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Abstract

In this preliminary work, we focus on a particular iso-geometrical, iso-topological
facet of iso-mathematics by suggesting a developing, generalized approach for encoding
the states and transitions of spherically-symmetric structures that vary in size. In
particular, we introduce the notion of “effective iso-radius” to facilitate a heightened
characterization of dynamic iso-sphere Inopin holographic rings (IHR) as they undergo
“iso-transitions” between “iso-states”. In essence, we propose the existence of “effective
dynamic iso-sphere IHRs”. In turn, this emergence drives the construction of a new
“effective iso-state” platform to encode the generalized dynamics of such iso-complex,
non-linear systems in a relatively straightforward approach of spherical-based iso-topic
liftings. The initial results of this analysis are significant because they lead to alternative
modes of research and application, and thereby pose the question: do these effective
dynamic iso-sphere IHRs have application in physics and chemistry? Our hypothesis
is: yes. To answer this inquiry and assess this conjecture, this developing work should
be subjected to further scrutiny, collaboration, improvement, and hard work via the
scientific method in order to advance it as such.
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1 Introduction
The new discipline of Santilli iso-mathematics [1, 2, 3, 4, 5] has sparked

a revolution in the realm of universal number classification. More recently,
Santilli also generalized his iso-mathematics to create geno-mathematics and
hyper-mathematics [1, 2, 3, 4, 5], which are the heart of hadronic mechan-
ics [6, 7] and state-of-the-art, clean, sustainable, industrial-strength energy
sources such as MagneGas Fuel [8, 9, 10, 11, 12, 13, 14, 15] and Intermediate
Controlled Nuclear Fusion (Synthesis) [16, 17, 18, 19]. This frontier con-
tinues to be explored and expanded, where additional efforts have deployed
such iso-topic liftings to initiate, for example, new developments toward a
4D topological iso-string theory [20], iso-fractals such as Mandelbrot iso-sets
[21, 22], and the iso-dual tesseract [23]. Furthermore, similar such rigorous
examinations of possible iso-mathematics applications have expedited the
dynamic iso-topic lifting of iso-spaces to install dynamic iso-spaces [24],
which form the foundation of dynamic iso-sphere IHRs with the “built-in”
exterior and interior inverse iso-duality [25].

In this assignment, we focus on advancing the representation of dy-
namic iso-1-sphere IHRs [25] by forging the effective iso-radius (“effective
iso-modulus” or “effective iso-amplitude-radius”) platform to launch the en-
coding of their characteristic “iso-transitions” between “iso-states” as they
vary in size. The effective iso-radius concept introduced in this paper was
originally inspired by the “effective radius” concept from Corda’s new frame-
work of black hole effective states [26, 27, 28, 29, 30]. However, this paper
is devoted to iso-mathematics rather than physics; thus, the effective rep-
resentation proposed here targets spherically-symmetric iso-mathematical
structures (like IHRs) rather than spherically-symmetric physical structures
(like black holes or hadrons). Hence, for now, we limit our investigation to
the domain of iso-mathematics [1, 2, 3, 4, 5] but recognize the hypothe-
sis that such dynamic iso-sphere IHRs may possibly be applied to certain
aspects of physics in the future. Thus, we launch our investigation with
the step-by-step procedural analysis of Section 2 by presenting a systematic
construction of the effective iso-radius for a dynamic iso-1-sphere IHR [25]
to initiate the characterization of effective iso-states and iso-transitions for
dynamic iso-topic liftings [24]—the new effective dynamic iso-sphere IHR
is submitted. Finally, we conclude with Section 3, where we recapitulate
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the results of Section 2 with a brief discussion and suggest future modes of
research.

2 Procedure
In this section, we define and assemble the effective iso-radius for a

dynamic iso-sphere IHR [25] and thereby spark the notion of effective iso-
state.

