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Abstract:  The Standard Model of particle physics is a theory concerning electromagnetic, weak, and strong 
nuclear interactions, which mediate the dynamics of known subatomic particles. The current formulation was 
finalized based on the existence of quarks. Because of its success in explaining a wide variety of experimental results, 
the Standard Model is sometimes regarded as a "theory of almost everything". Mathematically, the standard model is 
a quantized Yang-Mills theory. Therefore, the Standard Model falls short of being a complete theory of fundamental 
fields. It neither explains force hierarchy nor predicts the structure of the universe. Fortunately, Unified Field Theory 
(UFT) explains fundamental forces and structures of sub-atomic particles and grand universe. One of the important 
applications of the Unified Field Theory is that the mass of each sub-atomic particle has a formula. These formulas 
are structural formulas which can calculate mass of the particles. The mass of a particle decides its structure and 
characteristics.  
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1. Introduction 
Unified Field Theory (e.g. [1],[2],[3]) provides 

particles’ configurations, a capability that no existing 
theory has. This paper compares UFT and Standard Model 
(e.g. [4],[5]-[38]) as the first step to present UFT as a 
better theory. 

The Standard Model has following assumptions: 
1. There are six quarks that have either 1⁄3 or 2⁄3 times 

the elementary charge. 
2. The relatively constant coupling force of Strong 

Interactions between quarks and gluons because all carry 
a type of charge called "color charge." Color charge is 
analogous to electromagnetic charge, but it comes in 
three types rather than one, and it results in a different 
type of force, with different rules of behavior. These rules 
are detailed in the theory of quantum chromodynamics 
(QCD), which is the theory of quark-gluon interactions. 

3. The weak force is 1032 times stronger than gravity. 
This paper will begin with the paradox of the Standard 

Model. It also addresses the force hierarchy problem of 
the current particle physics theories as well as 
fundamental questions unanswered by the existing 
theories. Then the paper will reexamine the existence of 
quarks and the theory of QCD (fig. 1). The paper also 
provides structural mass formulas for each particle. 

2. Paradox of Standard Model 

2.1. Paradox of Inseparable Quarks 

 
Fig. 1. QCD Proton Model 

The up quark or u quark has an electric charge of +2/3 
e.  The down quark or d quark has an electric charge of -
1/3 e. Unfortunately, there has been no particle with 1/3 or 
2/3 of unit charge observed, meaning that no free quark 
has ever been observed. Therefore, the claim that “There 
are six quarks that have either 1⁄3 or 2⁄3 times the 
elementary charge” has never been experimentally 
confirmed. To make it plausible, the Quark Theory 
assumes the following QCD behaviors:  

1. The force between quarks does not diminish as they 
are separated. Because of this, it would take an infinite 
amount of energy to separate two quarks; they are forever 
bound into hadrons such as the proton and the neutron.  

2. In very high-energy reactions, quarks and gluons 
interact very weakly. 

 



 
Fig. 2. Quarks’ Bonding Coil 

The resistance force created from coil (fig. 2) is 
proportional to the distortion of coil as a result of Hooke’s 
Law.  

There are two possible cases relating to the distortion of 
quarks and gluons: 

1. In close distance: If the quarks and gluons interact 
weakly in very high-energy reaction, then quarks should 
be separated out during the interaction. The high energy 
introduced momentum can break weak bonding 
(interaction) forces. 

2. In relatively far distance: If the quarks and gluons 
have stronger bonding forces than Strong forces, then 
quarks and gluons in one proton will be able to interact 
with quarks and gluons in another proton. Therefore, 
proton-proton interaction should have a stronger force. 

The inseparable quarks’ claim conflicts with the 
following observations: 

1. In very high-energy reactions, quarks and gluons 
interact very weakly. 

2. The coupling force of Strong Interactions between 
quarks and gluon is relatively constant. 

2.2. Paradox of Bonding Forces 

 
Fig. 3. Particle Force Carriers 

In Standard Model’s QCD theory, the Strong Forces are 
carried via gluon. When two particles interact, one particle 
throw a force carrier particle at the second particle. Based 
on Conservation of Momentum, both particles will move 
further away from each other to conserve their 
momentum. In QCD theory, the particles will get closer. 

