-
tify the Artin L-function for abelian extensions of the imaginary quadratic
fields k with the Hasse-Weil L-function L(ECM , s), where ECM is an ellip-
tic curve with complex multiplication by k; but Theorem 6.3.1 says that
L(ECM , s) ≡ L(ARM , s), where L(ARM , s) is the special case n = 1 of our
function L(A2n

RM , s).
To give the details, let k be an imaginary quadratic field and let ECM

be an elliptic curve with complex multiplication by (an order) in k. By the
theory of complex multiplication, the Hilbert class field K of k is given by
the j-invariant of ECM , i.e.

K ∼= k(j(ECM)),

and Gal (K|k) ∼= Cl (k), where Cl (k) is the ideal class group of k; moreover,

ECM ∼= E(K),

see e.g. [Silverman 1994] [94]. Recall that functor F : Ell → NC-Tor maps
ECM to a two-dimensional noncommutive torus with real multiplicationA2

RM .
To calculate L(A2

RM , s), let A ∈ GL2(Z) be positive matrix corresponding the
shift automorphism of A2

RM , i.e.

A
(

1
θ

)
= λA

(
1
θ

)
,

where θ is a quadratic irrationality and λA the Perron-Frobenius eigenvalue
of A. If p is a prime, then the characteristic polynomial of matrix Aπ(p) can
be written as Char Aπ(p) = x2 − tr (Aπ(p))x − 1; therefore, the local zeta
function of torus A2

RM has the form

ζp(A2
RM , z) =

1

1− tr (Aπ(p))z + pz2
.

On the other hand, Lemma 6.3.6 says that

tr (Aπ(p)) = tr (ψE(K)(P)),
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where ψE(K) is the Grössencharacter on K and P the prime ideal of K over
p. But we know that the local zeta function of ECM has the form

ζp(ECM , z) =
1

1− tr (ψE(K)(P))z + pz2
;

thus for each prime p it holds ζp(A2
RM , z) = ζp(ECM , z). Leaving aside the

bad primes, one derives the following important equality of the L-functions

L(A2
RM , s) ≡ L(ECM , s),

where L(ECM , s) is the Hasse-Weil L-function of elliptic curve ECM . Case
n = 1 of Theorem 6.4.1 becomes an implication of the following lemma.

Lemma 4.4.1 L(ECM , s) ≡ L(σ2, s), where L(σ2, s) the Artin L-function
for an irreducible representation σ2 : Gal (K|k)→ GL2(C).

Proof. The Deuring theorem says that

L(ECM , s) = L(ψK , s)L(ψK , s),

where L(ψK , s) is the Hecke L-series attached to the Grössencharacter ψ :
A∗K → C∗; here A∗K denotes the adele ring of the field K and the bar means
a complex conjugation, see e.g. [Silverman 1994] [94], p.175. Because our
elliptic curve has complex multiplication, the group Gal (K|k) is abelian;
one can apply the result of [Knapp 1997] [45], Theorem 5.1, which says that
the Hecke L-series L(σ1 ◦ θK|k, s) equals the Artin L-function L(σ1, s), where
ψK = σ ◦ θK|k is the Grössencharacter and θK|k : A∗K → Gal (K|k) the
canonical homomorphism. Thus one gets

L(ECM , s) ≡ L(σ1, s)L(σ1, s),

where σ1 : Gal (K|k) → C means a (complex) conjugate representation
of the Galois group. Consider the local factors of the Artin L-functions
L(σ1, s) and L(σ1, s); it is immediate, that they are (1 − σ1(Frp)p

−s)−1

and (1 − σ1(Frp)p
−s)−1, respectively. Let us consider a representation σ2 :

Gal (K|k)→ GL2(C), such that

σ2(Frp) =
(
σ1(Frp) 0

0 σ1(Frp)

)
.
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It can be verified, that det−1(I2 − σ2(Frp)p
−s) = (1 − σ1(Frp)p

−s)−1(1 −
σ1(Frp)p

−s)−1, i.e. L(σ2, s) = L(σ1, s)L(σ1, s). Lemma 6.4.1 follows. �

From lemma 6.4.1 and L(A2
RM , s) ≡ L(ECM , s), one gets

L(A2
RM , s) ≡ L(σ2, s)

for an irreducible representation σ2 : Gal (K|k) → GL2(C). It remains to
notice that L(σ2, s) = L(σ′2, s), where σ′2 : Gal (K|Q) → GL2(C), see e.g.
[Artin 1924] [3], Section 3. Case n = 1 of Theorem 6.4.1 is proved �

Case n = 0

When n = 0, one gets a one-dimensional (degenerate) noncommutative torus;
such an object, AQ, can be obtained from the 2-dimensional torus A2

θ by
forcing θ = p/q ∈ Q be a rational number (hence our notation). One can
always assume θ = 0 and, thus

K+
0 (AQ) ∼= Z.

The group of automorphisms of Z-module K+
0 (AQ) ∼= Z is trivial, i.e. the

multiplication by ±1; hence matrix A corresponding to the shift automor-
phisms is either 1 or −1. Since A must be positive, one gets A = 1. However,
A = 1 is not a primitive; indeed, for any N > 1 matrix A′ = ζN gives us
A = (A′)N , where ζN = e

2πi
N is the N -th root of unity. Therefore, one gets

A = ζN .

Since for the field Q it holds π(n) = n, one obtains tr (Aπ(p)) = tr (Ap) = ζpN .
A degenerate noncommutative torus, corresponding to the matrix A = ζN ,
we shall write as ANQ .