2.1 Initializing the 1-sphere IHR topology
Here, we consider the “iso-1-sphere base case” by instantiating the 1-

sphere IHR topology [22, 31, 32, 33] via the following procedure:

1. First, from eq. (7) of [22], let X = C be the set of all complex
numbers, the Euclidean complex space, and the dual 2D Cartesian-
polar coordinate-vector state space, where the complex number ~x ∈ X
is a dual 2D Cartesian-polar coordinate-vector state [22, 31, 32, 33]
that is defined by eq. (6) of [22] as

x = ~x = ~xR + ~xI = (~x) = (|~x|, 〈~x〉)P = (~xR, ~xI)C , ∀~x ∈ X. (1)

In eq. (1), (~xR, ~xI)C is a 2D Cartesian coordinate-vector state in the
2D Cartesian coordinate-vector state space XC so (~xR, ~xI)C ∈ XC ,
while (|~x|, 〈~x〉)P is a 2D polar coordinate-vector state in the 2D polar
coordinate-vector state space XP so (|~x|, 〈~x〉)P ∈ XP , where XC and
XP are iso-morphic, dual, synchronized, and interlocking in X [22, 31,
32, 33]. Thus, eq. (1) complies with the constraints imposed by eqs.
(8–13) of [22]—see Figure 1.

2. Second, from eq. (16) of [22] we have

T 1 = {~x ∈ X : |~x| = r}, (2)

where T 1 ⊂ X is the 1-sphere IHR of amplitude-radius r > 0 (with
corresponding curvature κ = 1

r
) that is centered on the origin O ∈ X

[22, 31, 32, 33]; T 1 is the multiplicative group of all non-zero complex
numbers with amplitude-radius r, which is iso-metrically embedded
in X and is simultaneously dual to the two complex sub-spaces X−
and X+ [22, 31, 32, 33]—see Figure 2.
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Fig. 1: Complex components for the dual 2D Cartesian-polar coordinate-vector state

~x in the dual 2D Cartesian-polar coordinate-vector state space (and Euclidean complex

space) X, such that ~x ∈ X, where ~x is simultaneously treated as a complex number, 2D

polar coordinate-vector, and 2D Cartesian coordinate-vector [22, 31, 32, 33]. Specifically,

(~xR, ~xI)C is a 2D Cartesian coordinate-vector state in the 2D Cartesian coordinate-vector

state space XC so (~xR, ~xI)C ∈ XC , while (|~x|, 〈~x〉)P is a 2D polar coordinate-vector state

in the 2D polar coordinate-vector state space XP so (|~x|, 〈~x〉)P ∈ XP , where XC and XP

are iso-morphic, dual, synchronized, and interlocking in X [22, 31, 32, 33]. Note that

~xR and ~xI are treated as vectors (with axis-dependent magnitude and direction) so the

vector sum is ~x = ~xR + ~xI with amplitude |~x| and direction 〈~x〉 [22, 31, 32, 33].
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Fig. 2: The 1-sphere IHR topology for the dual 2D Cartesian-polar coordinate-vector

state space (and Euclidean complex space) X, where the topological 1-sphere IHR T 1 ⊂
X is simultaneously dual to two spatial 2-branes [22, 31, 32, 33]: the “2D micro sub-space

zone” X− ⊂ X and the “2D macro sub-space zone” X+ ⊂ X for interior and exterior

dynamical systems, respectively [22, 31, 32, 33].



5

At this point, we’ve initialized the 1-sphere IHR topology of T 1 ⊂ X
[22, 31, 32, 33]. Therefore, we are ready to explore the proposed the effective
iso-radius encoding platform of Section 2.2.

2.2 Constructing the effective iso-radius for the effective iso-state
Here, now that we’ve initialized the 1-sphere IHR topology of T 1 ⊂ X

[22, 31, 32, 33] in Section 2.1, we are ready to introduce and assemble the
effective iso-radius encoding platform for representing iso-sphere IHR [25]
iso-states and iso-transitions via the following procedure:

1. First, in conventional mathematics, the number 1 for the multiplica-
tive identity satisfies the original number field axioms [34]. Thus, the
number 1 is the fundamental unit that plays important and diverse
roles throughout mathematics in general such as, for example, nor-
malization. Therefore, we start by setting the amplitude-radius r = 1
so T 1 is the IHR unit-circle with the equivalent curvature κ = 1

r
= 1.