The mechanism of exchanging force carrier particles 
between two particles is controversial since the particle 
does not follow the Conservation of Momentum. 
Therefore, the Standard Model in principle violates the 
Conservation of Momentum. 

2.3. Force Hierarchy  
Strong force is at the top of the force hierarchy (e.g. 

[39], [40]-[50]), followed by electromagnetic force, weak 
force, and gravity, which is the weakest force.  

2.3.1. Force Carriers 
In current particle physics, forces between particles 

arise from the exchange of other particles. These force 
carrier particles are bundles of energy (quanta) of a 
particular kind of field as follows: 

The electromagnetic force can be described by the 
exchange of virtual photons. 

The nuclear force binding protons and neutrons can be 
described by an effective field of which mesons are the 
excitations. 

At sufficiently large energies, the strong interaction 
between quarks can be described by the exchange of 
virtual gluons. 

Beta decay is an example of an interaction due to the 
exchange of a W boson, but not an example of a force. 

Gravitation may be due to the exchange of virtual 
gravitons. 

The following conclusions can be made: 
1. The idea of force carrier particles (fig. 3) is 

controversial.  
2. “Virtual photons”, “gravitons” and “virtual gluons” 

are not plausible particles. The use of these unknown 
particles for the sake of theory is clearly inaccurate.  

3. Even with the help of the force carriers, the force 
hierarchy is not explained properly.  

3. UFT vs. Standard Model  
The purpose of a theory is to explain some aspects of 

the world. Thus many kinds of explanations are rightly 
called theories. 

The characteristics of good theories are: 
1. Easy to obtain confirmations, or verifications; 
2. Not refutable by any conceivable event is non-

scientific; 
3. Assert that things operate in one way and rule out 

other possibilities; 
4. Less testability leads to less risk, therefore, a good 

theory is less testable. 
5. Have a clearly defined scope. 
6. The logical induction is certain. 

3.1. Standard Model is Questionable 
The Standard Model does not meet any of the above 

characteristics. 
1. Standard Model can not exist without Quarks, but 

Quarks have never been observed directly; 
2. Imagine a scenario where person A and person B 

are standing on ice, with person A holding ball C. 
When person A throws ball C at person B, ball C  
should bring person B closer to person A 
according to QCD theory. In reality, the two 



people will move away from each other. This 
simple scenario falsifies the force carrier theory 
of Standard Model. 

3. The conservation of Charge Parity (CP) is an 
important law in Standard Model, but many 
various experiments have observed violations in 
Charge Parity.  

4. The theory contains many questionable theories 
that can be easily challenged. 

5. Wolfgang Pauli’s exclusive law is applicable 
only in the scope of the electron particle wave in 
an atom, but the law is not applicable for strong 
and weak interactions inside a subatomic particle. 

6. Standard Model relies on untenable theories such 
as Quarks, force carriers, and quantum field 
theories. Its logical induction undertakes many 
unreasonable assumptions. Therefore, its logical 
induction is uncertain. 

3.2. UFT Particle Theory is a Good Theory 
UFT theory meets all the characteristics of a good 

theory. 
1. It can be easily confirmed using mass formula 

that is applicable for any random particle. Any 
known particle has a proper mass formula that 
follows Unified Field Theory. Therefore the 
possible mass for particles are in a limited value 
set.  

2. UFT follows simple rules, such as the Fibonacci 
sequence, addition, multiplication, and division. 
It can not be refuted by any non-scientific event. 

3. The explanation rules out any arbitrary mass 
value for a particle. The mass value determines 
the properties of a particle due to the certainties 
of wave resonance. 

4. The particles are built with simple unit charge 
waves. The existence of the wave can be 
confirmed by the stability of the electron. No 
other tests are needed. 

5. UFT uses the Torque (e.g. [3]) model as the 
foundation for other building blocks, such as 
fundamental forces, unit charge, photon, Planck 
length and size of Universal Grid (e.g. [3]). 

6. UFT is built on a simple relationship between 
space-time-energy (e.g. [3]) and their only 
possible 3D Torque model. The inductions of the 
theory are mathematically certain. 