Suppose that Gal (K|Q) is abelian and let σ : Gal (K|Q) → C× be a
homomorphism. By the Artin reciprocity, there exists an integer Nσ and the
Dirichlet character

χσ : (Z/NσZ)× → C×,

such that σ(Frp) = χσ(p), see e.g. [Gelbart 1984] [28]. On the other hand,

it is verified directly, that ζpNσ = e
2πi
Nσ

p = χσ(p). Therefore Char (Ap) =
χσ(p)x− 1 and one gets

ζp(ANσQ , z) =
1

1− χσ(p)z
,
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where χσ(p) is the Dirichlet character. Therefore, L(ANσQ , s) ≡ L(s, χσ) is
the Dirichlet L-series; such a series, by construction, coincides with the Artin
L-series of the representation σ : Gal (K|Q) → C×. Case n = 0 of Theorem
6.4.1 is proved. �

4.4.3 Supplement: Artin L-function

The Class Field Theory (CFT) studies algebraic extensions of the number
fields; the objective of CFT is a description of arithmetic of the extension E
in terms of arithmetic of the ground field k and the Galois group Gal (E|k)
of the extension. Unless Gal (E|k) is abelian, the CFT is out of reach so far;
yet a series of conjectures called the Langlands program (LP) are designed to
attain the goals of CFT. We refer the interested reader to [Gelbart 1984] [28]
for an introduction to the CFT and LP; roughly speaking, the LP consists in
an n-dimensional generalization of the Artin reciprocity based on the ideas
and methods of representation theory of the locally compact Lie groups.
The centerpiece of LP is the Artin L-function attached to representation
σ : Gal (E|k) → GLn(C) of the Galois group of E; we shall give a brief
account of this L-function following the survey by [Gelbart 1984] [28].

The fundamental problem in algebraic number theory is to describe how
an ordinary prime p factors into prime ideals P in the ring of integers of an
arbitrary finite extensions E of the rational field Q. Let OE be the ring of
integers of the extension E and pOE a principal ideal; it is known that

pOE =
∏

Pi,

where Pi are prime ideals of OE. If E is the Galois extension of Q and
Gal (E|Q) is the corresponding Galois group, then each automorphism g ∈
Gal (E|Q) “moves around” the ideals Pi in the prime decomposition of p over
E. An isotropy subgroup of Gal (E|Q) (for given p) consists of the elements
of Gal (E|Q) which fix all the ideals Pi. For simplicity, we shall assume that
p is unramified in E, i.e. all Pi are distinct; in this case the isotropy subgroup
are cyclic. The (conjugacy class of) generator in the cyclic isotropy subgroup
of Gal (E|Q) corresponding to p is called the Frobenius element and denoted
by Frp. The element Frp ∈ Gal (E|Q) describes completely the factorization
of p over E and the major goal of the CFT is to express Frp in terms of arith-
metic of the ground field Q. To handle this hard problem, it was suggested
by E. Artin to consider the n-dimensional irreducible representations

σn : Gal (E|Q) −→ GLn(C),
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of the Galois group Gal (E|Q), see [Artin 1924] [3]. The idea was to use the
characteristic polynomial Char (σn(Frp)) := det(In − σn(Frp)z) of the ma-
trix σn(Frp); the polynomial is independent of the similarity class of σn(Frp)
in the group GLn(C) and provides an intrinsic description of the Frobenius
element Frp.

Definition 4.4.4 By an Artin zeta function of representation σn one under-
stands the function

ζp(σn, z) :=
1

det(In − σn(Frp)z)
, z ∈ C.

By an Artin L-function of representation σn one understands the product

L(σn, s) :=
∏
p

ζp(σn, p
−s), s ∈ C,

over all but a finite set of primes p.

Remark 4.4.5 (Artin reciprocity) If n = 1 and Gal (E|Q) ∼= Z/NZ is
abelian, then the calculation of the Artin L-function gives the equality

L(χ, s) =
∏
p

1

1− χ(p)p−s
,

where χ : (Z/NZ) → C× is the Dirichlet character; the RHS of the equality
is known as the Dirichlet L-series for χ. Thus one gets a formula

σ(Frp) = χ(p)

called the Artin reciprocity law; the formula generalizes many classical reci-
procity results known for the particular values of N .

Guide to the literature. The Artin L-function first appeared in [Artin
1924] [3]. The origins of the Langlands program (and philosophy) can be
found in his letter to André Weil, see [Langlands 1960’s] [48]. An excellent
introduction to the Langlands program has been written by [Gelbart 1984]
[28]. The Langlands program for the even-dimensional noncommutative tori
was the subject of [68].
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4.5 Projective varieties over finite fields

In Section 5.3 we constructed a covariant functor

F : Proj-Alg −→ C*-Serre

from the category of complex projective varieties V (C) to a category of the
Serre C∗-algebras AV . Provided V (C) ∼= V (K) for a number field K ⊂ C,
one can reduce variety V (K) modulo a prime ideal P ⊂ K over the prime
product q = pr; the reduction corresponds to a projective variety V (Fq)
defined over the finite field Fq. In this section we express the geometric
invariant |V (Fq)| of V (Fq) (the number of points of variety V (Fq)) in terms
of the noncommutative invariants of the Serre C∗-algebra AV ; the obtained
formula shows interesting links to the Weil Conjectures, see e.g. [Hartshorne
1977] [35], Appendix C for an introduction. We test our formula on the
concrete families of complex multiplication and rational elliptic curves.

4.5.1 Traces of Frobenius endomorphisms

The number of solutions of a system of polynomial equations over a finite
field is an important invariant of the system and an old problem dating back
to Gauss. Recall that if Fq is a field with q = pr elements and V (Fq) a smooth
n-dimensional projective variety over Fq, then one can define a zeta function

Z(V ; t) := exp
(∑∞

r=1 |V (Fqr)| t
r

r

)
; the function is rational, i.e.

Z(V ; t) =
P1(t)P3(t) . . . P2n−1(t)

P0(t)P2(t) . . . P2n(t)
,

where P0(t) = 1 − t, P2n(t) = 1 − qnt and for each 1 ≤ i ≤ 2n − 1 the

polynomial Pi(t) ∈ Z[t] can be written as Pi(t) =
∏deg Pi(t)
j=1 (1 − αijt) so

that αij are algebraic integers with |αij| = q
i
2 , see e.g. [Hartshorne 1977]

[35], pp. 454-457. The Pi(t) can be viewed as characteristic polynomial
of the Frobenius endomorphism Friq of the i-th `-adic cohomology group
H i(V ); such an endomorphism is induced by the map acting on points of
variety V (Fq) according to the formula (a1, . . . , an) 7→ (aq1, . . . , a

q
n); we assume

throughout the Standard Conjectures, see [Grothendieck 1968] [30]. If V (Fq)
is defined by a system of polynomial equations, then the number of solutions
of the system is given by the formula

|V (Fq)| =
2n∑
i=0

(−1)i tr (Friq),
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where tr is the trace of Frobenius endomorphism, see [Hartshorne 1977] [35],
loc. cit.