2. Second, in iso-mathematics [1, 2, 3, 4, 5, 22], Santilli successfully
demonstrated that the multiplicative unit is not limited to the num-
ber 1 and can therefore be replaced with the positive-definite iso-
multiplicative iso-unit r̂ > 0 with corresponding inverse κ̂ = 1

r̂
> 0

for iso-numbers. Hence, for some selected r̂, we employ Santilli’s iso-
methodology [1, 2, 3, 4, 5] to iso-topically lift T 1 via

~xr̂ ≡ ~x× r̂, ∀~x ∈ T 1 → ∀~xr̂ ∈ T 1
r̂ , (3)

for the transition and its inverse

f(r̂, T 1) : T 1 → T 1
r̂

f−1(r̂, T 1
r̂ ) : T 1

r̂ → T 1

(4)

to identify the iso-1-sphere IHR T 1
r̂ with the iso-radius r̂, so T 1 and

T 1
r̂ are locally iso-morphic and are both centered on the origin O ∈ X.

Here, note that in addition to being the iso-radius of T 1
r̂ , r̂ also serves

as the iso-unit for Santilli’s iso-multiplication [1, 2, 3, 4, 5, 22], where
the iso-unit inverse κ̂ is also the iso-curvature of T 1

r̂ .
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3. Third, given the dynamic iso-topic lifting and dynamic iso-spheres of
[24, 25], we furthermore define T 1

r̂ ’s iso-radius r̂ as an iso-function in
the positive-definite form

T 1
r̂(m) : r̂ ≡ r̂(m) ≡ ma+ b ≡ 1

κ̂(m)
> 0, (5)

where r̂(m) is the dynamic iso-radius iso-function (or “dynamic iso-
unit iso-function”) with the parameter m and κ̂(m) is the correspond-
ing dynamic iso-curvature iso-function, such that m is some general
mathematical quantity while a and b are coefficients that may be cus-
tomized depending on context and application (i.e. the classic “point-
intercept form”, etc.). Thus, eq. (3) is rewritten as

~xr̂(m) ≡ ~x× r̂(m), ∀~x ∈ T 1 → ∀~xr̂(m) ∈ T 1
r̂(m) (6)

so eq. (4) becomes

f(r̂(m), T 1) : T 1 → T 1
r̂(m)

f−1(r̂(m), T 1
r̂(m)) : T 1

r̂(m) → T 1.
(7)

4. Fourth, given that eq. (5) is a dynamic iso-unit iso-function, we wish
to show that r̂(m) is characterized by change as it’s parameter m
varies and takes on values from some positive-definite sequence M ,
such that m ∈M as m→∞. In [24, 25], there are two distinct types
of dynamic iso-unit iso-functions:

• continuous dynamic iso-unit iso-functions, so M may be a con-
tinuous sequence of positive-definite values such as, for example,
the case of M ≡ MR+ for the positive-definite interval of real
numbers

MR+ = (0,∞R+), m ∈MR+ , m→∞R+ ; (8)

and
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• discrete dynamic iso-unit iso-functions, so M may be a discrete
sequence of positive-definite values such as, for example, the case
of M ≡MN for the positive-definite set of natural numbers

MN = {1, 2, 3, 4, 5, ...}, m ∈MN, m→∞N (9)

or in the case of M ≡ MFib for the positive-definite set of Fi-
bonacci numbers

MFib = {1, 1, 2, 3, 5, ...}, m ∈MFib, m→∞Fib. (10)

5. Fifth, for this introductory investigation, consider a relatively simple
case and suppose that a = 2 and b = 0, where we know that the
r̂(m) > 0 and κ̂(m) > 0 of eq. (5) will remain positive-definite as m >
0 varies and takes on values from some positive-definite sequence M ,
regardless of whether M is continuous or discrete. Note: the selection
of a = 2 is arbitrary and for illustration purposes only (as long as
the r̂(m) > 0 iso-unit constraint is satisfied), but we are inspired
to let r̂(m) = 2m for this example because it parallels the relation
between the event horizon radius and mass of Schwarzschild black
holes [26, 27, 28, 29, 30]. Thus, eq. (5) is rewritten as

T 1
r̂(m) : r̂ ≡ r̂(m) ≡ m2 + 0 ≡ 2m ≡ 1

κ̂(m)
> 0. (11)

In this example case, we will operate eq. (11) with r̂(m) = 2m, but
note that eq. (11) could be rewritten again to relate r̂ to additional
mathematical quantities as long as it complies with Santilli’s positive-
definite iso-unit constraint r̂(m) > 0 [1, 2, 3, 4, 5, 22] for the iso-topic
liftings of eqs. (6–7).