UFT provides predictions of unknown particles for the 
future research works. 

4. Unified Field Theory and Particles 

4.1. Fundamental Particles 
The particle is formed as result of the proper energy 

distortion wave resonance: 

 
Fig. 4. Resonance Transmissibility 

Any known slow particle is constructed by a basic 
structure with the unit charge (electron) mass as its unit. 

The sub-atomic particles are composed of fundamental 
waves, since UTF has no concept of a fundamental 
particle. The fundamental waves are: 

2*3 
2*2 
A = 2*3*5 
B = 2*2*4 
A2 =  (2*3*5)* (2*3*5)   
B2 =  (2*2*4)* (2*2*4)   
The simplified mass formula is a summation of the 

above formula. While the generic mass formula is:  
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A particle has many basic components. The total energy 
can be expressed as, 
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Where, 
Ei (i=1, 2, …, N) is energy of basic component 
Ex,y(x, y = 1, 2, …, N) is interaction energy between 

two basic components. 
The interactions inside a particle can be either strong or 

weak. 
The strong interaction’s unit is: 

∏
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When interacting on the shell, the weak interaction’s 
unit is: 

137*137
1  



When waves resonate with one another, the weak 
interaction unit is:  
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When waves are dissonant with one another, the 
compensate wave interaction unit is:  
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Leptons have complex wave fractional series that do 
not have simple formulas. 

The waves’ bonding energy is similar to the structure of 
a rope (fig. 5). 

The fibers form threads, threads form thicker threads, 
thick threads form thin ropes, thin ropes form ropes, ropes 
form thick ropes and etc. 

When threads form thin ropes, the twisting directions of 
threads and thin ropes are opposite. The waves in a 
particle structure have different charges as well. In a basic 
wave structure, the parent wave and child wave have 
different charges, and the total charge can only be one: 
minus one or zero. The complex particle itself can possess 
a charge count bigger than one.     

 
Fig. 5. Bonding Rope of the particle waves 

 

4.2. The Theoretical Basis of Mass Formula 
The electron has one Torque Grid distortion on its shell. 

It becomes the base of the other particles.  Particle 
structures can be mathematically derived with mass 
formulas. 

Any wave in the particle has a single unit charge so that 
it can be in resonance with the electron distortion. The 
total charge of the particle is the summation of the waves’ 
charges.   

4.3. Wave Axes and 3D Shapes 
Each major wave structure goes through the center of 

the particle. These structures are axes of the overall 3D 
structure of the particle. 

4.3.1. Three Axes 

 
 

Fig. 6. Three Axes Octahedron shape  

4.3.2. Four Axes 
 

 
Fig. 7. Four Axes Cube 

5. Proton 
Assume: 
A = 2*3*5; 
B = 2*2*4; 
The structural formula for proton (e.g. [51],[52]-[77]) is  
2A2 + A + 2*3 
The mass of a proton is: 
938.272013(23)MeV 
The mass of an electron is: 
0.510998910(13)MeV 
If we use the electron as a unit, the mass of the proton 

is: 
1836.15267(e) = 2A2 + A + 2*3 + 0.15267 

5.1. Configuration of the Proton 
The mass formula explains the Proton’s mass. The 

additional mass 0.15267 provides hints of configuration of 
proton. 

The structure 2A2 strong interaction: 
137/900 = 0.152222 



The weak interaction between (2*3) and eight faces 
(fig. 6) of A and 2A2: 

8/(137*137) =  0.000426 
Wave 2*3 does not have factor 5 in A (2*3*5). Since 

wave 2*3 is moving around. It interacts only half of the 
factor 5. The resonance weak interaction wave is: 

(5/2)/(137*137*2*3) = 0.000022 
The number matches exactly to the known Proton 

interactive mass 0.15267: 
0.152222 + 0.000426 + 0.000022 = 0.15267 

 
Fig. 8. Proton Octahedron shape  

6. Neutron 
The structural formula for neutron (e.g. [78],[79]-[113]) 

is  
2A2 + A + 2*3 + 2.5 
Using electron mass as unit, the mass of a proton is: 
1838.68365987  
= 2A2 + A + 2*3 + 2.5 + 0.15267 + 0.030987 