Let V (K) be a complex projective variety defined over an algebraic num-
ber field K ⊂ C; suppose that projective variety V (Fq) is the reduction of
V (K) modulo the prime ideal P ⊂ K corresponding to q = pr. Denote by AV
the Serre C∗-algebra of projective variety V (K), see Section 5.3.1. Consider
the stable C∗-algebra of AV , i.e. the C∗-algebra AV ⊗ K, where K is the
C∗-algebra of compact operators on H. Let τ : AV ⊗ K → R be the unique
normalized trace (tracial state) on AV ⊗ K, i.e. a positive linear functional
of norm 1 such that τ(yx) = τ(xy) for all x, y ∈ AV ⊗ K, see [Blackadar
1986] [10], p. 31. Recall that AV is the crossed product C∗-algebra of the
form AV ∼= C(V ) o Z, where C(V ) is the commutative C∗-algebra of com-
plex valued functions on V and the product is taken by an automorphism of
algebra C(V ) induced by the map σ : V → V , see Lemma 5.3.2. From the
Pimsner-Voiculescu six term exact sequence for crossed products, one gets
the short exact sequence of algebraic K-groups

0→ K0(C(V ))
i∗→ K0(AV )→ K1(C(V ))→ 0,

where map i∗ is induced by an embedding of C(V ) into AV , see [Black-
adar 1986] [10], p. 83 for the details. We have K0(C(V )) ∼= K0(V ) and
K1(C(V )) ∼= K−1(V ), where K0 and K−1 are the topological K-groups of
variety V , see [Blackadar 1986] [10], p. 80. By the Chern character formula,
one gets {

K0(V )⊗ Q ∼= Heven(V ;Q)
K−1(V )⊗ Q ∼= Hodd(V ;Q),

where Heven (Hodd) is the direct sum of even (odd, resp.) cohomology groups
of V .

Remark 4.5.1 It is known, that K0(AV⊗K) ∼= K0(AV ) because of stability
of the K0-group with respect to tensor products by the algebra K, see e.g.
[Blackadar 1986] [10], p. 32.

Thus one gets the commutative diagram shown in Fig. 6.6, where τ∗ denotes
a homomorphism induced on K0 by the canonical trace τ on the C∗-algebra
AV ⊗K.



4.5. PROJECTIVE VARIETIES OVER FINITE FIELDS 155

?

HH
HHHj

��
����

Heven(V )⊗ Q i∗−→ K0(AV ⊗K)⊗ Q −→ Hodd(V )⊗ Q

τ∗

R

Figure 4.6: K-theory of the Serre C∗-algebra AV .

Because Heven(V ) := ⊕ni=0H
2i(V ) and Hodd(V ) := ⊕ni=1H

2i−1(V ), one gets
for each 0 ≤ i ≤ 2n an injective homomorphism

H i(V )→ R

and we shall denote by Λi an additive abelian subgroup of real numbers
defined by the homomorphism.

Remark 4.5.2 The Λi is called a pseudo-lattice [Manin 2004] [52], Section
1.

Recall that endomorphisms of a pseudo-lattice are given as multiplication of
points of Λi by the real numbers α such that αΛi ⊆ Λi. It is known that
End (Λi) ∼= Z or End (Λi) ⊗ Q is a real algebraic number field such that
Λi ⊂ End (Λi) ⊗ Q, see e.g. [Manin 2004] [52], Lemma 1.1.1 for the case
of quadratic fields. We shall write εi to denote the unit of the order in the
field Ki := End (Λi) ⊗ Q, which induces the shift automorphism of Λi, see
[Effros 1981] [21], p. 38 for the details and terminology. Let p be a “good
prime” in the reduction V (Fq) of complex projective variety V (K) modulo a
prime ideal over q = pr. Consider a sub-lattice Λq

i of Λi of the index q; by an
index of the sub-lattice we understand its index as an abelian subgroup of Λi.
We shall write πi(q) to denote an integer, such that multiplication by ε

πi(q)
i

induces the shift automorphism of Λq
i . The trace of an algebraic number will

be written as tr (•). The following result relates invariants εi and πi(q) of
the C∗-algebra AV to the cardinality of the set V (Fq).

Theorem 4.5.1 (Noncommutative invariant of projective varieties
over finite fields)

|V (Fq)| =
2n∑
i=0

(−1)i tr
(
ε
πi(q)
i

)
.
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4.5.2 Proof of Theorem 6.5.1

Lemma 4.5.1 There exists a symplectic unitary matrix Θi
q ∈ Sp (deg Pi; R),

such that
Friq = q

i
2 Θi

q.

Proof. Recall that the eigenvalues of Friq have absolute value q
i
2 ; they come in

the complex conjugate pairs. On the other hand, symplectic unitary matrices
in group Sp (deg Pi; R) are known to have eigenvalues of absolute value 1
coming in complex conjugate pairs. Since the spectrum of a matrix defines
the similarity class of matrix, one can write the characteristic polynomial of
Friq in the form

Pi(t) = det (I − q
i
2 Θi

qt),

where matrix Θi
q ∈ Sp (deg Pi; Z) and its eigenvalues have absolute value 1.

It remains to compare the above equation with the formula

Pi(t) = det (I − Friqt),

i.e. Friq = q
i
2 Θi

q. Lemma 6.5.1 follows. �

Lemma 4.5.2 Using a symplectic transformation one can bring matrix Θi
q

to the block form

Θi
q =

(
A I
−I 0

)
,

where A is a positive symmetric and I the identity matrix.

Proof. Let us write Θi
q in the block form

Θi
q =

(
A B
C D

)
,

where matrices A,B,C,D are invertible and their transpose AT , BT , CT , DT

satisfy the symplectic equations
ATD − CTB = I,
ATC − CTA = 0,
BTD −DTB = 0.