6. Sixth, in a brief side note, we recall and observe that the fundamental
exterior and interior iso-duality inverse establishment [25] gives us

T 1
r̂(m) ≡ T 1

r̂+(m)

T 1
κ̂(m) ≡ T 1

r̂−(m)

(12)



8

because in this context, assuming r̂(m) > 1, the T 1
r̂(m) ≡ T 1

r̂+(m) of the

“outer” iso-radius r̂(m) ≡ r̂+(m) is the exterior iso-1-sphere IHR that
is “outside” of T 1 because T 1

r̂+(m) ⊂ X+, while the T 1
κ̂(m) ≡ T 1

r̂−(m) of

the “inner” iso-radius κ̂(m) ≡ r̂−(m) is the interior iso-1-sphere IHR
that is “inside” of T 1 because T 1

r̂−(m) ⊂ X− [25]: T 1
r̂+(m) and T 1

r̂−(m), or

equivalently T 1
r̂(m) and T 1

κ̂(m), are iso-dual [25] due to the fact that

r̂+(m) ≡ r̂(m) ≡ 1

κ̂(m)
≡ 1

r̂−(m)
(13)

indicates the inverse property. All of this illustrates a fundamental and
important iso-duality between the iso-curvature (the iso-unit inverse)
and iso-radius (the iso-unit) when T 1 is iso-topically lifted [25] via

T 1
κ̂(m) ← T 1 → T 1

r̂(m). (14)

For a depiction of eqs. (12–14) see Figure 3.

7. Seventh, given eq. (11), we define the initial iso-radius as

T 1
r̂(m0)

: r̂0 ≡ r̂(m0) ≡ 2m0 ≡
1

κ̂(m0)
> 0 (15)

for the initial iso-1-sphere IHR iso-state T 1
r̂(m0)

, where κ̂(m0) > 0 is
the initial iso-curvature, and m0 > 0 is the initial quantity, such that
m0 ∈ M , regardless of whether the positive-definite M is continuous
or discrete. Therefore, for this initial case we assign m = m0 for eq.
(6) to establish

~xr̂(m0) ≡ ~x× r̂(m0), ∀~x ∈ T 1 → ∀~xr̂(m0) ∈ T 1
r̂(m0)

(16)

so eq. (7) becomes

f(r̂(m0), T
1) : T 1 → T 1

r̂(m0)

f−1(r̂(m0), T
1
r̂(m0)

) : T 1
r̂(m0)

→ T 1.
(17)
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Fig. 3: When the 1-sphere IHR T 1 ⊂ X of radius r = 1 is iso-topically lifted to the iso-

1-sphere IHR T 1
r̂(m) = T 1

r̂+(m) ⊂ X+ of iso-radius r̂(m) = r̂+(m) > r and iso-curvature

κ̂(m) = 1
r̂(m) = r̂−(m) < r, there also exists the iso-1-sphere IHR T 1

κ̂(m) = T 1
r̂−(m) ⊂ X−

of iso-radius r̂−(m) and iso-curvature r̂+(m), such that T 1
r̂+(m) and T 1

r̂−(m) are iso-dual

inverses [25].
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8. Eighth, suppose that the quantity m0 undergoes a change that is
characterized by

δm : m0 → m1, (18)

which causes
δr̂(m) : r̂(m0)→ r̂(m1), (19)

such that
m0 = m1 −∆m. (20)

Thus, a second version of eq. (15) is written to define the final iso-
radius as

T 1
r̂(m1)

: r̂1 ≡ r̂(m1) ≡ 2m1 ≡
1

κ̂(m1)
> 0 (21)

for the final iso-1-sphere IHR iso-state of T 1
r̂(m1)

, where κ̂(m1) > 0 is
the final iso-curvature, and m1 > 0 is the final quantity, such that
m1 ∈ M , regardless of whether the positive-definite M is continuous
or discrete. Therefore, for this final case we assign m = m1 for eq. (6)
to establish

~xr̂(m1) ≡ ~x× r̂(m1), ∀~x ∈ T 1 → ∀~xr̂(m1) ∈ T 1
r̂(m1)

(22)

so eq. (17) becomes

f(r̂(m1), T
1) : T 1 → T 1

r̂(m1)

f−1(r̂(m1), T
1
r̂(m1)) : T 1

r̂(m1)
→ T 1.