6.1. Configuration of Neutron 
The Neutron is a complex particle with the Proton as its 

base particle plus 2.5 mass waves. 
The 2.5 wave has a strong interaction with two A2 

structure with bonding energy of: 
137/(900*2.5*2) = 0.030444 
The weak interaction of 2.5 with ten ends of axes A, 

2A2, 3, and 3: 
10/(137*137) = 0.0005328 
Weak interaction between 2.5 and 2*3*5 related to 

opposite charge: 
1/(137*137*6)= 0.00001 
0.030444 + 0.0005328 + 0.00001 = 0.030987 
The number matches exactly with the known Neutron 

mass. 

7. Unstable Particles 

7.1. Hadrons 

7.1.1. Rho 
The structural formula for Rho (e.g. [114], [115], [116]) 

is: 
A2 + 2B2 + 2A + 2B + 2*2 + 2*3 + 3 
There are three axes (fig. 6): 

(A2 + 2A+3) + (B2 + B) + (B2 + B ) + 2*3 + 2*2 
Using electron mass as unit, the mass of a Rho is: 
1517.42= A2 + 2B2 + 2A + 2B + 2*2 + 2*3 + 3 + 0.42 
Strong interactions: 
2* B2 +  2*2: 
2*137/(256*4) = 0.27 
A2 + 2B2 
137/900 = 0.15 
Total: 0.27+0.15 = 0.42 
A2 has higher energy and less stable. It tends to 

annihilate first in the decaying process.   
A2 + 2B2 + 2A + 2B + 2*2 + 2*3 + 3 + 0.42  

 (B2 + B + 0.1317) + (B2 + 2*4 + 0.1426) + 980.1457 

7.1.2. Charged Pion 
The structural formula is (with three Axes): 
B2 +  4*4 + 1  
Using electron mass as unit, the mass of a Pion is: 
273.1317= B2 + 4*4 + 1 + 0.1317 
Strong interaction between B2 and (4*4 + 1), estimated 

factor is 4+1/16 = 4.0625: 
137/(256*4.0625) = 0.1317 
(4*4 + 1) gets destroyed first during the decaying 

process: 
B2 + 4*4 + 1 + 0.1317  (B2 + 2*4 + 0.1426) + 1 + 

7.9891 

7.1.2. Neutral Pion 
The structural formula is  
B2 +  2*2 + 2*2  
Using electron mass as its unit, the mass of a Pion is: 
264.1426= B2 + 2*2 + 2*2 + 0.1426 
Strong interaction between B2 and (2*2) + (2*2): 
137/(256*4)  + 137/((256*4)*4*4) = 0.14215 
Weak interaction: 
(2*2*2)/(137*137) = 0.000426 
0.14215 + 0.000426 = 0.1426 
Structure 2*2 can either annihilate along with the other 

structure, or, it can be decayed to: 
e+ + e- 
 

7.2. Leptons 

7.2.1. Muon 
The structural formula for muon (e.g. [117], [118]-

[129]) is  
2*(2*2*4*6) + 2*(2*3) + 2 + 0.76828 
There are some special Lepton waves: 
0.5 + 0.5/3 + 0.5/(2*3) + 0.5/((2+3)*2*3) + 

0.5/((2+3+6)* ((2+3)*2*3))  + 0.5/((2+3+6+30)*330)  
= 0.76822 
Plus weak interaction: 
1/(137*137)  + 1/(137*137*6)   = 0.00006 
0.76828 = 0.76822 + 0.00006 

http://upload.wikimedia.org/wikipedia/commons/1/14/Octahedron.gif�


 
Fig. 9. Muon Cube shape 
 

7.2.2. Tauon 
The structural formula for Tauon (e.g. [129], [130]-

[136]) is  
2*(9*10*19) + 19+19+19 + 0.181 
There are some special Tauon waves: 
1/19 + 1/10 + 1/(9+10+19) + 1/(19*(9+10+19)) = 

0.18033 
Plus weak interaction on seven faces: 
2*7/(137*137)  = 0.00075 
0.18033 + 0.00075 = 0.18108 

 
Fig. 10. Tauon Pentagonal prism 
 

7.3. Bosons 

7.3.1. Higgs Boson 
The structural formula for Higgs Boson is  
(3*6*9)*(3*6*9) * 3 * 3 + (2*3*5)*(2*3*5)*2*5 +2*5 
= 245206 
Higgs Boson has no special significance other than 

having a (3*6*9)*(3*6*9) strong interactive wave. 