Recall that symplectic matrices correspond to the linear fractional transfor-

mations τ 7→ Aτ+B
Cτ+D

of the Siegel half-space Hn = {τ = (τj) ∈ C
n(n+1)

2 | =(τj) >
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0} consisting of symmetric n × n matrices, see e.g. [Mumford 1983] [58], p.
173. One can always multiply the nominator and denominator of such a
transformation by B−1 without affecting the transformation; thus with no
loss of generality, we can assume that B = I. We shall consider the symplec-
tic matrix T and its inverse T−1 given by the formulas

T =
(
I 0
D I

)
and T−1 =

(
I 0
−D I

)
.

It is verified directly, that

T−1Θi
qT =

(
I 0
−D I

)(
A I
C D

)(
I 0
D I

)
=
(
A+D I
C −DA 0

)
.

The system of symplectic equations with B = I implies the following two
equations

ATD − CT = I and D = DT .

Applying transposition to the both parts of the first equation of the above
equations, one gets (ATD − CT )T = IT and, therefore, DTA − C = I. But
the second equation says that DT = D; thus one arrives at the equation
DA − C = I. The latter gives us C − DA = −I, which we substitute in
the above equations and get (in a new notation) the conclusion of Lemma
6.5.2. Finally, the middle of the symplectic equations with C = −I implies
A = AT , i.e. A is a symmetric matrix. Since the eigenvalues of symmetric
matrix are always real and in view of tr (A) > 0 (because tr (Friq) > 0), one
concludes that A is similar to a positive matrix, see e.g. [Handelman 1981]
[32], Theorem 1. Lemma 6.5.2 follows. �

Lemma 4.5.3 The symplectic unitary transformation Θi
q of H i(V ;Z) de-

scends to an automorphism of Λi given by the matrix

M i
q =

(
A I
I 0

)
.

Remark 4.5.3 In other words, Lemma 6.5.3 says that functor F : Proj-
Alg→ C*-Serre acts between matrices Θi

q and M i
q according to the formula

F :
(
A I
−I 0

)
7−→

(
A I
I 0

)
.
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Proof. Since Λi ⊂ Ki there exists a basis of Λi consisting of algebraic num-
bers; denote by (µ1, . . . , µk; ν1, . . . , νk) a basis of Λi consisting of positive
algebraic numbers µi > 0 and νi > 0. Using the injective homomorphism τ∗,
one can descend Θi

q to an automorphism of Λi so that(
µ′

ν ′

)
=
(
A I
−I 0

)(
µ
ν

)
=
(
Aµ+ ν
−µ

)
,

where µ = (µ1, . . . , µk) and ν = (ν1, . . . , νk). Because vectors µ and ν consist
of positive entries and A is a positive matrix, it is immediate that µ′ =
Aµ+ ν > 0 while ν ′ = −µ < 0.

Remark 4.5.4 All automorphisms in the (Markov) category of pseudo-
lattices come from multiplication of the basis vector (µ1, . . . , µk; ν1, . . . , νk)
of Λi by an algebraic unit λ > 0 of field Ki; in particular, any such an auto-
morphism must be given by a non-negative matrix, whose Perron-Frobenius
eigenvalue coincides with λ. Thus for any automorphism of Λi it must hold
µ′ > 0 and ν ′ > 0.

In view of the above, we shall consider an automorphism of Λi given by
matrix M i

q = (A, I, I, 0); clearly, for M i
q it holds µ′ = Aµ + ν > 0 and

ν ′ = µ > 0. Therefore M i
q is a non-negative matrix satisfying the necessary

condition to belong to the Markov category. It is also a sufficient one, because
the similarity class of M i

q contains a representative whose Perron-Frobenius
eigenvector can be taken for a basis (µ, ν) of Λi. This argument finishes the
proof of Lemma 6.5.3. �

Corollary 4.5.1 tr (M i
q) = tr (Θi

q).

Proof. This fact is an implication of the above formulas and a direct compu-
tation tr (M i

q) = tr (A) = tr (Θi
q). �

Definition 4.5.1 We shall call q
i
2M i

q a Markov endomorphism of Λi and
denote it by Mkiq.

Lemma 4.5.4 tr (Mkiq) = tr (Friq).

Proof. Corollary 6.5.1 says that tr (M i
q) = tr (Θi

q), and therefore

tr (Mkiq) = tr (q
i
2M i

q) = q
i
2 tr (M i

q) =

= q
i
2 tr (Θi

q) = tr (q
i
2 Θi

q) = tr (Friq).
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In words, Frobenius and Markov endomorphisms have the same trace, i.e.
tr (Mkiq) = tr (Friq). Lemma 6.5.4 follows. �

Remark 4.5.5 Notice that, unless i or r are even, neither Θi
q nor M i

q are
integer matrices; yet Friq and Mkiq are always integer matrices.

Lemma 4.5.5 There exists an algebraic unit ωi ∈ Ki such that:

(i) ωi corresponds to the shift automorphism of an index q sub-lattice of
pseudo-lattice Λi;

(ii) tr (ωi) = tr (Mkiq).

Proof. (i) To prove Lemma 6.5.5, we shall use the notion of a stationary di-
mension group and the corresponding shift automorphism; we refer the reader
to [Effros 1981] [21], p. 37 and [Handelman 1981] [32], p.57 for the notation
and details on stationary dimension groups and a survey of [Wagoner 1999]
[106] for the general theory of subshifts of finite type. Consider a stationary
dimension group, G(Mkiq), generated by the Markov endomorphism Mkiq

Zbi
Mkiq→ Zbi

Mkiq→ Zbi
Mkiq→ . . . ,

where bi = deg Pi(t). Let λM be the Perron-Frobenius eigenvalue of matrix
M i

q. It is known, that G(Mkiq) is order-isomorphic to a dense additive abelian
subgroup Z[ 1

λM
] of R; here Z[x] is the set of all polynomials in one variable with

the integer coefficients. Let M̂kiq be a shift automorphism of G(Mkiq) [Effros
1981] [21], p. 37. To calculate the automorphism, notice that multiplication
of Z[ 1

λM
] by λM induces an automorphism of dimension group Z[ 1

λM
]. Since

the determinant of matrix M i
q (i.e. the degree of Markov endomorphism) is

equal to qn, one concludes that such an automorphism corresponds to a unit
of the endomorphism ring of a sub-lattice of Λi of index qn. We shall denote
such a unit by ωi. Clearly, ωi generates the required shift automorphism M̂kiq
through multiplication of dimension group Z[ 1

λM
] by the algebraic number ωi.