(23)

9. Ninth, given the impact of eqs. (18–23), the initial iso-1-sphere IHR
iso-state of T 1

r̂(m0)
(of initial iso-radius r̂(m0)) is iso-topically lifted to

the final iso-1-sphere IHR iso-state of T 1
r̂(m1)

(of final iso-radius r̂(m1))
via

~xr̂(m1) ≡ ~xr̂(m0) ×
r̂(m1)

r̂(m0)
, ∀~xr̂(m0) ∈ T 1

r̂(m0)
→ ∀~xr̂(m1) ∈ T 1

r̂(m1)
(24)

for the iso-transition and its inverse

f( r̂(m1)
r̂(m0)

, T 1
r̂(m0)

) : T 1
r̂(m0)

→ T 1
r̂(m1)

f−1( r̂(m1)
r̂(m0)

, T 1
r̂(m1)

) : T 1
r̂(m1)

→ T 1
r̂(m0)

(25)
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with the iso-radius ratio r̂(m1)
r̂(m0)

and the corresponding iso-curvature

ratio r̂(m0)
r̂(m1)

characterize the iso-transition to establish that T 1, T 1
r̂(m0)

,

and T 1
r̂(m1)

are indeed locally iso-morphic—see Figure 4.

10. Tenth, we note that the iso-transition between T 1
r̂(m0)

and T 1
r̂(m1)

de-
pends on ∆m and complies with the trichotomy:

• Case ∆m < 0: T 1
r̂(m0)

is de-magnified to become T 1
r̂(m1)

via the

iso-topic lifting T 1
r̂(m0)

→ T 1
r̂(m1)

because m1 < m0 so r̂(m1) <

r̂(m0).

• Case ∆m = 0: T 1
r̂(m0)

is equivalent to T 1
r̂(m1)

via the iso-topic

lifting T 1
r̂(m0)

→ T 1
r̂(m1)

because m1 = m0 so r̂(m1) = r̂(m0).

• Case ∆m > 0: T 1
r̂(m0)

is magnified to become T 1
r̂(m1)

via the iso-

topic lifting T 1
r̂(m0)

→ T 1
r̂(m1)

because m1 > m0 so r̂(m1) > r̂(m0).

11. Finally, given the new and developing framework of [26, 27, 28, 29, 30]
that characterizes the effective physical state of black holes for an
emission or absorption transition, we are motivated to define the effec-
tive iso-mathematical iso-states of dynamic iso-1-sphere IHRs (which
are also spherically-symmetric objects) for a transition from T 1

r̂(m0)
to

T 1
r̂(m1)

. Therefore, given the physical black hole effective radius defini-

tion from eq. (5) of [29], we implement the dynamic iso-topic lifting
of [24, 25] and define the (iso-mathematical) effective dynamic iso-1-
sphere IHR iso-radius as

T 1
r̂(m0)

→ T 1
r̂(m1)

: r̂E ≡ r̂E(m0,m1) ≡ 2mE(m0,m1) ≡
1

κ̂E(m0,m1)
> 0,

(26)
where κ̂E(m0,m1) is the effective dynamic iso-1-sphere IHR iso-curvature
and inverse of the iso-unit, such that the effective iso-1-sphere IHR
quantity is defined as

mE(m0,m1) ≡
m0 +m1

2
, (27)
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Fig. 4: For the iso-transition T 1
r̂(m0)

→ T 1
r̂(m1)

of ∆m, the initial dynamic iso-1-sphere

IHR iso-state T 1
r̂(m0)

is iso-topically lifted to the final dynamic iso-1-sphere IHR iso-state

T 1
r̂(m1)

, where T 1
r̂(m0)

, and T 1
r̂(m1)

are indeed locally iso-morphic.
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which is simply the average of T 1
r̂(m0)

’s initial quantity m0 and T 1
r̂(m1)

’s
final quantity m1. Thereafter, we define the effective dynamic iso-1-
sphere IHR as

Tr̂E ≡ Tr̂E(m0,m1) ≡ {~x ∈ X : |~x| = r̂E(m0,m1)}, (28)

where Tr̂E(m0,m1) ⊂ X is centered on the origin O ∈ X; Tr̂E(m0,m1)

is the multiplicative group of all non-zero complex numbers with the
effective iso-amplitude-radius r̂E(m0,m1)—see Figure 5.