7.3.2. W Boson 
The structural formula for W Boson is  
((3*6*9)*(3*6*9) -2*3*5)*2*3 + 2*3*5 + 5.5 
= 157309.5 

W Boson has a (3*6*9)*(3*6*9) strong interactive 
wave and negative bonding energy of (-30) for the 
(3*6*9)*(3*6*9) wave structure. 

7.3.3. Z Boson 
The structural formula for W Boson is  
(3*6*9)*(3*6*9)*2*3 + 3*6*9*15 + 3*3*3 + 

(2*6*8)*(2*6*8)*2  + 2*6*8 = 178449 
W Boson has no a (3*6*9)*(3*6*9) strong interactive 

wave and a (2*6*8)*(2*6*8) strong interactive wave 
structure. It has neither A nor B structure.  

8. Celon 
There are two known particles travelling at the speed of 

light: photon and neutrino (e.g. [137],[138]-[177]). A 
photon’s wave length equals the wavelength of the 
“particle wave”. A neutrino’s wave length unit is 1/137 of 
electron’s size. 

Particle type Celon is named after the Latin word 
Celeritas, meaning swiftness; both photon and neutrino 
travels at the speed of light, and they are categorized as 
Celons. 

8.1. Photon 

 
Fig. 11. Photon movements 
 

 
Fig. 12. Photon Torque distortions 
 
A photon (fig. 11) has a circular torque distortion (fig. 12) 

propelling itself forward in one direction along the torque line. 
Since the particle keeps moving, the photon both stretches and 
twists. The stretching is synchronized with the energy distortion 
on the grids. The center point has one Grid size distortion while 
energy distortion of its wavelength is one grid distortion as well. 

8.2. Neutrino 
A neutrino has a high energy spinning motion with 

weak interact range as its wavelength. The existence of the 
particle relays on the oscillation of the wave: 

3*5*8 +  3*5 + 2 = 137 
There is no physical Torque Grid. The subtle 

relationship among time, space, energy, and force is the 
reason behind the formation of Torque Grid. The above 

http://upload.wikimedia.org/wikipedia/commons/4/48/Hexahedron.gif�
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=zvnstFoJF_ButM&tbnid=6wv2gOxud22HiM:&ved=0CAUQjRw&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPentagonal_prism&ei=bbtxUvXsN4iTyQG67YGwBg&bvm=bv.55617003,d.aWc&psig=AFQjCNEvgzgqGOxLJNV7CnHJSNiXD6lZ_Q&ust=1383271622432451�


oscillation creates first level sub-grid structure that is 
1/137 of the Torque Grid. The smaller size has 137 times 
the stiffness. The same unit charge force produces one 
sub-grid size distortion on the shell of the sub-grid. The 
sub-grid can be further divided by a factor of 137 into 
second level sub-grid. This process can be repeated an 
unknown number of repetitions. 

The unit energy of a Torque grid (zero level) structure 
is  1. The unit energy of a first level sub-grid structure is 
1/(137*137). The unit energy of a second level sub-grid 
structure is 1/(137*137*137*137).  

The Unified Field Theory provides imperfect 
explanations of neutrino mass. Nevertheless, the mass 
formula can be used to predict neutrino from the new T2 
lepton. 

8.2.1. Electron Neutrino 
When a neutron decays to a proton and electron, it 

release an electron neutrino: 
n  p + e- + ve

- 
Or, 
2A2 + A + 2*3 + 0.15267 + 2.5 + 0.030987    
2A2 + A + 2*3 + 0.15267 + 1 +1.530987 
1 +1.530987  e- + 1.530987 
1.530987  ve

- + Ekinetic + Ephoton 
Some of the oscillation waves are in the original wave 

form and released as neutrinos. In this case, there are more 
than one neutrinos. There is no anti-neutrino in existence 
in Unified Field Theory.  