Item (i) of Lemma 6.5.5 follows.

(ii) Consider the Artin-Mazur zeta function of Mkiq

ζMkiq
(t) = exp

 ∞∑
k=1

tr
[
(Mkiq)

k
]

k
tk
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and such of M̂kiq

ζ
M̂kiq

(t) = exp

 ∞∑
k=1

tr
[
(M̂kiq)

k
]

k
tk

 .
SinceMkiq and M̂kiq are shift equivalent matrices, one concludes that ζMkiq

(t) ≡
ζ
M̂kiq

(t), see [Wagoner 1999] [106], p. 273. In particular,

tr (Mkiq) = tr (M̂kiq).

But tr (M̂kiq) = tr (ωi), where on the right hand side is the trace of an
algebraic number. In view of the above, one gets the conclusion of item (ii)
of Lemma 6.5.5. �

Lemma 4.5.6 There exists a positive integer πi(q), such that

ωi = ε
πi(q)
i ,

where εi ∈ End (Λi) is the fundamental unit corresponding to the shift auto-
morphism of pseudo-lattice Λi.

Proof. Given an automorphism ωi of a finite-index sub-lattice of Λi one
can extend ωi to an automorphism of entire Λi, since ωiΛi = Λi. Therefore
each unit of (endomorphism ring of) a sub-lattice is also a unit of the host
pseudo-lattice. Notice that the converse statement is false in general. On the
other hand, by virtue of the Dirichlet Unit Theorem each unit of End (Λi) is
a product of a finite number of (powers of) fundamental units of End (Λi).

We shall denote by πi(q) the least positive integer, such that ε
πi(q)
i is the shift

automorphism of a sub-lattice of index q of pseudo-lattice Λi. The number
πi(q) exists and uniquely defined, albeit no general formula for its calculation
is known, see Remark 6.5.6. It is clear from construction, that πi(q) satisfies
the claim of Lemma 6.5.6. �

Remark 4.5.6 No general formula for the number πi(q) as a function of q is
known; however, if the rank of Λi is two (i.e. n = 1), then there are classical
results recorded in e.g. [Hasse 1950] [37], p.298; see also Section 5.5.3.

Theorem 6.5.1 follows from Lemmas 6.5.4-6.5.6 and the known formula
|V (Fq)| =

∑2n
i=0(−1)i tr (Friq). �



4.5. PROJECTIVE VARIETIES OVER FINITE FIELDS 161

4.5.3 Examples

Let V (C) ∼= Eτ be an elliptic curve; it is well known that its Serre C∗-algebra
AEτ is isomorphic to the noncommutative torus Aθ with the unit scaled by
a constant 0 < log µ < ∞. Furthermore, K0(Aθ) ∼= K1(Aθ) ∼= Z2 and the
canonical trace τ on Aθ gives us the following formula

τ∗(K0(AEτ ⊗K)) = µ(Z + Zθ).

Because H0(Eτ ;Z) = H2(Eτ ;Z) ∼= Z while H1(Eτ ;Z) ∼= Z2, one gets the
following pseudo-lattices

Λ0 = Λ2
∼= Z and Λ1

∼= µ(Z + Zθ).

For the sake of simplicity, we shall focus on the following families of elliptic
curves.

Complex multiplication

Suppose that Eτ has complex multiplication; recall that such a curve was
denoted by E (−D,f)

CM , i.e. the endomorphism ring of Eτ is an order of conductor
f ≥ 1 in the imaginary quadratic field Q(

√
−D). By the results of Section

5.1 on elliptic curve E (−D,f)
CM , the formulas for Λi are as follows

Λ0 = Λ2
∼= Z and Λ1 = ε[Z + (fω)Z],

where ω = 1
2
(1+
√
D) if D ≡ 1 mod 4 and D 6= 1 or ω =

√
D if D ≡ 2, 3 mod 4

and ε > 1 is the fundamental unit of order Z + (fω)Z.

Remark 4.5.7 The reader can verify, that Λ1 ⊂ K1, where K1
∼= Q(

√
D).

Let p be a good prime. Consider a localization E(Fp) of curve E (−D,f)
CM

∼=
E(K) at the prime ideal P over p. It is well known, that the Frobenius
endomorphism of elliptic curve with complex multiplication is defined by the
Grössencharacter; the latter is a complex number αP ∈ Q(

√
−D) of absolute

value
√
p. Moreover, multiplication of the lattice LCM = Z+Zτ by αP induces

the Frobenius endomorphism Fr1
p on H1(E(K); Z), see e.g. [Silverman 1994]

[94], p. 174. Thus one arrives at the following matrix form for the Frobenius
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& Markov endomorphisms and the shift automorphism, respectively:

Fr1
p =

(
tr (αP) p
−1 0

)
,

Mk1
p =

(
tr (αP) p

1 0

)
,

M̂k1
p =

(
tr (αP) 1

1 0

)
.

To calculate positive integer π1(p) appearing in Theorem ??, denote by
(
D
p

)
the Legendre symbol of D and p. A classical result of the theory of real
quadratic fields asserts that π1(p) must be one of the divisors of the integer
number

p−
(
D

p

)
,

see e.g. [Hasse 1950] [37], p. 298. Thus the trace of Frobenius endomorphism
on H1(E(K);Z) is given by the formula

tr (αP) = tr (επ1(p)).

The right hand side of the above equation can be further simplified, since

tr (επ1(p)) = 2Tπ1(p)

[
1

2
tr (ε)

]
,

where Tπ1(p)(x) is the Chebyshev polynomial (of the first kind) of degree
π1(p). Thus one obtains a formula for the number of (projective) solutions
of a cubic equation over field Fp in terms of invariants of pseudo-lattice Λ1

|E(Fp)| = 1 + p− 2Tπ1(p)

[
1

2
tr (ε)

]
.