At this point, we’ve assembled a preliminary construction of the effective
iso-radius encoding platform for representing dynamic iso-sphere IHR [25]
iso-states and iso-transitions for the IHR topology [22, 31, 32, 33].

3 Conclusion
In this work, we merged pertinent aspects from Inopin’s IHR topology

[22, 31, 32, 33], Santilli’s iso-topic liftings [1, 2, 3, 4, 5] and Corda’s ef-
fective radius [26, 27, 28, 29, 30] into a single iso-mathematical model of
effective dynamic iso-sphere IHRs [25] with effective iso-radii. More specif-
ically, we successfully assembled the effective iso-radius for the dynamic
iso-1-sphere IHR [25] “base case” in the IHR topology [22, 31, 32, 33] and
introduced the corresponding notion of effective iso-state to begin encoding
the iso-transition between two distinct iso-states. For this, the procedure
and step-by-step developing results were presented in Section 2, which apply
to both continuous and discrete dynamic iso-sphere IHRs. Also, we demon-
strated that all of these outcomes comply with the exterior and interior
IHR inverse iso-duality [25]. To recapitulate the final results more precisely,
we defined—for the dynamic iso-sphere IHR T 1

r̂(m)—the effective iso-radius

r̂E(m0,m1) from the average of T 1
r̂(m0)

’s initial quantity m0 and T 1
r̂(m1)

’s final

quantity m1, which correspond to the initial dynamic iso-sphere IHR T 1
r̂(m0)

and the final dynamic iso-sphere IHR T 1
r̂(m1)

, respectively. Ultimately, we
deployed these constructs to propose the new effective dynamic iso-1-sphere
IHR Tr̂E(m0,m1) to characterize the iso-transition T 1

r̂(m0)
→ T 1

r̂(m1)
, which is a

new iso-geometrical, iso-topological class of dynamic iso-sphere IHRs for a
developing, generalized encoding approach.
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Fig. 5: For the iso-transition T 1
r̂(m0)

→ T 1
r̂(m1)

of ∆m, T 1
r̂(m0)

is the initial dynamic

iso-1-sphere IHR iso-state, T 1
r̂(m1)

is the final dynamic iso-1-sphere IHR iso-state, and

Tr̂E(m0,m1) is the characteristic effective dynamic iso-1-sphere IHR iso-state with the

effective iso-radius r̂E(m0,m1) and the effective iso-curvature κ̂E(m0,m1).
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The results, constructions, and implications of this preliminary investi-
gation are significant because they exemplify alternative modes of cutting-
edge iso-mathematics research that facilitate a heightened quantifiable char-
acterization of dynamic iso-sphere IHRs [25] in terms of effective iso-states
for iso-transitions with iso-duality. Hence, given that iso-sphere IHRs are
equipped with topological deformation order parameters [32, 33, 22], a
next logical step of this analysis could be to implement iso-topic liftings
[1, 2, 3, 4, 5] for the order parameters and then topologically incorporate
these “iso-deformations” into the existing effective iso-state definition. From
there, we may build on this platform and continue to develop the frame-
work by exploring and assessing the frontiers of iso-, geno-, and hyper-
mathematics [1, 2, 3, 4, 5]. One of the questions that comes to mind is
this: do effective dynamic iso-sphere IHRs equipped with effective iso-radii
have direct application to chemistry and/or physics such as, for example,
the non-strictly thermal, non-strictly continuous energy spectrum of black
holes [26, 27, 28, 29, 30] or hadronic mechanics [6, 7]? Our hypothesis is:
yes. Hence, in order to test this conjecture via the scientific method, this
developing class of effective dynamic iso-sphere IHRs must be subjected to
further development, scrutiny, collaboration, and hard work in order to ad-
vance it for future application in the disciplines of iso-mathematics, physics,
and science in general.
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