The observed energy of ve
- can be from 0 to  2.2 eV 

(0.0000011 e). 
387/(137*137*137*137) = 0.0000011 

8.2.2. Muon Neutrino 
The structure of muon is: 
2*(2*2*4*6) + 2*(2*3) + 2 + 0.76828  e- + vu

- 
Neutrinos will be formed via 0.5 + 0.5/3 + 0.5/(2*3) + 

0.5/((2+3)*2*3) + 0.5/((2+3+6)* ((2+3)*2*3))  + 
0.5/((2+3+6+30)*330).  

If 0.5 forms other energy, then, neutrino energy will be: 
 0.5/3 + 0.5/(2*3) + 0.5/((2+3)*2*3) + 0.5/((2+3+6)* 

((2+3)*2*3)) = 0.2682 
Or, 
137 KeV   
The observed energy of Muon neutrino can be from 0 to  

170 KeV (0.34 e). 
6379 /(137*137) = 0.34 

8.2.3. Tauon Neutrino 
The structure of tauon is: 
2*(9*10*19) + 19+19+19 + 0.181 
1 of the above electron units of the quantity of 19 will 

become (e- + vt
-). The energy of Tau neutrino is from 

19+19 = 38.  
30+8 = 38 
30 + 2*0.181 = 30.362 
When the neutrino mass is 30.362 e: 
15.5 MeV 
The observed energy of Tauon neutrino can be from 0 

to 15.5 MeV. 

8.2.4. Neutrino Flavors 
Neutrinos are formed via different process and 

therefore, they have different structures known as flavors. 
There is no limit to the energy of a neutrino.  

9. Predictions 

9.1. New Leptons 
The structure of T2 is: 
2*(11*12*23) + 23+23+23 + 0.1495 = 6141.1495 

(3138.120811187736 MeV) 
1/23 + 1/12 + 1/(11+12+23) + 1/(23*(11+12+23)) = 

0.1495 
Neutrino: 36+2*0.1495 = 36.3, or: 18.55 MeV 
 
The structure of T3 is (may be harder to identify): 
2*(14*15*29) + 29+29+29 + 0.119 = 12267.119 

(6268.484658648432 MeV) 
1/29 + 1/15 + 1/(14+15+29) + 1/(29*(14+15+29)) = 

0.119 
... 

9.2. New Bosons 
It may not be practical to discover new Bosons. We list 

the possible structure of new particles so that future 
experiments can verify the Unified Field Theory. 

The structural formula for I Boson is  
(4*8*12)*(4*8*12)*4*4 + (3*6*9)*(3*6*9) * 3 * 3 + 

(2*3*5)*(2*3*5)*2*5 +2*5 
= 2604502 
 
The structural formula for J Boson is  
(5*10*15)* (5*10*15) *5*5 + (4*8*12)*(4*8*12)*4*4 

+ (3*6*9)*(3*6*9) * 3 * 3 + (2*3*5)*(2*3*5)*2*5 +2*5 
= 16667002 
.... 

9.3. New Hadron 
The structural formula for this new Hadron is: 
2*3*(2*3*5)*(2*3*5) + 2*2* (2*2*4)* (2*2*4) + 

2*(2*3)*(2*3) + 1 
= 6497 (3320 MeV) 

10. Conclusions 
A particle configuration has the following rules: 
1. The particles are formed by charged energy waves 

with the electron mass as their unit. 
2. The multiplication Fibonacci series forms energy 

ropes that are the basic structure of the particle. 
3. Strong interactions and weak interactions add 

additional energy to the particles’ mass. 
4. Leptons rely on their wave series to gain their 

stabilities, since they lack Strong interactions. 
5. Each major wave structure forms an axis in the 

particle. The shape of a particle is decided by these 
axes.  

6. Neutrinos’ movement in the space is similar to that 
of the photon. Neutrinos and Photons are 
categorized as Celons. 

7. Unified Field Theory predicts the existence of new 
particles, such as new Leptons and new Bosons. 
Most practically verifiable particles are new 
Lepton T2 with mass of  3138.120811187736 MeV 
and a new Hadron with mass of 3320 MeV. The 
experiment findings will provide proof of Unified 
Field Theory. 
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