Rational elliptic curve

Let b ≥ 3 be an integer and consider a rational elliptic curve E(Q) ⊂ CP 2

given by the homogeneous Legendre equation

y2z = x(x− z)

(
x− b− 2

b+ 2
z

)
.
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The Serre C∗-algebra of projective variety V ∼= E(Q) is isomorphic (modulo
an ideal) to the Cuntz-Krieger algebra OB, where

B =
(
b− 1 1
b− 2 1

)
,

see [78]. Recall that OB⊗K is the crossed product C∗-algebra of a stationary
AF C∗-algebra by its shift automorphism, see [Blackadar 1986] [10], p. 104;
the AF C∗-algebra has the following dimension group

Z2 BT→ Z2 BT→ Z2 BT→ . . . ,

where BT is the transpose of matrix B. Because µ must be a positive eigen-
value of matrix BT , one gets

µ =
2− b+

√
b2 − 4

2
.

Likewise, since θ must be the corresponding positive eigenvector (1, θ) of the
same matrix, one gets

θ =
1

2

√b+ 2

b− 2
− 1

 .
Therefore, pseudo-lattices Λi are Λ0 = Λ2

∼= Z and

Λ1
∼=

2− b+
√
b2 − 4

2

Z +
1

2

√b+ 2

b− 2
− 1

 Z

 .
Remark 4.5.8 The pseudo-lattice Λ1 ⊂ K1, where K1 = Q(

√
b2 − 4).

Let p be a good prime and let E(Fp) be the reduction of our rational elliptic
curve modulo p. It follows from Section 6.3.3, that π1(p) as one of the divisors
of integer number

p−
(
b2 − 4

p

)
.

Unlike the case of complex multiplication, the Grössencharacter is no longer
available for E(Q); yet the trace of Frobenius endomorphism can be computed
using Theorem 6.5.1, i.e.

tr (Fr1
p) = tr

[
(BT )π1(p)

]
.
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Using the Chebyshev polynomials, one can write the last equation in the
form

tr (Fr1
p) = 2Tπ1(p)

[
1

2
tr (BT )

]
.

Since tr (BT ) = b, one gets

tr (Fr1
p) = 2Tπ1(p)

(
b

2

)
.

Thus one obtains a formula for the number of solutions of equation y2z =
x(x− z)

(
x− b−2

b+2
z
)

over field Fp in terms of the noncommutative invariants
of pseudo-lattice Λ1 of the form

|E(Fp)| = 1 + p− 2Tπ1(p)

(
b

2

)
.

We shall conclude by a concrete example comparing the obtained formula
with the known results for rational elliptic curves in the Legendre form, see
e.g. [Hartshorne 1977] [35], p. 333 and [Kirwan 1992] [43], pp. 49-50.

Example 4.5.1 (Comparison to classical invariants) Suppose that b ≡
2 mod 4. Recall that the j-invariant takes the same value on λ, 1 − λ and
1
λ
, see e.g. [Hartshorne 1977] [35], p. 320. Therefore, one can bring equation

y2z = x(x− z)
(
x− b−2

b+2
z
)

to the form

y2z = x(x− z)(x− λz),

where λ = 1
4
(b+ 2) ∈ {2, 3, 4, . . .}. Notice that for the above curve

tr (BT ) = b = 2(2λ− 1).

To calculate tr (Fr1
p) for our elliptic curve, recall that in view of last equality,

one gets
tr (Fr1

p) = 2 Tπ1(p)(2λ− 1).

It will be useful to express Chebyshev polynomial Tπ1(p)(2λ− 1) in terms of
the hypergeometric function 2F1(a, b; c; z); the standard formula brings our
last equation to the form

tr (Fr1
p) = 2 2F1(−π1(p), π1(p);

1

2
; 1− λ).
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We leave to the reader to prove the identity

2 2F1(−π1(p), π1(p); 1
2
; 1− λ) =

= (−1)π1(p)
2F1(π1(p) + 1, π1(p) + 1; 1; λ).

In the last formula

2F1(π1(p) + 1, π1(p) + 1; 1; λ) =
π1(p)∑
r=0

(
π1(p)
r

)2

λr,

see [Carlitz 1966] [13], p. 328. Recall that π1(p) is a divisor of p −
(
b2−4
p

)
,

which in our case takes the value p−1
2

. Bringing together the above formulas,
one gets

|E(Fp)| = 1 + p+ (−1)
p−1
2

p−1
2∑

r=0

( p−1
2

r

)2

λr.

The reader is encouraged to compare the obtained formula with the classical
result in [Hartshorne 1977] [35], p. 333 and [Kirwan 1992] [43], pp. 49-50;
notice also an intriguing relation with the Hasse invariant.

Guide to the literature. The Weil Conjectures (WC) were formulated
in [Weil 1949] [109]; along with the Langalands Program, the WC shaped
the modern look of number theory. The theory of motives was elaborated
by [Grothendieck 1968] [30] to solve the WC. An excellent introduction to
the WC can be found in [Hartshorne 1977] [35], Appendix C. The related
noncommutative invariants were calculated in [70].

4.6 Transcendental number theory

The functor

F : Ell −→ NC-Tor

constructed in Section 5.1 has an amazing application in the transcendental
number theory, see e.g. [Baker 1975] [5] for an introduction. Namely, we
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shall use the formula F (E (−D,f)
CM ) = A(D,f)

RM obtained in Section 6.1 to prove
that the transcendental function

J (θ, ε) := e2πiθ+log log ε

takes algebraic values for the algebraic arguments θ and ε. Moreover, these
values of J (θ, ε) belong to the Hilbert class field of the imaginary quadratic
field Q(

√
−D) for all but a finite set of values of D.

4.6.1 Algebraic values of transcendental functions

Recall that an old and difficult problem of number theory is to determine if
given irrational value of a transcendental function is algebraic or transcen-
dental for certain algebraic arguments; the algebraic values are particularly
remarkable and worthy of thorough investigation, see [Hilbert 1902] [40], p.
456. Only few general results are known, see e.g. [Baker 1975] [5]. We shall
mention the famous Gelfond-Schneider Theorem saying that eβ logα is a tran-
scendental number, whenever α 6∈ {0, 1} is an algebraic and β an irrational
algebraic number. In contrast, Klein’s invariant j(τ) is known to take alge-
braic values whenever τ ∈ H := {x+iy ∈ C | y > 0} is an imaginary quadratic
number. In follows we shall focus on algebraic values of the transcendental
function

J (θ, ε) := {e2πiθ+log log ε | −∞ < θ <∞, 1 < ε <∞}

for real arguments θ and ε.

Remark 4.6.1 The J (θ, ε) can be viewed as an extension of Klein’s invari-
ant j(τ) to the boundary of half-plane H; hence our notation.

Let K = Q(
√
−D) be an imaginary quadratic field of class number h ≥

1; let {E1, . . . Eh} be pairwise non-isomorphic elliptic curves with complex
multiplication by the ring of integers of field K. For 1 ≤ i ≤ h we shall
write Aθi = F (Ei) to denote the noncommutative torus, where F : Ell →
NC-Tor is the functor defined in Section 5.1. It follows from Theorem 6.1.2
that each θi is a quadratic irrationality of the field Q(

√
D). We shall write

(a
(i)
1 , . . . , a

(i)
n ) to denote the period of continued fraction for θi and for each

θi we shall consider the matrix

Ai =

(
a

(i)
1 1
1 0

)
. . .
(
a(i)
n 1
1 0

)
.
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Remark 4.6.2 In other words, matrix Ai corresponds to the shift automor-
phism σAi of the dimension group K+

0 (Aθi) ∼= Z + Zθi, see Section 3.5.2.

Let εi > 1 be the Perron-Frobenius eigenvalue of matrix Ai; it is easy to see,
that εi is a quadratic irrationality of the field Q(

√
D).

Theorem 4.6.1 If D 6∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} is a square-free posi-
tive integer, then {J (θi, εi) | 1 ≤ i ≤ h} are conjugate algebraic numbers.
Moreover, such numbers are generators of the Hilbert class field of imaginary
quadratic field Q(

√
−D).

4.6.2 Proof of Theorem 6.6.1

The idea of proof is remarkably simple; indeed, recall that the system of
defining relations 

x3x1 = e2πiθx1x3,
x4x2 = e2πiθx2x4,
x4x1 = e−2πiθx1x4,
x3x2 = e−2πiθx2x3,
x2x1 = x1x2 = e,
x4x3 = x3x4 = e,

for the noncommutative torus Aθ and defining relations

x3x1 = µe2πiθx1x3,
x4x2 = 1

µ
e2πiθx2x4,

x4x1 = µe−2πiθx1x4,
x3x2 = 1

µ
e−2πiθx2x3,

x2x1 = x1x2,
x4x3 = x3x4,

for the Sklyanin ∗-algebra S(q13) with q13 = µe2πiθ ∈ C are identical modulo
the “scaled unit relation”

x1x2 = x3x4 =
1

µ
e,

see Lemma 5.1.3. On the other hand, we know that if our elliptic curve is
isomorphic to E (−D,f)

CM , then:

(i) q13 = µe2πiθ ∈ K, where K = k(j(E (−D,f)
CM )) is the Hilbert class field of

the imaginary quadratic field k = Q(
√
−D);
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(ii) θ ∈ Q(
√
D), since Theorem 6.1.3 says that F (E (−D,f)

CM ) = A(D,f)
RM .

Thus one gets the following inclusion

K 3 µe2πiθ, where θ ∈ Q(
√
D).

The only missing piece of data is the constant µ; however, the following
lemma fills in the gap.

Lemma 4.6.1 For each noncommutative torus A(D,f)
RM the constant µ = log ε,

where ε > 1 is the Perron-Frobenius eigenvalue of positive integer matrix

A =
(
a1 1
1 0

)
. . .
(
an 1
1 0

)

and (a1, . . . , an) is the period of continued fraction of the corresponding quad-
ratic irrationality θ, see also Remark 6.6.2.

Proof. (i) Recall that the range of the canonical trace τ on projections of
algebra Aθ ⊗ K is given by pseudo-lattice Λ = Z + Zθ [Rieffel 1990] [89], p.
195. Because τ( 1

µ
e) = 1

µ
τ(e) = 1

µ
, the pseudo-lattice corresponding to the

algebra Aθ with a scaled unit can be written as Λµ = µ(Z + Zθ).

(ii) To express µ in terms of the inner invariants of pseudo-lattice Λ, de-
note by R the ring of endomorphisms of Λ and by UR ⊂ R the multiplicative
group of automorphisms (units) of Λ. For each ε, ε′ ∈ UR it must hold

µ(εε′Λ) = µ(εε′)Λ = µ(ε)Λ + µ(ε′)Λ,

since µ is an additive functional on the pseudo-lattice Λ. Canceling Λ in the
above equation, one gets

µ(εε′) = µ(ε) + µ(ε′), ∀ε, ε′ ∈ UR.

The only real-valued function on UR with such a property is the logarithmic
function (a regulator of UR); thus µ(ε) = log ε.

(iii) Notice that UR is generated by a single element ε. To calculate the
generator, recall that pseudo-lattice Λ = Z + Zθ is isomorphic to a pseudo-
lattice Λ′ = Z + Zθ′, where θ′ = (a1, . . . , an) is purely periodic continued
fraction and (a1, . . . , an) is the period of continued fraction of θ. From the



4.6. TRANSCENDENTAL NUMBER THEORY 169

standard facts of the theory of continued fractions, one gets that ε coincides
with the Perron-Frobenius eigenvalue of matrix

A =
(
a1 1
1 0

)
. . .
(
an 1
1 0

)
.

Clearly, ε > 1 and it is an invariant of the stable isomorphism class of algebra
Aθ. Lemma 6.6.1 is proved. �

Remark 4.6.3 (Second proof of Lemma 6.6.1) Lemma 6.6.1 follows
from a purely measure-theoretic argument. Indeed, if hx : R → R is a
“stretch-out” automorphism of real line R given by the formula t 7→ tx, ∀t ∈
R, then the only hx-invariant measure µ on R is the “scale-back” measure
dµ = 1

t
dt. Taking the antiderivative and integrating between t0 = 1 and

t1 = x, one gets
µ = log x.

It remains to notice that for pseudo-lattice K+
0 (A(D,f)

RM ) ∼= Z + Zθ ⊂ R, the
automorphism hx corresponds to x = ε, where ε > 1 is the Perron-Frobenius
eigenvalue of matrix A. Lemma 6.6.1 follows. �.

Theorem 6.6.1 is an implication of the following argument.

(i) Let D 6∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} be a positive square-free integer;

for the sake of simplicity, let f = 1, i.e. the endomorphism ring of E (−D,f)
CM

coincides with the ring of integers Ok of the imaginary quadratic field k =
Q(
√
−D). In this case E (−D,f)

CM
∼= E(K), where K = k(j(E(K))) is the Hilbert

class field of k. It follows from the well-known facts of complex multiplication,
that condition D 6∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} guarantees that K 6∼= Q, i.e.
the field K has complex embedding.

(ii) Let E1(K), . . . , Eh(K) be pairwise non-isomorphic curves with
End (Ei(K)) ∼= Ok, where h is the class number of Ok. Repeating for each
Ei(K) the argument at the beginning of proof of Theorem 6.6.1, we conclude
that µie

2πiθi ∈ K.

(iii) But Lemma 6.6.1 says that µi = log εi; thus for each 1 ≤ i ≤ h, one
gets

(log εi) e
2πiθi = e2πiθi+log log εi = J (θi, εi) ∈ K.
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(iv) The transitive action of the ideal class group Cl (k) ∼= Gal (K|k)
on the elliptic curves Ei(K) extends to the algebraic numbers J (θi, εi); thus
J (θi, εi) ∈ K are algebraically conjugate.

Theorem 6.6.1 is proved. �

Guide to the literature. The complex number is algebraic whenever it
is the root of a polynomial with integer coefficients; it is notoriously hard
to tell if given complex number is algebraic or not. Thanks to Ch. Hermite
and C. L. Lindemann the e and π are not, but even for e ± π the answer is
unknown. The Seventh Hilbert Problem deals with such type of questions,
see [Hilbert 1902] [40], p. 456. The famous Gelfond-Schneider Theorem
says that eβ logα is a transcendental number, whenever α 6∈ {0, 1} is an al-
gebraic and β an irrational algebraic number. An excellent introduction to
the theory of transcendental numbers in the book by [Baker 1975] [5]. The
noncommutative invariants in transcendence theory were the subject of [79].

Exercises, problems and conjectures

1. Prove that elliptic curves Eτ and Eτ ′ are isogenous if and only if

τ ′ =
aτ + b

cτ + d
for some matrix

(
a b
c d

)
∈M2(Z) with ad−bc > 0.

(Hint: notice that z 7→ αz is an invertible holomorphic map for each
α ∈ C− {0}.)

2. Prove that typically End (Eτ ) ∼= Z, i.e. the only endomorphisms of Eτ
are the multiplication-by-m endomorphisms.

3. Prove that for a countable set of τ

End (Eτ ) ∼= Z + fOk,

where k = Q(
√
−D) is an imaginary quadratic field, Ok its ring of

integers and f ≥ 1 is the conductor of a finite index subring of Ok;
prove that in such a case τ ∈ End (Eτ ), i.e. complex modulus itself is
an imaginary quadratic number.
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4. Show that the noncommutative tori Aθ and Aθ′ are stably homomor-
phic if and only if

θ′ =
aθ + b

cθ + d
for some matrix

(
a b
c d

)
∈M2(Z) with ad−bc > 0.

(Hint: follow and modify the argument of [Rieffel 1981] [88].)

5. (The rank conjecture) Prove that the formula

rk (E (−D,f)
CM ) + 1 = c(A(D,f)

RM )

is true in general, i.e. for all D ≥ 2 and f ≥ 1.

6. Verify that the continued fraction

[3s+ 1, 2, 1, 3s, 1, 2, 6s+ 2] =
√

(3s+ 1)2 + 2s+ 1

is a restriction of the continued fraction

[x0, x1, 2x1, x0, , 2x1, x1, 2x0] =
√
x2

0 + 4nx1 + 2

with x0 = n(2x2
1 + 1) + x1 to the case x1 = −1 and n = s+ 1.

7. Assume that a solution

[x0, x1, . . . , xk−1, xk, xk−1, . . . , x1, 2x0]

of the diophantine equation in Definition 6.2.2 with the (culminating
or almost-culminating) period P0 ≡ 7 mod 8 has dimension d = 1;
prove that for the solution

[x0, y1, x1, . . . , xk−1, yk−1, xk, yk−1, xk−1, . . . , x1, y1, 2x0]

having the period P0 + 4 the dimension remains the same, i.e. d = 1.
(Hint: use the same argument as in Lemma 6.2.3.)

8. Prove that part (ii) of Theorem 6.3.1 implies its part (i). (Hint: repeat
the step by step argument of Section 6.3.2.)

9. Prove Remark 6.4.1, i.e. that if noncommutative torus A2n
Θ0

has real
multiplication, then θi are algebraic integers. (Hint: each endomor-

phism of K+
0 (A2n

Θ0
) ∼= Z + θ1Z + . . . + θnZ +

∑22n−1

i=n+1 pi(θ)Z is multipli-
cation by a real number; thus the endomorphism is described by an
integer matrix, which defines a polynomial equation involving θi.)
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10. (Langlands conjecture for noncommutative tori) Prove Conjec-
ture 6.4.1, i.e. that for each finite extension E of the field of rational
numbers Q with the Galois group Gal (E|Q) and each irreducible rep-
resentation

σn+1 : Gal (E|Q)→ GLn+1(C),

there exists a 2n-dimensional noncommutative torus with real multi-
plication A2n

RM , such that

L(σn+1, s) ≡ L(A2n
RM , s),

where L(σn+1, s) is the Artin L-function attached to representation
σn+1 and L(A2n

RM , s) is the L-function of the noncommutative torus
A2n
RM .

11. Prove the identity

2 2F1(−π1(p), π1(p); 1
2
; 1− λ) =

= (−1)π1(p)
2F1(π1(p) + 1, π1(p) + 1; 1; λ),

where 2F1(a, b; c; z) is the hypergeometric function.


